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ABSTRACT 

Vascular cognitive impairment (VCI) is a major cause of dementia among elderly 

individuals. Understanding molecular mechanisms behind vascular aging is essential to develop 

novel interventional strategies for the treatment and prevention of VCI. Recent studies have 

provided critical evidence that vascular aging is characterized by cellular NAD+ depletion. In our 

studies we systematically investigated the effects of boosting cellular NAD+ levels by the use of 

nicotinamide mononucleotide (NMN), an intermediate of NAD+ metabolism. First, we conducted 

in vitro examination of cultured cerebromicrovascular endothelial cells (CMVEC) isolated from 

young and aged F344xBN rats. We have shown that NMN treatment attenuates oxidative stress 

and rescues angiogenic capacity in aged CMVEC. Next, in vivo aged C57BL/6 mice were treated 

daily with NMN for 14 days. NMN treatment rescued cognitive performance, motor function and 

neurovascular coupling in aged animals. To understand the fundamental gene regulation 

underlying the beneficial effects of NMN treatment, we generated a miRNA profile from the aorta 

and a gene expression profile from isolated brain endothelial cells. Bioinformatic analysis revealed 

that the effects of NMN treatment were mediated by the sirtuin pathway and induced gene 

expression changes associated with mitochondrial rejuvenation, anti-inflammatory and anti-

apoptotic pathways. 
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INTRODUCTION 

In recent years, it has been recognized that the health of the cerebral microcirculation is 

critical for the brain health during aging1,2. It is now known that aging is associated with structural 

and functional impairments of cerebral microvasculature which substantially contribute to the 

pathogenesis of age-related cognitive decline3. Vascular cognitive impairment and dementia is the 

second most common cause of dementia4 and up to 75% of all patients with dementia have 

evidence of vascular pathology at autopsy5. Due to the rapidly aging population of Europe, it is 

increasingly important to explore potential drugs which could prevent or delay cognitive 

impairment and dementia in the elderly. 

Maintenance of cerebral homeostasis requires a tightly controlled supply of oxygen and 

nutrients as well as washout of harmful metabolites. The brain has limited energy reserves and 

cerebral oxygen content, so the neuronal function can be sustained only for a short period of time 

if cerebral blood flow (CBF) decreases6. Both structural and functional impairment of the 

cerebromicrovasculature can damage the fine structure of the neuronal network causing 

deterioration of cognitive and motor performance in patients. The dynamic balance between 

angiogenesis and microvascular regression is critical for the maintenance of a healthy cerebral 

microcirculatory network. Previous studies showed that advanced aging is associated with a 

significant impairment of endothelial angiogenic processes7 resulting in cerebromicrovascular 

rarefaction in the aged brain. Microvascular rarefaction contributes to a decline in cerebral blood 

flow compromising oxygen and nutrient delivery to the active neurons8,9 and leading to the 

formation of ischemic foci, neuronal dysfunction and demyelination10,11. In addition to being 

essential for the structural integrity in the brain, complex spatial regulation of CBF is needed for a 

healthy brain. Intense neuronal activity requires rapid adjustment of regional oxygen and glucose 

delivery. This is provided by an evolutionarily conserved physiological mechanism known as 

neurovascular coupling (NVC). NVC is achieved through orchestrated, tightly controlled 

intercellular communication between activated neurons, astrocytes, vascular endothelial cells, 

pericytes and smooth muscle cells. Impairment of functional hyperemia (‘neurovascular 

uncoupling’) has been described in a wide spectrum of pathophysiologic conditions associated 

with aging, including hypertension, obesity, cognitive impairment and Alzheimer’s disease12,13. 
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Nicotinamide adenine dinucleotide (NAD+) acts as an important, rate-limiting coenzyme 

in multiple electron transfer reactions. NAD+ is a donor of ADP-ribose moieties in ADP-

ribosylation reactions, precursor of the second messenger molecule cyclic ADP-ribose, and 

substrate for the longevity assurance factor sirtuin enzymes14. Maintenance of NAD+ level is 

critical for normal cellular proliferation and function, regulation of mitochondrial metabolism and 

cellular bioenergetics, adaptive stress responses, and normal activation of pro-survival, anti-aging 

pathways. With advanced age, there is decreased availability of cellular NAD+15,16, which has been 

proposed to be a critical driving force of aging processes. Aging-induced NAD+ depletion has been 

suggested to contribute to a wide range of chronic diseases and pathological conditions associated 

with old age17,18,2019, including endothelial dysfunction20. There is strong preclinical evidence that 

restoration of cellular NAD+ levels in aged rodents by administration of NAD+ precursors exerts 

potent anti-aging effects, reversing age-related organ dysfunction21,22 and increasing mouse 

lifespan23. Nicotinamide mononucleotide (NMN) is an example of an intracellular NAD-boosting 

molecule, and is a precursor of NAD+ biosynthesis. Cells take up NMN with great efficiency, 

however the underlying mechanism is unknown. Intracellularly, NMN is converted to NAD+ 

through the NAD+ salvage pathway by nicotinamide mononucleotide adenylyl transferase 

enzymes. Furthermore, NMN has great pharmacokinetics in humans giving it great therapeutic 

potential24. 

MicroRNAs (miRNA) are short, endogenous, non-coding transcripts that repress gene 

expression at post-transcriptional level in both physiological and pathological conditions. Strong 

evidence suggests that miRNAs have a role in regulation of lifespan in mammalian25. Importantly, 

miRNAs were also reported to regulate several important aspects of endothelial biology and 

vascular function26,27. Furthermore, several studies have demonstrated that age-related miRNA 

dysregulation contributes to the development of vascular aging phenotypes2428,29. Despite these 

advances, fundamental cellular and molecular processes of aging that are responsible for 

dysregulation of vascular miRNA expression have not been elucidated. 

The present study was designed to test the hypothesis that restoration of cellular NAD+ 

level with the supplementation of NMN can improve the health of cerebromicrovasculature in 

aging. Our hypothesis was tested in an array of in vitro and in vivo studies.  
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MATERIALS AND METHODS 

Primary Cerebromicrovascular Endothelial Cell Cultures 

We used Fischer 344 x Brown Norway (F344xBN) rats as a model of aging. In F344xBN 

rats the primary effects of aging can be studied without complications caused by age-related 

pathology30. 3 and 24-month-old, male F344xBN rats were obtained from the National Institute 

on Aging. The rats were housed in an environmentally controlled vivarium under pathogen-free 

conditions with unlimited access to food and water and a controlled photoperiod (12 hours light:12 

hours dark). All experimental animals were maintained according to National Institutes of Health 

guidelines, and all animal use protocols were approved by the Institutional Animal Care and Use 

Committees of the participating institutions. 

The animals were euthanized with CO2. The brains were rapidly dissected to establish 

primary cerebromicrovascular endothelial cell (CMVEC) cultures31,32. Briefly, after the harvested 

tissue was mechanically and enzymatically dissociated the endothelial cell–enriched fraction was 

collected using an OptiPrep gradient solution (Axi-Shield, PoC, Norway) according to the 

manufacturer’s guidelines. Next, the enriched fraction was incubated with anti-CD31/PE and anti-

MCAM/FITC antibodies (BD Biosciences, San Jose, CA, USA). After washing, anti-FITC and 

anti-PE magnetic bead labeled secondary antibodies were used. Endothelial cells were collected 

using the MACS LD magnetic separation columns according to the manufacturer’s guidelines 

(Milltenyi Biotech, Cambridge, MA, USA). The endothelial fraction was cultured on fibronectin 

coated plates in Endothelial Growth Medium (Cell Application, San Diego, CA, USA) with 

reduced nicotinamide concentration (11.04 μM) for 10 days. 

Endothelial cells were phenotypically characterized by flow cytometry (Guava EasyCyte 

8HT, Merck Millipore, Billerica, MA, USA) using antibodies against endothelial specific markers 

(anti-CD31-PE, anti-EPOR-APC, anti-VEGF/R2-PerCP, anti-ICAM-fluorescein, anti-CD146-

PE). All antibodies were manufactured by R&D Systems (R&D Systems, Minneapolis, MN, 

USA). 

Since the results of assays investigating mitochondrial reactive oxygen species, 

mitochondrial function and ATP concentration are affected by the number of viable cells, cell 

viability of each population was determined. 
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To assess the direct effects of NMN on endothelial mitochondrial function primary 

CMVECs derived from young and aged rats were treated with NMN in vitro in 5 × 10−4 mol/L 

concentration for 5 days. 

 

Assessment of Angiogenic Processes in CMVECs 

Cell Proliferation Assay: Cell proliferation capacity was assessed in CMVECs using the 

flow cytometry–based Guava CellGrowth assay (Guava Technologies, Hayward, CA, USA). Cells 

were collected, resuspended in PBS containing 0.1% BSA, and stained with 16 μmol/L 

carboxyfluorescein diacetate succinimidyl ester (CFSE) for 15 minutes at 37°C. This dye diffuses 

into cells and is cleaved by intracellular esterases to form an amine-reactive product that produces 

a detectable fluorescence and binds covalently to intracellular lysine residues and other amine 

sources. Upon cell division, CFSE divides equally into the daughter cells halving the CFSE 

concentration of the mother cell; therefore, there is an inverse correlation between the fluorescence 

intensity and the proliferation capacity of the cells. After incubation, unbound dye was quenched 

with serum-containing medium. Cells were washed three times and incubated for 24 hours with 

100 ng/mL vascular endothelial growth factor (VEGF). Finally, cells were collected, washed, 

stained with propidium iodide (to gate out dead cells), and analyzed with a flow cytometer (Guava 

EasyCyte 8HT, Merck Millipore, Billerica, MA, USA). 

Wound-healing and Cell Migration Assay: Electric Cell-substrate Impedance Sensing 

technology (ECIS, 96W1E) was used to monitor the migration of CMVECs in a wound-healing 

assay33 (Applied BioPhysics, Troy, NY, USA). Briefly, CMVECs (2.5 × 105 cells/well) were 

seeded in 96-well array culture dishes and placed in an incubator (37°C), and changes in resistance 

and impedance were continuously monitored. When impedance reached a plateau, cells in each 

well were subjected to an elevated field pulse (“wounding”) of 5 mA applied for 20 seconds at 100 

kHz, which killed the cells present on the small active electrode due to severe electroporation. The 

detachment of the dead cells was immediately evident as a sudden drop in resistance (monitored 

at 4000 Hz) and a parallel increase in conductance. VEGF (100 ng/mL) was immediately added to 

each well. CMVECs surrounding the active electrode that had not been subjected to the wounding 

then migrated inward to replace the detached dead cells resulting in resistance recovery 

(continuously monitored at 4000 Hz for up to 24 hours). The time to reach 50% resistance recovery 

(corresponding to 50% confluence on the active electrode) was determined for cells in each 
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experimental group, and this parameter and the known physical dimensions of the electrode were 

used to calculate the migration rate (expressed as μm/h). 

Tube Formation Assay: To assess tube formation, CMVECs were plated on Geltrex 

Reduced Growth Factor Basement Membrane Matrix in Medium 200PRF (Invitrogen, Carlsbad, 

CA, USA). Half of the aged control cells and NMN-treated aged cells were pre-treated with EX-

52734 (Active Motif, Carlsbad, CA, USA), a potent and selective sirtuin 1 (SIRT1) inhibitor (IC50 

38 nM). 150μL/well of Geltrex was distributed in ice-cold 24-well plates. The gel was allowed to 

solidify while incubating the plates for 30 minutes at 37°C. CMVECs were then seeded at a density 

of 5 × 104 cells/well and placed in the incubator for 24 hours. Microscopic images were captured 

using a Nikon Eclipse Ti microscope. The extent of tube formation was quantified by measuring 

total tube length in five random fields per well using NIS-Elements microscope imaging software 

(Nikon Instruments, Melville, NY, USA). The mean of the total tube length per total area imaged 

(μm tube/mm2) was calculated for each well. Experiments were run in quadruplicates. 

 

Assessment of Cellular H2O2 Production in CMVECs 

To assess cellular peroxide production, we used the cell-permeant oxidative fluorescent 

indicator dye CM-H2DCFDA (5 (and 6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate-

acetyl ester, Invitrogen, Carlsbad, CA, USA). Cells were washed with warm PBS and incubated 

with CM-H2DCFDA (10 μM), at 37°C, for 30 minutes. CM-H2DCFDA fluorescence was assessed 

by flow cytometry (Guava EasyCyte 8HT, Merck Millipore, Billerica, MA, USA). 

 

SIRT1 and SIRT2 shRNA Transfection of CMVECs 

To determine the role of sirtuin signaling in the endothelial effects of NMN treatment, the 

downregulation of SIRT1 and SIRT2, key anti-aging proteins whose activity is regulated by NAD+ 

levels, in CMVECs was achieved by RNA interference using proprietary, tested SIRT1 and SIRT2 

short hairpin RNA (shRNA) sequences (GeneCopoeia, Rockville, MD, USA). CMVECs were 

transfected using the electroporation-based Amaxa Nucleofector technology (Amaxa, 

Gaithersburg, MD, USA), as we have previously reported35,36. Experiments were performed on 

day 2 after the transfection. 
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Assessment of Mitochondrial Function in CMVECs 

Mitochondrial ROS Production: To assess the effect of NMN treatment on age-related 

mitochondrial oxidative stress, mitochondrial production of reactive oxygen species (mtROS) in 

CMVECs was measured using MitoSOX Red (Thermo Fisher Scientific, Waltham, MA, USA), a 

mitochondrion-specific hydroethidine-derivative fluorescent dye37,38. In brief, cells were incubated 

with MitoSOX (5 × 10−6 mol/L) for 30 minutes, at 37°C, in the dark. The cells were then washed 

with PBS and MitoSOX fluorescence was measured by flow cytometry (Guava EasyCyte 8HT, 

Merck Millipore, Billerica, MA, USA). 

Mitochondrial Membrane Potential: To elucidate the effects of NMN on mitochondrial 

membrane potential in CMVECs we used the mitochondrial membrane potential indicator 

fluorescent dye JC-1 (Guava Technologies, Hayward, CA, USA). JC-1 is a cationic carbocyanine 

dye that accumulates in energized mitochondria. When it is present in its monomer form in the 

mitochondria at low concentrations (low mitochondrial potential), the dye exhibits green 

fluorescence. When it accumulates in the energized mitochondria and forms J-aggregates at higher 

concentrations (high mitochondrial potential), it exhibits red fluorescence. A decrease in the 

aggregate red fluorescence and an increase in monomer green fluorescence is indicative of 

depolarization whereas an increase in the aggregate red fluorescence and a decrease in monomer 

green fluorescence is indicative of hyperpolarization. Cells were labeled with JC-1 for 

30 minutes at 37 °C and fluorescence was analyzed with flow cytometry. The red/green 

fluorescence ratio was calculated as an indicator of mitochondrial membrane potential. 

Mitochondrial Bioenergetics Assay: To substantiate the endothelium-protective effect of 

NMN, we performed real-time measurements of the oxygen consumption rate (OCR) as a marker 

of oxidative phosphorylation in young and aged CMVECs after treatment with NMN using a 

Seahorse XF96 extracellular flux analyzer (Agilent, Palo Alto, CA, USA). CMVECs were seeded 

into XF96 cell culture microplates in Seahorse XF-Assay media supplemented with 25 mM 

glucose and 1 mM sodium pyruvate (pH 7.4) the day before the assay. Plates were maintained for 

45 minutes at 37 °C in 0% CO2 prior to the measurement. Basal respiration, coupling efficiency, 

and spare respiratory capacity were compared using the Mito Stress Test Kit following the 

manufacturer's protocol. OCR was monitored before and after the addition of the electron transport 

inhibitors oligomycin (1.0 μM) and FCCP (1.0 μM), an ionophore that is a mobile ion carrier, and 

a mixture of antimycin-A (1.0 μM) (which is a complex III inhibitor) and rotenone (1.0 μM), a 
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mitochondrial inhibitor that prevents the transfer of electrons from the Fe–S center in complex I 

to ubiquinone. Basal respiration (baseline respiration minus antimycin-A post injection 

respiration), ATP synthesis coupled respiration (baseline respiration minus oligomycin post 

injection respiration), maximal respiratory capacity (FCCP stimulated respiration minus 

antimycin-A post injection respiration) and reserve respiratory capacity (FCCP stimulated 

respiration minus baseline respiration) were calculated. Sample protein content was used for 

normalization purposes39. 

 

Measurement of Cellular NO Release in CMVECs 

To assess the effect of NMN treatment on age-related decline in NO release, in separate 

experiments the production of NO in CMVECs was measured using the fluorescent indicator DAF-

FM (4-amino-5-methylamino- 2′,7′-difluorescein; Thermo Fisher Scientific, Waltham, MA, 

USA). After incubation with 5 μmol/L DAF-FM for 30 minutes at 37°C the cells were washed with 

PBS and the DAF-FM fluorescence was measured by flow cytometry (GUAVA 8HT, Merck 

Millipore, Billerica, MA, USA). 

 

Measurement of Cellular ATP Levels in CMVECs 

To correlate changes in OCR with directly to ATP production, we also measured cellular 

ATP concentration in CMVECs. ATP levels in endothelial cells were assessed using the ENLITEN 

ATP bioluminescent assay (Promega, Madison, WI, USA). First, CMVECs were seeded in 96-

well plates. For ATP determination the cells were homogenized in Passive Lysis Buffer (Promega, 

Madison, WI, USA). The samples were diluted 1:10 and mixed with an equal volume of the 

luciferase reagent. The plates were incubated at room temperature for 10 min and the luminescence 

signal was detected with a Tecan Infinite M200 plate reader. ATP quantification was carried out 

from a standard curve using ATP disodium salt hydrate. BCA protein determination was 

performed for normalization purposes. Cell viability in each population was determined by flow 

cytometry (Guava EasyCyte 8HT, Merck Millipore, Billerica, MA, USA) to ensure similar 

viability of CMVECs in each group in a parallel experiment using the ViaCount Assay (Guava 

Technologies, Hayward, CA, USA). 
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In vivo Animal Model 

Young (3 months) and aged (24 months) male C57BL/6 mice were obtained from the aging 

colony maintained by the National Institute on Aging at Charles River Laboratories (Wilmington, 

MA, USA). The biological age of 24 month old mice corresponds to that of ~ 70-year old 

humans40. Animals were housed under specific pathogen-free barrier conditions in the Rodent 

Barrier Facility at University of Oklahoma Health Sciences Center under a controlled photoperiod 

(12-12 hours light/dark) with unlimited access to water and were fed a standard AIN-93G diet (ad 

libitum). Mice in the aged cohort were assigned to two groups. One group of the aged mice was 

injected daily with NMN (i.p. injections of 500 mg NMN/kg body weight per day) or the 

equivalent volume of PBS for 14 consecutive days at 6 PM and 8 AM. On day 14 animals were 

sacrificed 4 hours after last injection. Similar dosages of NMN have been shown to exert potent 

anti-aging effects on mouse health span19. All procedures were approved by the Institutional 

Animal Use and Care Committees of the University of Oklahoma Health Sciences Center. 

To confirm efficiency of NMN treatment, NAD+ levels were measured in snap frozen 

aortas from young and aged mice using a bioluminescent assay (NAD/NADH-Glo Assay; 

Promega, Madison, WI, USA), according to the manufacturer's instructions. 

 

Animal Behavior Testing 

Radial arms water maze test: Spatial learning and memory in each group of mice were 

tested by the radial arms water maze test41,42. The maze consisted of eight, 9 cm wide arms that 

radiated out from an open central area. Paint was added into the water to make it opaque. At the 

end of one arm there was a submerged escape platform. The maze was surrounded by privacy 

blinds and intra- and extra-maze clues were provided to help the animals during the experiment. 

The mice were monitored by a video tracking system from above the maze and parameters were 

measured using Ethovision software (Noldus Information Technology, Leesburg, VA, USA). 

During the learning period mice were given the opportunity to learn the location of the submerged 

platform during two sessions each consisting of four consecutive acquisition trials. On each trial, 

the mouse was started in one arm not containing the platform and allowed to wade for up to one 

minute to find the escape platform. All mice spent 30 seconds on the platform following each trial 

before beginning the next trial. The platform was located in the same arm on each trial. Over the 

three days of training, mice in the young control group gradually improved performance as they 
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learned the procedural aspects of the task. Upon entering an incorrect arm (all four paws within 

the distal half of the arm) or failing to select an arm after 15 seconds the mouse was charged an 

error. Learning capability was assessed by comparing performance on days 2 and 3 of the learning 

period. 

Elevated plus maze, learning protocol: Mice were also assessed for learning capacity using 

an elevated plus maze-based learning protocol43. Two open arms (25 × 5 cm) and two (25 × 5 cm) 

closed arms were attached at right angles to a central platform (5 × 5 cm). The apparatus was 40 cm 

above the floor. Mice were placed individually at the end of an open arm. The time for mice to 

cross a line halfway along one of the closed arms was measured (transfer latency) on day 1 and 

day 2. Mice had to have their body and each paw on the other side of the line. If a mouse had not 

crossed the line after 120 seconds, it was placed beyond it. Learning was defined as reduced 

transfer latency on day 2 compared to day 1. Higher relative difference in transfer latency on day 

1 and day 2 indicates superior hippocampal function. 

Novel object recognition test: The novel object recognition task was also performed to 

characterize the effect of NMN on learning and memory44,45. The test consists of a habituation 

phase, acquisition (familiarization) phase and trial phase. During the habituation phase the animals 

explored the empty open-field arena for 5 minutes. Then, in the acquisition phase the mice explore 

two identical objects for 2 minutes. After a 4 hours delay, a trial phase occurred. During this period 

animals explored the familiar object and a novel object for 2 minutes. Exploration of the objects 

was defined as directing the nose at a distance less than 2 cm to the object. For data collection and 

analysis Ethovision software (Noldus Information Technology, Leesburg, VA, USA) was used. A 

percent of time spent exploring the novel object relative to the total time spent exploring both 

objects was used as a measure of novel object recognition. The Recognition Index (RI, 

representing the time spent investigating the novel object !"#$%& relative to the total object 

investigation) was used as the main index of retention, which was calculated according to the 

following formula: '(  =   !"#$%&
!"#$%&	(	!)*+,&,*-. 

Rotarod performance: Motor coordination was assessed in each group of mice by using an 

automated four-lane rotarod device (Columbus Instruments, Columbus, OH, USA)44. Mice were 

pre-trained by placing them on the moving rotarod at 10 rounds per minute (rpm) until they 

performed at this speed for 120 seconds. The test phase consisted of 3 trials. The testing apparatus 

was set to accelerate from 4 to 40 rpm in 300 seconds. One mouse was then placed on each lane. 
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The rotational velocity was set to increase every 10 seconds and the latency to fall was recorded. 

Latency to fall was recorded in by an infrared beam across the fall path along with the max rpm 

sustained by each mouse46. 

Grip strength test: Maximal muscle strength of forelimbs of the mice44 were measured by 

a grip strength meter (Ametek, Brooklyn, NY, USA). The strength measurements of each group 

of mice were repeated three times by the same investigator. The maximum grip strength values 

were used for subsequent analysis. 

Analysis of gait function: To determine how aging and NMN treatment affect gait 

coordination, we tested the animals using an automated computer assisted method (CatWalk; 

Noldus Information Technology, Leesburg, VA) as described41,42. Using the CatWalk system, the 

detection of paw print size, pressure and pattern during volunteer running on an illuminated glass 

walkway by a camera placed under the glass surface provides an automated analysis of gait 

function and the spatial and temporal aspects of interlimb coordinationp44. Animals were tested in 

three consecutive runs. Data were averaged across ten runs in which the animal maintained a 

constant speed across the walkway. After labeling of each footprint, spatial and temporal indices 

of gait were calculated. 

 

Assessment of Neurovascular Coupling 

After behavioral testing the neurovascular coupling of 5 to 8 animals from each group 

animal was assessed12. Animals were anesthetized with isoflurane (4% induction and 1% 

maintenance), endotracheally intubated and ventilated (MousVent G500; Kent Scientific Co, 

Torrington, CT, USA). A thermostatic heating pad (Kent Scientific Co, Torrington, CT, USA) was 

used to maintain body temperature. Arterial blood pressure was measured via femoral artery 

catheter (Living Systems Instrumentations, Burlington, VT, USA). Mice were placed on a 

stereotaxic frame (Leica Microsystems, Buffalo Grove, IL, USA) and were equipped with an open 

cranial window. Changes in CBF were assessed above the left barrel cortex using a laser Doppler 

probe (Transonic Systems, Ithaca, NY, USA). The cranial window was filled with artificial 

cerebrospinal fluid. The right whisker pad was stimulated by a bipolar stimulating electrode. The 

stimulation protocol used to investigate neurovascular coupling consisted of 10 stimulation 

presentation trials with an intertrial interval of 70 seconds, each delivering a 30 second train of 

electrical pulses (2 Hz, 0.2 mA, intensity, and 0.3 milliseconds pulse width) to the mystacial pad. 
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Changes in CBF were expressed as percent increase from the baseline value. To assess the role of 

NO mediation, CBF responses to whisker stimulation were repeated in the presence of the nitric 

oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME; 3 × 10−4 mol/L, 20 min). To 

assess microvascular endothelial function, CBF responses to topical administration of 

acetylcholine (ACh; 10−5 mol/L) were obtained before and after topical administration of the 

mitochondrial antioxidant mitoTEMPO (10−5 mol/L). Cortex and aorta of these animals were 

harvested for the following experiments. 

 

Assessment of Oxidative Stress in the Cortex 

To characterize the effect of NMN treatment on cellular redox homeostasis in aging, 3-

nitrotyrosine, a marker for peroxynitrite activity, was assessed in homogenates of cortical samples 

using OxiSelect Protein Nitrotyrosine ELISA Kits (Cell Biolabs, San Diego, CA, USA), according 

to the manufacturer's guidelines31. In the microcirculation of aged rodents’ endothelium-derived 

NO was shown to react with O2- forming ONOO- thus decreasing the bioavailability of NO47. 

 

Endothelial Function in the Aorta 

To assess the specific effect of NMN treatment on endothelial function we used isolated 

aorta rings48. Aortas were cut into ring segments 1.5 mm in length and mounted in myographs 

chambers (Danish Myo Technology A/S, Denmark) for measurement of isometric tension. The 

vessels were superfused with Krebs buffer solution. After an equilibration period of 1 hour during 

which an optimal passive tension was applied to the rings (as determined from the vascular length-

tension relationship), they were pre-contracted with 10-6 M phenylephrine and relaxation in 

response to acetylcholine was measured. 

 

Quantitative Real-time RT-PCR and miRNA Expression Profiling 

A quantitative real time RT-PCR technique was used to analyze miRNA expression 

profiles in the aortas of mice from each experimental group32,49. Total RNA was isolated with a 

mirVana™ miRNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) and was reverse 

transcribed using TaqMan® MicroRNA Reverse Transcription Kit32,49. The expression profile of 

mouse miRNAs in aortas was analyzed using the TaqMan Array Rodent MicroRNA A+B Cards 

Set v3.0 (Thermo Fisher Scientific, Waltham, MA, USA). The qPCR data were quantified using 



 - 16 - 

the ΔΔCt method50. Predicted and experimentally validated microRNA targets were obtained from 

the TargetScan database51, and Gene Ontology enrichment analysis was performed on 

differentially expressed microRNA targets using Fisher’s exact test between TargetScan targets 

and annotations from the Gene Ontology database52. To identify relationships between miRNA 

targets and terms in the biomedical literature, we utilized the Implicit Relationship IDEntification 

by in-Silico Construction of an Entity-based Network from Text (IRIDESCENT) system53. 

IRIDESCENT processes all available MEDLINE abstracts and uses a unique statistical model to 

determine whether each upstream regulator co-occurs with a term of interest more frequently than 

would be expected by chance, and quantifies this in terms of the mutual information measure. 

 

mRNA-sequencing of Isolated CMVECs 

Animals from a separate cohort were killed and transcardially perfused with PBS. From 

the mechanically and enzymatically dissociated tissue the endothelial cell–enriched fraction was 

collected using an OptiPrep gradient solution (Axi-Shield, PoC, Norway) according to the 

manufacturer’s guidelines. The neurovascular unit–enriched fraction was incubated with anti-

CD31/PE and anti-MCAM/FITC antibodies (BD Biosciences, San Jose, CA, USA). After 

washing, the cells twice with MACS Buffer (Milltenyi Biotech, Cambridge, MA, USA) anti-FITC 

and anti-PE magnetic bead labeled secondary antibodies were used. The endothelial/neurovascular 

(endothelial cells with attached astrocytes and pericytes were collected) enriched fraction was 

collected by magnetic separation using the MACS LD magnetic separation columns (Milltenyi 

Biotech, Cambridge, MA, USA). 

RNA isolation and next generation sequencing: RNA was isolated from the samples using 

AllPrep DNA/RNA Mini Kit (QIAGEN, Venlo, Netherlands)54. RNA quantity and quality were 

measured using the RNA 6000 Nano Assay with an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, 

CA, USA). Using 1μg RNA, cDNA was synthesized from purified RNA using ABI High-capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Library 

construction was performed in a stranded manner. The mature mRNA was enriched via pull down 

by beads coated with oligo-dT homopolymers. The mRNA molecules were then chemically 

fragmented, and the first strand of cDNA was generated using random primers. Following RNase 

digestion, the second strand of cDNA was generated, replacing dTTP in the reaction mix with 

dUTP. Double stranded cDNA then underwent adenylation of 3′ends following ligation of Illumina 
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adapter sequences. Subsequent PCR enrichment of ligated products was further selected for those 

strands not incorporating dUTP, leading to strand-specific sequencing libraries. Final libraries for 

each sample were assayed on the Agilent Tapestation for size and quantity. Libraries were then 

pooled in equimolar amounts as ascertained via fluorometric analyses. Final pools were absolutely 

quantified using qPCR on a Roche LightCycler 480 instrument with Kapa Biosystems Illumina 

Library Quantification reagents. Sequencing was performed on an Illumina NovaSeq 6000 

instrument with paired-end 50 base pairs reads. 

Data Analysis: Raw sequencing reads were trimmed of their Illumina TruSeq adapter 

sequences using Trimmomatic v0.3555 then aligned to the mouse genome version GRCm38 using 

Kallisto v0.43.0356. Samples were checked for outliers and separation by principle components 

analysis (PCA) with the R function prcomp. Raw expression counts were summarized at the gene 

level to transcript-length adjusted, library-size scaled counts per million with the R package 

tximport57. Differential expression analysis was performed using the empirical Bayes approach 

implemented in the R/Bioconductor package DESeq258. Genes were considered differentially 

expressed if the absolute value of the fold-change ≥ 1.5 and the False Discovery Rate p-value 

adjusted ≤ 0.05. 

The org.Mm.eg.db v3.8.2 R/Bioconductor package was used to collect Gene Ontology 

(GO) terms associated with differentially expressed genes. The hypergeometric test implemented 

in GOstats v2.51.0. R/Bioconductor package was used to calculate enrichment of the GO terms59. 

We used the Upstream Regulator Analysis60 algorithm in the Ingenuity Pathway Analysis 

(QIAGEN, Venlo, Netherlands) software to find upstream regulators that potentially explain the 

observed gene expression changes in our samples. The IPA software uses a manually curated 

database (Ingenuity Knowledge Base) to calculate enrichment score (Fisher’s exact test p value), 

measures the overlap of observed and predicted regulated gene sets, and a z-score assessing the 

match of observed and predicted up/downregulation patterns.  
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RESULTS 

NMN Supplementation Rescue Angiogenic Processes 

Proliferation represents a key step in angiogenesis. The proliferative capacity of young and 

aged CMVECs was compared after incubation with VEGF for 24 hours. We found that CFSE 

fluorescence measured by flow cytometry was significantly increased in aged CMVECs as 

compared with young CMVECs, indicating that proliferation capacity is impaired by aging. NMN 

treatment rescued the proliferative capacity of aged CMVECs (Fig. 1A). 

The migratory capability of vascular endothelial cells has a pivotal role in the maintenance 

of microvascular integrity and angiogenesis. An ECIS-based wound-healing assay was used to 

assess the effect of NMN treatment on the migratory capability of CMVECs. We found that aged 

CMVECs exhibited impaired migratory capability compared to young CMVECs. In contrast, the 

migration rate of aged CMVECs with NMN treatment did not differ significantly from that of 

young CMVECs (Fig. 1B). 

When seeded onto Geltrex matrices, young CMVECs form elaborated capillary 

networks32,49. Compared with young cells, formation of capillary-like structures in aged CMVECs 

was significantly impaired. However, treatment with NMN significantly improved formation of 

capillary-like structures in aged CMVECs. This finding suggests that age-related NAD+ deficiency 

is causally linked to the impaired angiogenic capacity of aged endothelial cells. We found that 

pharmacological inhibition of SIRT1 significantly inhibited the formation of capillary-like 

structures in NMN-treated aged CMVECs (Fig. 1D-H). 

Age-related oxidative stress has been implicated in endothelial angiogenic dysfunction. 

ROS production in young and aged CMVECs was compared by assessing CM-H2DCFDA 

fluorescence. We found that CM-H2DCFDA fluorescence was significantly increased in aged 

CMVECs compared to young CMVECs, consistent with the view that endothelial cells in the aged 

cerebral microcirculation exhibit increased oxidative stress. NMN treatment resulted in dramatic 

attenuation of H2O2 production in aged CMVECs (Fig. 1C). 
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Figure 1: NMN supplementation rescue angiogenic capacity and attenuates oxidative stress in aged 

CMVECs: A) Cell proliferation capacity was assessed in primary CMVECs stimulated with VEGF (100 

ng/mL) using the flow cytometry–based Guava CellGrowth assay. NMN treatment significantly increased 

proliferation capacity of aged CMVECs. B) VEGF (100 ng/mL)-stimulated cell migration was monitored 

by electric cell-substrate impedance sensing (ECIS) technology in a wound-healing assay. NMN treatment 

significantly increased migration capacity of aged CMVECs. C) Cellular peroxide production was assessed 

by measuring CM-H2DCFDA fluorescence using EasyCyte 8HT flow cytometer. NMN treatment 

significantly attenuated oxidative stress in aged CMVECs. D-H) CMVECs were plated on Geltrex matrix–

coated wells, and tube formation was induced by treating cells with VEGF (100 ng/mL, for 24 h). 

Representative examples of capillary-like structures are shown on panels D, E, F, G. Summary data, 

expressed as total tube length per total area scanned (μm tube/mm2), are shown in panel H. NMN treatment 

significantly improved the tube formation ability of aged CMVECs. 

Data are plotted as means ± S.E.M.; N = 6 in each group; *p < 0.05 vs. control, #p < 0.05 vs. aged; one-

way ANOVA with post-hoc Tukey's test.  
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Effects of NMN Supplementation on the Mitochondrial Function of Endothelial Cells 

To substantiate the endothelial protective effects of NMN in vitro, we assessed the effects 

of NMN on mtROS production in CMVECs derived from aged animals using the MitoSOX 

fluorescence method. First, we demonstrated that NAD+ content in aged CMVECs was 

significantly decreased, whereas it was normalized by treatment with NMN (Fig. 2A). We found 

that in aged CMVECs mtROS production was significantly increased as compared to that in 

CMVECs derived from young animals (Fig. 2B and C). This increased mtROS production was 

associated with a decreased production of NO assessed by DAF fluorescence (Fig. 2D), as well as 

impaired mitochondrial membrane potential (Fig. 2E), and decreased ATP levels (Fig. 2F). NMN 

treatment attenuated mtROS generation (Fig. 2B and C), increased NO production (Fig. 2D), 

rescued mitochondrial membrane potential (Fig. 2E) and restored cellular ATP content (Fig. 2E) 

in aged CMVECs, eliminating the difference between young vs. aged cells. Attenuation of mtROS 

production in NMN-treated aged CMVECs was associated with significant improvement in both 

basal and maximal mitochondrial respiration (Fig. 2G–H) measured by the Seahorse instrument. 

Combined shRNA knockdown of SIRT1/SIRT2 prevented the beneficial effects of NMN on 

mtROS (Fig. 2C), NO production (Fig. 2D), mitochondrial membrane potential (Fig. 2E) and 

mitochondrial respiration (Fig. 2H) in aged CMVECs. 

It is possible that mitochondrial protective effects of NMN are linked to promotion of 

mitochondrial biogenesis. However, we excluded this possibility by using electron microscopy 

and unbiased morphometric methods to assess mitochondrial morphology. We found that total 

mitochondrial volume and mitochondrial density in cerebromicrovascular endothelial cells were 

unaffected by NMN treatment. NMN treatment of aged mice also does not affect mitochondrial 

DNA content in cerebral arteries. Results obtained from cultured CMVECs showed unaltered 

mtDNA content after NMN treatment, thus extending the in vivo data. (methods and results are 

detailed in our original publicationII) 
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Figure 2: Treatment with NMN improved mitochondrial energetics and attenuated mitochondrial 

ROS production in CMVECs: A) Treatment with NMN restored NAD+ levels in primary CMVECs 

derived from aged rats. B) Treatment with NMN attenuated age-related increases in mtROS production in 

CMVECs (MitoSOX, assessed by flow cytometry). C) shRNA knockdown of SIRT1/SIRT2 prevented 

NMN-induced attenuation of mtROS in aged CMVECs. D) NMN treatment rescued cellular NO production 

(DAF, assessed by flow cytometry) E) NMN treatment increased mitochondrial membrane potential (JC-

1, assessed by flow cytometry). shRNA knockdown prevented the NMN effect. F) Treatment of aged 

CMVECs with NMN restored cellular ATP levels. G) Attenuation of mtROS production and improved 

mitochondrial membrane potential in NMN treated aged CMVECs were associated with improvement in 

OCR. OCR in untreated young and aged CMVECs is shown for reference. Marked NMN-induced increase 

in both basal and maximal respiration was seen in aged CMVECs. Right panel shows the effects of shRNA 

knockdown on NMN-induced changes in OCR in aged CMVECs. OCR in aged CMVECs transfected with 

scrambled shRNA is shown for reference. H) Summary data showing the effects of aging and NMN on 

basal respiration, ATP-linked respiration and maximal respiration. 

Data are plotted as mean ± S.E.M.; N = 9 for each data point; *p < 0.05 vs. young; #p < 0.05 vs. aged. $p 

< 0.05 vs. aged + NMN; one-way ANOVA with post-hoc Tukey's test.  
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NMN Supplementation Improves Cognitive and Motor Performance in Aged Animals 

Radial arm water maze test: To determine how rescue of cerebromicrovascular function by 

NMN supplementation impacts cognitive performance in aged mice, animals were tested in the 

radial arms water maze. We compared the learning performance of mice in each experimental 

group by analyzing the day-to-day changes in the combined error rate, working memory errors, 

successful escape rate, path length and time latency. During acquisition, mice from all groups 

showed a decrease in the combined error rate across days, indicating learning of the task. After the 

first day of learning, young mice consistently had lower combined error rates than aged mice. 

Decrease in the combined error rate induced by NMN supplementation in aged mice reached 

statistical significance by trial block 6. (Fig. 3A and B) To analyze working memory function 

(short-term memory that is involved in immediate conscious perception) we examined re-entries 

into incorrect arms (without hidden platform) that were previously attempted for escape during the 

trial. We found that working memory function was impaired in aged mice as compared to young 

controls. Aged mice supplemented with NMN supplementation showed significant restoration of 

working memory to levels comparable to young animals (Fig. 3C). Successful escape rate from 

the maze was assessed by measuring the percent of animals that could find the hidden platform 

within the 60 seconds allowed for each trial. During acquisition, mice from all groups showed an 

increase in successful escape rate consistent with the learning of the task. Young mice exhibited 

significantly better escape success than untreated aged mice. Although in aged mice NMN 

treatment tended to increase the successful escape rate, the differences did not reach statistical 

significance (Fig. 3D). We also compared path length and escape latency. During acquisition, mice 

from all groups displayed shorter path length (Fig. 3E) and lower escape latencies (Fig. 3F), 

indicating spatial learning. Young mice exhibited shorter path length and lower escape latency 

than untreated aged mice, differences which became pronounced by day 3. NMN supplementation 

did not significantly affect either path length or escape latencies. Analyses of noncognitive 

parameters revealed a slight age-related decline in swimming speed (Fig. 3G) and an age-

dependent increase in non-exploratory behavior (Fig. 3H), which were partially rescued by NMN 

treatment.  
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Figure 3: A) Heatmap represents the percentage of time spent in different locations in the maze for a 

randomly selected animal from each group during experimental day 3. B) Older animals had higher 

combined error rates through day 2 and 3 of the learning phase. C) NMN treated animals made fewer 

working memory errors as compared to aged, untreated animals. D) The ratio of successful escapes, 

averaged across trial blocks, is shown for each group. E) Shown are average path length and (F) escape 

latencies required to reach the hidden platform in the RAWM for trial blocks. Young mice found the hidden 

platform significantly sooner while swimming less than aged animals. In aged mice treated with NMN the 

escape latencies and the average path length required to reach the hidden platform did not differ from those 

in aged mice. G) NMN had only marginal effect on the swimming speed. H) Aged control mice exhibited 

longer non-exploratory behavior compared to young mice. Treatment with NMN partially reduced the non-

exploratory time to young levels. 

Data are plotted as mean ± S.E.M.; N = 20 in each group; *p < 0.05 vs. young; #p < 0.05 vs. aged; one-way 

ANOVA with Tukey's post-hoc test.   
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Elevated plus maze, learning protocol: We also evaluated hippocampal-dependent learning 

and memory by employing the elevated plus-maze. For young mice, transfer latency on day 2 was 

significantly decreased (by ∼49%) compared to day 1, indicating intact learning processes. In 

contrast, for aged mice the transfer latency on day 1 and day 2 were similar, indicating impaired 

learning capability. NMN supplementation in aged mice restored learning performance (Fig. 4A). 

Novel Object Recognition Test: Subsequently we tested the performance of mice in the 

novel object recognition test. We found no significant difference in the time that mice from each 

group spent exploring the two identical objects placed at the opposite ends of the arena during the 

acquisition phase, confirming that the location of the objects did not affect the exploratory behavior 

of mice. In the trial phase with two different objects (one novel, the other familiar), young mice 

explored the novel object for a significantly longer time period than aged mice, indicating that they 

remember the familiar object. In contrast, aged mice had a significantly lower calculated 

Recognition Index (RI). NMN supplementation in aged mice significantly improved their 

performance, which is consistent with improved hippocampal- and cortical-dependent recognition 

memory (Fig. 4B). 

Rotarod: To investigate the effects of age and NMN treatment on motor performance we 

performed accelerating rotarod and grip strength measurements which evaluate muscle strength, 

balance, and endurance. NMN supplementation did not significantly affect age-related decreases 

in latency to fall from the rotarod (Fig. 4C) and did not reverse age-related decline in grip strength. 

Gait Performance: Age-related deficiencies in NVC responses in human patients61 and 

animal models of aging42 have been linked to gait abnormalities. Recent studies also demonstrate 

that pharmacologically-induced neurovascular uncoupling associates with subclinical gait 

alterations in mice62. To identify age- and treatment-related systematic differences between mouse 

gait patterns, principal component analysis (PCA) was carried out on the correlation matrix of 

spatial and temporal indices of gait. This analysis identified three principal components that 

accounted for ∼63% of the variance in the data. We plotted the position of each mouse against the 

PC1, PC2, and PC3 axis in three-dimensional space (Fig. 4D). The most conspicuous trend was 

that aged and young mice were well separated along the PC1 axis, whereas NMN treated aged 

mice were clustered together with young mice. Collectively, the aforementioned results support 

the view that rescue of NVC by NMN treatment is associated with improved gait performance in 

aged mice.   
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Figure. 4: NMN treatment improved 

cognitive performance in aged mice: A) 

NMN treatment improved learning ability in 

aged mice, as assessed using the elevated plus 

maze-based learning protocol. For young mice, 

transfer latency on day 2 was significantly 

decreased compared to day 1, indicating an 

intact learning effect. For aged mice the 

transfer latency on day 1 and day 2 were 

similar, indicating impaired learning 

capability. NMN supplementation in aged mice 

restored learning performance to that in young 

mice. B) NMN treatment restored recognition 

memory in aged mice as measured by the novel 

object recognition test. Recognition memory is 

expressed as a recognition index which is 

defined as the ratio of time spent exploring the 

novel object over the total time spent exploring 

both familiar and novel objects. C) NMN 

supplementation in aged mice does not affect 

mean latencies to fall from the rotarod.  

All data are shown as mean ± SEM. ( = 20 for each data point). Statistical significance was calculated using 

one-way ANOVA with Tukey's post hoc test to determine differences among groups. *p < 0.05 vs. young; 

#p < 0.05 vs. Aged control.  

D) NMN supplementation improves gait performance in aged mice. Shown is the 3D triplot of first three 

principal components (PC) identified by PCA on the correlation matrix of spatial and temporal indices of 

gait. Each point represents an individual mouse. Note that mice in the same age groups clustered together. 

Differences between young and aged mouse gait were evident. NMN supplementation partially reverses 

age-related changes in mouse gait. Data are plotted as mean ± S.E.M.; N = 20 in each group; #p < 0.01 aged 

vs. aged treated; *p < 0.01 young vs. aged; MANOVA with Tukey's post-hoc test.  
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NMN Supplementation Beneficially Affect Neurovascular Coupling 

CBF responses in the whisker barrel cortex elicited by contralateral whisker stimulation 

were significantly decreased in aged mice compared to young animals indicating impaired NVC 

in aging. We found that NMN treatment significantly increased CBF responses induced by 

contralateral whisker stimulation in aged mice, restoring NVC (Fig. 5A and B). 

To test the involvement of endothelial cells we administrated a potent NO synthase 

inhibitor l-NAME. In young mice it significantly decreased NVC responses, eliminating the 

differences between the age groups. In NMN treated aged mice, l-NAME significantly decreased 

CBF responses elicited by whisker stimulation (Fig. 5A and B), suggesting that NMN treatment 

restored the NO mediation of NVC in aged animals. To further evaluate the ability of NMN to 

protect endothelial cells, endothelium-dependent vasodilator responses to acetylcholine were 

tested. In young mice topical administration of acetylcholine resulted in significant CBF increases, 

whereas these responses were significantly attenuated in aging mice. Treatment of aged mice with 

NMN significantly improved acetylcholine-induced vasodilation (Fig. 5C). 

Furthermore, NMN supplementation decreased protein 3-nitrotyrosine content in the aged 

cortex, indicating decreased peroxynitrite formation (Fig. 5D) after treatment. 

 

Effect of NMN Supplementation on the Aorta Function 

Similar findings were obtained in aorta ring preparations from aged mice treated with 

NMN. After an equilibration period of 1 hour during which an optimal passive tension was applied 

to the rings, the relaxation response to acetylcholine was measured. The relaxation was 

significantly impaired in aged animal, which was restored by NMN treatment (Fig. 5E). These 

finding suggests that NMN significantly improves endothelial function in aged vessels, extending 

our recent findings19. Furthermore, efficiency of NMN treatment was confirmed by demonstration 

of increased aorta NAD+ levels measured from snap frozen aorta rings by Promega NAD/NADH-

Glo Assay (Fig. 5F). 
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Figure 5: NMN supplementation improves microvascular endothelial function and rescues NO 

mediated neurovascular coupling responses in aged mice: A) Representative traces of cerebral blood 

flow (CBF; measured with a laser Doppler probe above the whisker barrel cortex) during contralateral 

whisker stimulation (30 seconds, 5 Hz) in the absence and presence of the NO synthase inhibitor l-NAME 

in young (3-month-old), aged (24-month-old) and NMN treated aged mice. B) Summary data showing that 

in aged mice NMN supplementation restored the NO-mediated component of NVC responses. C) In aged 

mice NMN supplementation improved endothelium-mediated CBF responses elicited by topical perfusion 

of acetylcholine. D) NMN supplementation decreased protein 3-nitrotyrosine content in the aged cortex, 

indicating decreased peroxynitrite formation. E-G) In aged mouse aortas NMN supplementation rescued 

acetylcholine-induced endothelium-mediated relaxation (E), increased tissue NAD+ levels (F) and 

attenuated oxidative stress (G; see Methods). 

Data are plotted as mean ± S.E.M.; N = 5–8 for each data point; *p < 0.05 vs. young; #p < 0.05 vs. aged; 

one-way ANOVA with post-hoc Tukey's test; n.s.: not significant.  
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NMN Supplementation Alters miRNA Expression Profiles in the Aorta 

We assessed changes in miRNA expression in aortas from aged, young and NMN treated 

aged mice. Hierarchical clustering (Fig. 6A) and principal component analysis (Fig. 6B) of miRNA 

expression showed a clear separation between the young and aged groups. Aged control mice and 

aged NMN-treated mice were also separated in the principal component analysis and hierarchical 

clustering. In contrast, miRNA expression in young mice and NMN-treated aged mice was similar 

and these groups did not separate well in the principal component analysis and hierarchical 

clustering. The Venn diagram (Fig. 6C) shows that expression of several miRNAs, which are 

differentially expressed in the aortas of young and aged mice, was restored to young levels in the 

aortas of NMN-treated aged mice. These data suggest that NAD+ depletion has a critical role in 

age-related dysregulation of vascular miRNA expression. 

Since the discovery of miRNA regulation of genes, several studies have focused on 

predicting the biologically relevant target genes for miRNAs. We identified several miRNAs 

whose expression levels were rescued by NMN-treatment and then used the TargetScan database 

to predict putative biological targets for these miRNAs (Table 1). GO terms enriched among the 

miRNAs that differentially expressed with age and whose expression was restored to the levels 

seen in aortas of young mice by NMN supplementation are shown in Table 2. Analysis of the 

differentially expressed miRNAs indicated that a statistically significant number of them had target 

sites within genes associated with pathways regulating intracellular signaling, protein homeostasis, 

and inflammation (Table 2). The results are consistent with the predicted anti-aging effects of 

NMN treatment. 

We also attempted to predict the biological effects of the differentially expressed miRNAs 

by identifying relationships between miRNA targets and terms in the biomedical literature utilizing 

the IRIDESCENT system53. The results of this analysis suggest that NMN supplementation likely 

promotes epigenetic rejuvenation and confers anti-atherogenic effects (Table 3).  
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Figure 6: NMN treatment reversed age-related 

changes in miRNA expression profile in the 

mouse aorta: A) The heat map is a graphical 

representation of normalized miRNA expression 

values in aortas derived from young (3-month-

old), aged (24-month-old), and NMN-treated aged 

mice. Hierarchical clustering analysis revealed the 

similarities in miRNA expression profiles of aortas 

from young and NMN-treated aged mice. B) 

Shown in a principal component analysis (PCA) 

plot of miRNA expression profiles from aortas 

derived from young, aged control, and NMN-

treated aged mice. The profiles from aged mice 

(red dots) cluster separately from clusters 

representative of young mice (blue circles) and 

NMN-treated aged mice (green triangles). PC1 and 

PC2: Principal components 1 and 2, respectively. 

C) Venn diagram showing the differentially 

expressed miRNAs in each group, which are 

significantly up- or down-regulated in aortas from 

aged mice compared to those from young mice or 

aged NMN-treated mice. 

PCR data were quantified with ΔΔCt method; one-

way ANOVA with post-hoc Tukey's test; p < 0.05 

were considered significant.  
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Gene 
symbol 

NMN-
induced 

significant 
miRNAs 

AgeAtlas 
change Cellular function Role in vascular pathology 

Sec62 4 − 0.0089 

Component of the 

protein 

translocation 

apparatus 

Single nucleotide polymorphism is associated 

with vulnerable plaque 

Nbeal1 3 − 0.81 

Vesicle trafficking, 

membrane 

dynamics, receptor 

signaling, pre-

mRNA processing, 

and cytoskeleton 

assembly 

Single nucleotide polymorphism is associated 

with early atherogenesis and development of 

ischemic white matter hyperintensities in stroke 

patients. 

Fyn 2 − 0.31 Kinase 

Genome-wide analysis of DNA methylation 

showed association with aortic atherosclerosis; 

in vitro overexpressed in activated smooth 

muscle cells. 

Mef2a 2 − 0.094 
Transcription 

factor 

In vitro increased expression in senescence 

endothelial cell; increased plasma level in 

coronary artery disease patients. 

Tet2 2 − 0.45 
Epigenetic 

regulator 

Contributes to the development of 

atherosclerosis by epigenetic modification. 

Ptch1 2 − 0.0072 
Hedgehog 

signaling pathway 

Overexpressed in atherosclerotic plaque in 

mouse carotid artery. 

Adra2b 2 − 0.061 

Seven-pass 

transmembrane 

protein 

It has a role in hypertension. 

Abcg4 2 − 0.0038 ABC-transporter 

Cholesterol transporter, strongly linked to 

atherosclerosis and other cardiovascular 

disease. 

Epha6 2 − 0.59 Ephrin receptor 

GenSalt and MESA studies: SNP variant 

associated with hypertension; in vitro activated 

in cells relevant for atherogenesis. 

Atf2 2 − 0.34 
Transcription 

factor 

In mouse models participates in foam cells 

activation signaling; vascular smooth cell 

activation. 

Homer2 2 − 0.31 
Glutamate 

signaling pathway 
Biomarker of atherosclerosis. 

Kcnb1 3 − 0.21 
Potassium channel 

subunit 

Changed expression in arteries in rat model of 

hypertension 

Rap1a 2 − 0.52 
Ras signaling 

pathway 
Potential role in carotid atherosclerosis 

Fryl 2 − 0.71 

Transcription 

factor; Notch 

signaling 

Downregulated in hypertensive mouse aorta 

Table 1: Selected genes whose expression changed with age and are predicted to be targeted by NMN-

dependent differentially expressed miRNAs. Shown are the number of miRNAs targeting the gene whose 

expression is significantly changed my NMN treatment, relative age-dependent changes in gene expression, 

predicted by the AgeAtlas software, and cellular function of the protein encoded by the gene and its putative 

role in vascular pathologies.  
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GO term ID Name of biological process/molecular function N Odds Ratio SLPV 
6886 Intracellular protein transport 20 3.17 3.26 

7218 Neuropeptide signaling pathway 7 7.32 2.54 

5198 Structural molecule activity 6 9.40 2.45 

51082 Unfolded protein binding 7 5.49 2.20 

45778 Positive regulation of ossification 6 6.27 2.07 

50839 Cell adhesion molecule binding 10 3.49 1.92 

15137 Citrate transmembrane transporter activity 3 inf 1.84 

48227 Plasma membrane to endosome transport 3 inf 1.84 

8188 Neuropeptide receptor activity 3 inf 1.84 

7217 Tachykinin receptor signaling pathway 3 inf 1.84 

42594 Response to starvation 3 inf 1.84 

70536 Protein K63-linked deubiquitination 6 4.70 1.77 

71108 Protein K48-linked deubiquitination 6 4.70 1.77 

5102 Receptor binding 27 1.82 1.72 

90630 Activation of GTPase activity 10 2.85 1.71 

31338 Regulation of vesicle fusion 7 3.66 1.68 

1664 G-protein coupled receptor binding 6 3.76 1.52 

6631 Fatty acid metabolic process 6 3.76 1.52 

45777 Positive regulation of blood pressure 4 6.25 1.47 

32924 Activin receptor signaling pathway 4 6.25 1.47 

70530 K63-linked polyubiquitin binding 4 6.25 1.47 

10863 Positive regulation of phospholipase C activity 4 6.25 1.47 

16579 Protein deubiquitination 8 3.13 1.47 

18107 Peptidyl-threonine phosphorylation 9 2.57 1.42 

48015 Phosphatidylinositol-mediated signaling 5 3.91 1.36 

7200 
Phospholipase C-activating G-protein coupled receptor 

signaling pathway 
5 3.91 1.36 

71837 HMG box domain binding 5 3.91 1.36 

61578 Lys63-specific deubiquitinase activity 3 9.37 1.33 

33674 Positive regulation of kinase activity 3 9.37 1.33 

43122 Regulation of I-kappaB kinase/NF-kappaB signaling 3 9.37 1.33 

50995 Negative regulation of lipid catabolic process 3 9.37 1.33 

Table 2: Predicted regulatory effects of miRNAs whose expression is restored to young levels in aortas of 

aged mice treated with NMN. Shown are GO terms enriched among miRNAs differentially expressed with 

age in the aorta whose expression is significantly affected by NMN treatment. N = genes in each GO 

category, targeted by miRNAs that are differentially regulated in the aged mouse aorta. Significance was 

determined by Fisher’s exact test; odds ratio: (observed to expected ratio); SLPV: signed log10 p value. 
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Literature 
associations 

# shared 
relationships Obs/exp Score Biological process/function 

CTNNB1 63 2.25 139.9 
Adherent junctions; Wnt/beta-catenin signaling in 

VSMCs contribute to Intimal thickening. 

Wnt 56 2.02 110.8 Wnt signaling regulates atherogenesis. 

PTEN 43 2.2 93 Regulates VSMC phenotype. 

epithelial-

mesenchymal 

transition 

41 2.07 83.3 
Endothelial to menesnchymal transition contributes 

to atherogenesis. 

SMARCA4 22 3.73 81 
Chromatin remodeling; genome wide association 

study showed its potential role in atherosclerosis. 

FGFR1 28 2.63 72.3 
Receptor; FGF receptor signaling regulates 

atherogenesis. 

EP300 32 2.27 71.3 

Transcriptional coactivator; VEGFA triggers changes 

in transcriptional activity of endothelial cells via 

epigenetic regulation with the help of EP300. 

EZH2 25 2.78 68.6 
Histone methyltransferase; epigenetic suppression of 

gene expression. 

sumoylation 24 2.56 60.6 Sumolylation reactions play a role in atherogenesis. 

RNA 

polymerase II 
29 2.08 58.9 mRNA transcription 

SOX2 27 2.15 57.7 

Transcription factor, stem cell function; upregulated 

in aortic endothelial cells in atherosclerotic mice. 

Limiting Sox2 decreases calcification in aortas of 

ApoE(-/-) mice . 

chromatin 

remodeling 
29 2.03 57.3  

CDH2 27 2.11 55.5 Adherent junctions; neointima formation. 

CDKN1A 27 2.02 53.3 
Senescence; regulates atherogenesis and neointima 

formation. 

KMT2D 15 3.6 53 
Histone methyltransferase; epigenetic regulation of 

gene expression. 

Table 3: Literature commonalities of the genes targeted by miRNAs whose expression is restored to young 

levels in aortas of aged mice treated with NMN. The IRIDESCENT literature-mining software was used to 

identify commonalities (e.g., genes, diseases, phenotypes, biological processes) of the genes predicted to 

be targeted by the miRNAs. A network of related objects was established by their co-occurrence within 

MEDLINE records, shared relationships were identified, and their statistical relevance was scored by 

comparing observed frequencies with what would be expected in a random network model. Number of 

shared relationships is the number of genes (out of the top 15 most significant) co-mentioned with the terms 

in the left-hand column. The observed to expected (obs/exp) ratio is the enrichment for the term. References 

and notes on how each relate to vascular pathophysiology of aging are shown in the rightmost column. 
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NMN Supplementation Alters Gene Expression Profile of Neurovascular Unit 

We assessed transcriptomic changes in the NVU associated with aging and with NMN 

treatment. We performed unsupervised clustering of RNA-seq data from all samples using the 

topmost variably expressed genes across all samples. Biological replicates from the same group 

cluster together, and young samples segregated away from aged ones (Fig. 7A). PCA (Fig. 7B) of 

the transcriptomic data also showed a clear separation between the young and aged groups. Aged 

control mice and aged NMN-treated mice were also segregated in the PCA and hierarchical 

clustering. This finding indicated a clear difference between the transcriptome profiles of the two 

age groups. In contrast, mRNA expression in young mice and NMN-treated aged mice were 

similar, and these groups did not separate well in the PCA and hierarchical clustering. 

We determined the number of genes that are significantly upregulated or downregulated 

(DE: fold-change ≥ 1.5 or ≤ -1.5; p < 0.05 adjusted for multiple comparisons) in the NVU by aging 

or by NMN treatment. We identified 590 differentially expressed genes in aged animals compared 

with young controls. We also identified 459 DE genes in the NMN-treated aged mice compared 

with the untreated aged controls (Fig. 7C). In Fig. 7D, a volcano plot shows statistical significance 

(p value) versus magnitude of age-related change in gene expression. Red symbols denote genes, 

whose expression levels differed in the aged phenotype, but have shifted back toward the young 

level by NMN treatment (“discordant DE genes”). 

In Fig. 7E, the magnitude of age-related changes in gene expression is plotted against the 

magnitude of NMN-induced changes in gene expression. Red symbols denote discordant DE 

genes, whose expression levels shifted back toward the young phenotype by NMN treatment with 

statistical significance. Genes which are DE only in one group but otherwise satisfy the other 

criteria are denoted by blue (DE in aging) and green (DE in NMN-treated) symbols. Using this 

approach, we have identified 466 discordant genes, which changed in opposite directions between 

the two comparisons (Fig. 7C). These data suggest that NAD+ depletion has a critical role in age-

related dysregulation of neurovascular gene expression.  
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Figure 7: NMN treatment 

reverses age-related changes in 

neurovascular mRNA expression 

profile: A) The heat map shows 

normalized expression values of 

differentially expressed genes in 

neurovascular samples derived from 

young, aged and NMN-treated aged 

mice. Hierarchical clustering 

revealed similarities in 

neurovascular mRNA expression 

profiles in young and NMN-treated 

aged mice. B) Shown is a principal 

component analysis plot of 

neurovascular mRNA expression 

profiles in young, aged control, and 

NMN-treated aged mice. The 

profiles from aged mice (red) 

clustered separately from clusters 

representing young mice (blue) and 

NMN-treated aged mice (green). C) 

Venn diagrams sowing the numbers 

of differentially expressed in each 

group. The gray areas represent 

discordant genes, whose expression 

is changed by NMN treatment 

toward young levels, but the effect does not reach the cutoff for statistical significance. D) Volcano plot 

depicting differentially expressed genes comparing neurovascular samples derived from young and aged 

mice. Colored points refer to genes whose expression was significantly altered by NMN treatment. E) 

NMN-induced changes in gene expression were plotted against age-related changes in the neurovascular 

transcriptome. Red symbols indicate discordant differentially expressed genes with youthful shifts, whose 

expression significantly changes with age and is restored by NMN treatment toward young levels. 

N = 5 in each group; differential gene expression assessed by the empirical Bayes approach implemented 

in the R/Bioconductor package DESeq2.  
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Previous studies suggested that restoration of NAD+ levels in aged cells by NMN treatment 

activates the NAD+ dependent histone deacetylase enzyme SIRT115. To provide additional 

evidence that SIRT1 activation contributes to the neurovascular protective effects of NMN, we 

examined the neurovascular SIRT1 activation in NMN treated aged mice (Fig. 8). 

Using the IPA upstream regulator analysis, we examined how many known targets of each 

transcriptional regulator were differentially expressed in our samples, and the direction of these 

gene expression changes were compared with what is expected from the literature. The results of 

the IPA upstream regulator analysis are presented in Fig. 8A. We also determined the link between 

the predicted upstream regulators activated by NMN and SIRT1 using IPA. We found that many 

of the predicted upstream regulators activated by NMN are known to be regulated by SIRT1-

dependent pathways. In particular, the IPA upstream regulator analysis predicted that NMN-

induced SIRT1 activation upregulates PGC-1α (PPARGC1A), FOXO3- and FOXO4-mediated 

pathways, whereas it inhibits HIF-1α-regulated pathways (Fig. 8B). We also attempted to predict 

NMN-activated, SIRT1-dependent regulatory networks by identifying relationships between 

SIRT1 and the predicted upstream regulators utilizing the IRIDESCENT system53. The results of 

this analysis provide additional support for the view that the predicted NMN-induced SIRT1 

activation results in inhibition of HIF-1α and activation of PGC-1α and FOXO3-dependent 

pathways63. PGC-1α and FOXOs are known targets for SIRT1-mediated deacetylation (Fig. 8C). 

In addition, we also intersected the list of differentially expressed genes in our dataset with 

the list of genes differentially expressed in the brains of Sirt1−/− mice (NCBI Gene Expression 

Omnibus: GSE28790).64 A heat map showing the expression pattern of these SIRT1-sensitive 

genes is shown in Fig. 8D. Hierarchical clustering of the data showed a clear separation between 

the young and aged groups. Aged control mice and aged NMN-treated mice were clearly separated 

as well. In contrast, expression of SIRT1-sensitive genes in young mice and NMN-treated aged 

mice were similar, and these groups did not separate well in the hierarchical clustering, consistent 

with the idea that aging is associated with dysregulation of SIRT1-sensitive genes, which are 

rescued by NMN treatment (Fig. 8D).  
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Figure 8: NMN reversed 

age-related changes in 

neurovascular expression of 

SIRT1-regulated genes: A) 

The Ingenuity Pathway 

Analysis results are showing 

age-related (left) and NMN-

induced (right) changes in the 

expression of SIRT1-

regulated genes. Green, 

downregulation; red, 

upregulation. B) Results of 

the IPA upstream regulator 

analysis. Shown are predicted 

upstream transcriptional 

regulators that may contribute 

to the observed NMN-induced 

transcriptomic changes in our 

dataset. Known links between 

the predicted upstream 

regulators activated by NMN 

and SIRT1 activity are 

indicated. C) Literature-based 

relationships with positive 

mutual information among the 

predicted upstream 

regulators. Node size correlates with the activation z-score from IPA, edge width correlates with the mutual 

information of the genes within the literature, green marks which are predicted activators and red marks 

predicted repressors. D) The heat map represents the normalized expression values of differentially 

expressed SIRT1-dependent genes in neurovascular samples derived from young, aged, and NMN-treated 

aged mice. Hierarchical clustering analysis revealed the similarities in neurovascular expression profiles of 

SIRT1-dependent genes in young and NMN-treated aged mice. SIRT1-dependent genes were identified 

based on their differential expression in the brain of Sirt1−/− mice. 

N = 5 in each group; upstream regulators were predicted by the Ingenuity Pathway Analysis software.  



 - 37 - 

GO enrichment analysis of discordant differentially expressed genes with young shifts 

identified functions in mitochondrial regulation and oxidative stress, apoptosis, inflammation, 

endothelial activation and transcriptional regulation (Fig. 9). 

 

 
Figure 9: Most significantly enriched Gene Ontology (GO) terms for discordant genes: Note that NMN 

treatment is associated with transcriptional changes indicating multifaceted anti-inflammatory, anti-

apoptotic, mitochondrial protective, and anti-oxidant effects. GO enrichment was calculated by 

hypergeometric test implemented in GOstats R/Bioconductor package. 

To investigate whether mitochondria-related gene expression is altered in the aging NVU, 

we analyzed expression of nuclear- and mtDNA-encoded mitochondria-related genes (Fig. 10). 

Heatmaps showing mtDNA-encoded genes are shown in Fig. 10A, respectively. The 

running enrichment scores increase when a gene is a member of the mtDNA-encoded ETC gene 

set and decrease when it is not. In aged mice running enrichment scores increased, indicating 

down-regulation of mtDNA encoded ETC genes by aging. In contrast, in NMN treated aged mice 

running enrichment scores increased predominantly on the left indicating up-regulation of 

mtDNA-encoded ETC genes by NMN treatment in aged mice (Fig. 10B). 

Hierarchical clustering of the data showed a clear separation between the young and aged 

groups. Aged control mice and aged NMN treated mice were also separated. In contrast, expression 

of mitochondria-related genes in young mice and NMN treated aged mice were similar and these 

groups did not separate well in the hierarchical clustering, consistent with the idea that age-related 

dysregulation of mitochondria-related genes in the NVU is reversed, at least in part, by NMN 

treatment. We have used GO databases to compile a list of genes associated with mitochondria. 

(Fig. 10C) 
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Figure 10: NMN treatment reversed age-related changes in neurovascular expression of 

mitochondria-related genes: A) The heat map shows normalized expression values of differentially 

expressed mtDNA-encoded electron transport chain (ETC) genes. B) Running enrichment score of mtDNA-

endcoded subunits of ETC by comparing NVU samples derived from aged mice with NVU samples derived 

from young mice and NMN-treated aged NVU samples with untreated aged NVU samples. Note that in 

aged mice, enrichment scores increased predominantly on the right indicating downregulation of mtDNA-

encoded ETC genes by aging. In contrast, in NMN-treated aged mice running enrichment scores increased 

predominantly on the left indicating upregulation of mtDNA-encoded ETC genes by NMN treatment in 

aged mice. C) The heat map shows normalized expression values of differentially expressed mtDNA-

encoded genes. Hierarchical clustering revealed similarities in neurovascular expression profiles of 

mitochondria-related genes in young and NMN-treated aged mice. Mitochondria-related genes were 

identified on the basis of Gene Ontology database (GO:0005739). Note that one young sample was a 

statistical outlier and was therefore excluded from the mtDNA-encoded gene expression analysis. 

N = 5 in each group; enrichment was calculated by the Running Enrichment Score method. 
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Previous studies suggested that endothelial cell apoptosis plays a critical role in age-related 

structural remodeling of cerebromicrovascular network by contributing to microvascular 

rarefaction65. To determine how NMN treatment alters apoptosis-related gene expression in the 

aging NVU, we analyzed expression of genes known to be involved in regulation of programmed 

cell death. Apoptosis-related genes were identified based on GO classification. Gene set 

enrichment score was calculated for pro-apoptotic genes. The result of this analysis suggested that 

aging is associated with upregulation of pro-apoptotic genes, which tends to be reversed by NMN 

treatment (Fig. 10B). A KEGG pathway map depicting age- and NMN treatment-related changes 

in the expression of genes in the apoptosis pathways is shown in Fig. 11A. 

Chronic low-grade inflammation characterized by endothelial activation is a hallmark of 

vascular aging. To elucidate the putative anti-inflammatory effects of NMN treatment, we assessed 

NMN effect on the expression of endothelial activation–related genes. Endothelial activation–

related genes were identified based on published microarray data (GEO database; GSE45880), 

showing mRNA expression changes after activation of cultured cerebromicrovascular endothelial 

cells (CMVECs) by 10 ng/mL TNFα and IFNγ66. Running enrichment score analysis showed that 

aging is associated with upregulation of endothelial activation–related genes in the NVU while 

NMN treatment exerts significant anti-inflammatory effects, downregulating endothelial 

activation–related genes in the NVU (Fig. 11C). The heat map shows the normalized expression 

values of differentially expressed endothelial activation–related genes in NVU samples derived 

from young, aged, and NMN-treated aged mice (Fig. 11D).  
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Figure 11: NMN treatment reverses age-related changes in neurovascular expression of apoptosis 

and endothelial activation-related genes: A) KEGG pathway map depicting age- and NMN treatment-

related changes in the expression of genes in the apoptosis pathways. The rectangles are set to color by age-

induced (left side) and NMN-induced (right side) changes in gene expression (fold-change). Red color 

indicates upregulation, green color indicates downregulation. B) Running enrichment score of the set of 

pro-apoptotic genes comparing NVU samples derived from aged mice with NVU samples derived from 

young mice and NMN-treated aged NVU samples with untreated aged NVU samples. C). Running 

enrichment score of endothelial activation-related genes comparing NVU samples derived from aged mice 

and NMN-treated aged NVU samples with untreated aged NVU samples. D) The heat map shows the 

normalized expression values of endothelial activation–related genes in neurovascular samples derived 

from young, aged, and NMN-treated aged mice. Endothelial activation–related genes were identified based 

on published microarray data (GEO database; GSE45880), showing a distinct transcriptional signature of 

up and downregulated genes after activation of cultured cerebromicrovascular endothelial cells with 10 

ng/mL TNFα and IFNγ (Lopez-Ramirez et al. 2013). Included in the figure are genes whose expression in 

aging changes similarly to the expressional changes observed in vitro upon cytokine stimulation. Discordant 

genes are shown in red font (bold, DE both in aging and NMN treated groups).  
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DISCUSSION 

It is well accepted that aging is associated with structural and functional impairments of 

cerebral microvasculature which substantially contribute to the pathogenesis of vascular cognitive 

impairment and dementia2,5. Despite of its epidemiological importance, currently there isn’t any 

available pharmacological intervention to prevent or treat this devastating disease4. 

Maintenance of intracellular NAD+ level is critical for normal cellular proliferation, 

mitochondrial metabolism, cellular bioenergetics, adaptive stress responses, and normal activation 

of pro-survival pathways. With advanced age, there is decreased availability of intracellular 

NAD+15,16. However, with small molecular drugs like NNM the level of intracellular NAD+ can be 

boosted. The cellular uptake of NMN is very efficient and it is converted to NAD+ through the 

NAD+ salvage pathway. Furthermore, NMN has great pharmacokinetics in humans giving it great 

therapeutic potential24. Increased oxidative stress, cerebromicrovascular rarefaction and 

neurovascular uncoupling in animal models of aging as well as in clinical studies of older 

individuals has been linked to deterioration of high-level brain function, causing vascular cognitive 

impairment and dementia67,68. In our studies we performed a series of in vitro and in vivo 

experiments to systematically evaluate the effect of NMN treatment on these hallmarks of 

cerebromicrovascular aging and to assess the underlying gene expression changes of NMN 

treatment. To our knowledge, this is the most comprehensive study available in the literature 

investigating the effects of NMN on the aged cerebromicrovascular. 

Previous studies showed that aging is characterized by mitochondrial dysfunction and 

increased free radical production68. The importance of the excessive free radicals in the 

cerebromicrovasculature were highlighted in some of our recent studies in which different 

inhibitors or scavengers of mitochondrial reactive oxygen species (SS-31, resveratrol or 

mitoTEMPO) could improve cognitive and gait function by rescuing NO mediated neurovascular 

coupling responses in aging41. In our current in vitro study based on cultured, aged 

cerebromicrovascular endothelial cells, we measured decreased mitochondrial membrane 

potential, decreased oxygen consumption and increased free radical production compared to cells 

isolated from young animals. In contrast, NMN treatment of aged cells significantly improved 

mitochondrial function characterized by increased mitochondrial membrane potential, increased 

oxygen consumption rate and decreased free radical production. Our in vitro findings were also 
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confirmed by our in vivo results. The 14 days NMN treatment of the aged mice significantly 

reduced the level of nitrogen free radical species in the cortex, which was indicated by the 

decreased level of modified proteins assessed by 3-nitrotyrosin staining. 

Aging is also associated with cerebromicrovascular rarefaction due to declining VEGF-

induced angiogenic processes. Previous studies showed that decreased capillary density 

significantly contributes to the pathogenesis of the aging-associated cognitive impairment and 

dementia67. Our in vitro results show that age-related decline in cellular NAD+ levels are associated 

with impaired VEGF-induced angiogenic response in aged rat cerebromicrovascular endothelial 

cells. However, restoration of cellular NAD+ levels with 14 days of NMN treatment significantly 

improved cell proliferation and rescued the increased migration and tube forming capacity of the 

aged cells. 

According to our current understanding of aging associated vascular cognitive impairment, 

the dysfunction of the neurovascular unit (“neurovascular uncoupling”) connects the subcellular 

processes to the organ level dysfucntion6,69. Here we provide data to confirm that aging associated 

cognitive impairment strongly correlates with neurovascular uncoupling, which was assessed in 

the barrel cortex after whisker stimulation. In aged animals, 14 days of NMN treatment was 

sufficient to successfully restore neurovascular coupling. Our finding strongly correlates with our 

in vitro results showing that NMN treatment successfully restored NO release in cultured aged 

cerebromicrovascular endothelial cells. In another set of ex vivo experiments, NMN 

supplementation also rescued endothelial NO-mediated vasodilation in the aortas of aged mice. In 

addition to vasoregulation endothelium-derived NO plays versatile biological roles.47. NO is a 

paracrine regulator of cellular metabolism and mitochondrial function, which modulates the 

function of dozens of proteins by promoting nitrosylation on their cysteine residues. This protein 

nitrosylation plays a role in platelet aggregation, smooth muscle cell proliferation and leukocyte 

adhesion, promotes stability of atherosclerotic plaques and exerts potent anti-inflammatory, anti-

apoptotic and pro-angiogenic effects47. Thus, rescue of cerebromicrovascular NO bioavailability 

by treatment with NAD+ precursors likely has clinical significance beyond restoration of 

neurovascular coupling. 

Finally, to show the beneficial effect of NMN on the higher-level brain functions, including 

hippocampal learning, memory and cortical gait function were tested extensively in our animals. 

According to our results, aged mice had impaired learning and memory function, which were 
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successfully rescued by 14 days NMN treatment. NMN treated mice performed significantly better 

in multiple behavioral assays including radial arm water maze, elevated plus maze compared to 

age-matched counterparts. Neurovascular dysfunction in older adults as well as in preclinical 

models of aging has been linked to gait alterations as well62. Recent experimental studies in mouse 

models of pharmacologically-induced neurovascular uncoupling established a mechanistic link 

between impaired neurovascular coupling and gait abnormalities44. In our experiments, aging 

associated gait abnormalities were also reversed by the 14 days NMN treatment. 

To understand the underlying gene expression changes of NMN treatment, high throughput 

gene expression assays were performed. Previous studies demonstrated that alterations in miRNA 

expression profiles are linked to the development of multiple cardiovascular diseases and the aging 

phenotypes26,28. Frist, miRNA profiling of aorta samples was performed by a TaqMan PCR Array. 

NMN treatment reversed aging associated changes in the miRNA expression profile. These 

findings raise the possibility that changes in post-transcriptional control of gene expression that 

encode critical targets for vascular health contribute to the beneficial effects of treatment with 

NAD+ boosters. Furthermore, functional annotation of mRNA sequencing data, acquired from 

isolated neurovascular unit showed that NMN treatment in aged mice reversed, age-related, pro-

inflammatory, pro-oxidative, pro-apoptotic, and endothelial-dysfunction-promoting 

transcriptional alterations. Analysis of the differential gene expression profile indicated that SIRT1 

plays a critical role as upstream regulator in the development of the beneficial effects of NMN 

treatment. This finding strongly correlates both with the data available in the literature15,16 and 

with our in vitro findings. In our cultured cerebromicrovascular endothelial cells originating from 

aged rats, shRNA knockdown of SIRT1 prevents the beneficial effects of NMN treatment. 

In conclusion, we successfully demonstrated that NMN has a wide range of beneficial 

effects not only on the aged cerebromicrovascular endothelial cells but on the high-level of brain 

functions in the aged mice. Our study provides strong evidence that restoration of cellular NAD+ 

level in the cerebromicrovascular endothelial cells by a small molecular booster NMN can provide 

a long-anticipated, efficient and safe intervention to prevent and/or treat aging-associated vascular 

cognitive impairment and dementia in elderly.  
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Abstract Age-related impairment of angiogenesis like-
ly has a critical role in cerebromicrovascular rarefaction
and development of vascular cognitive impairment and
dementia (VCID) in the elderly. Recently, we demon-
strated that aging is associated with NAD+ depletion in
the vasculature and that administration of NAD+ precur-
sors exerts potent anti-aging vascular effects, rescuing
endothelium-mediated vasodilation in the cerebral circu-
lation and improving cerebral blood supply. The present
study was designed to elucidate how treatment with

nicotinamide mononucleotide (NMN), a key NAD+ in-
termediate, impacts age-related impairment of endothe-
lial angiogenic processes. Using cerebromicrovascular
endothelial cells (CMVECs) isolated from young and
aged F344xBN rats, we demonstrated that compared
with young cells, aged CMVECs exhibit impaired pro-
liferation, cellular migration (measured by a wound-
healing assay using electric cell-substrate impedance
sensing [ECIS] technology), impaired ability to form
capillary-like structures, and increased oxidative stress.
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NMN treatment in aged CMVECs significantly im-
proved angiogenic processes and attenuated H2O2 pro-
duction. We also found that pre-treatment with EX-527,
a pharmacological inhibitor of SIRT1, prevented NMN-
mediated restoration of angiogenic processes in aged
CMVECs. Collectively, we find that normal cellular
NAD+ levels are essential for normal endothelial angio-
genic processes, suggesting that age-related cellular
NAD+ depletion and consequential SIRT1 dysregulation
may be a potentially reversible mechanism underlying
impaired angiogenesis and cerebromicrovascular rare-
faction in aging. We recommend that pro-angiogenic
effects of NAD+ boosters should be considered in both
preclinical and clinical studies.

Keywords Senescence . Endothelial dysfunction .

Vascular contributions to cognitive impairment and
dementia .Microcirculation . NAD+ precursor

Introduction

The brain is the most energy-demanding organ, yet, it
lacks energy stores. Normal neuronal function is there-
fore critically dependent on adequate supply of nutrients
and oxygen through a dense network of over 600 km of
cerebral microvessels. In the brain, the number of endo-
thelial cells is very similar to that of neurons (Garcia-
Amado and Prensa 2012) and nearly every neuron is
supplied by its own capillary, with an average distance
of 8–20 μm between the neuron and the microvessels.
Aging-induced functional and structural impairments of
the cerebral microcirculatory network have a critical role
in the pathogenesis of age-related cognitive decline
(Zlokovic 2011; Toth et al. 2013, 2017; Tucsek et al.
2014a, 2014b; Tarantini et al. 2016; Csiszar et al. 2017).

The dynamic balance between angiogenesis (new
capillary formation from pre-existing microvessels)
and microvascular regression is critical for the mainte-
nance of a healthy cerebral microcirculatory network.
Advanced aging is associated with a progressive deteri-
oration of cerebromicrovascular homeostasis, at least in
part, due to a significant impairment of endothelial
angiogenic processes (Ingraham et al. 2008; Murugesan
et al. 2012; Ungvari et al. 2018a). This results in
cerebromicrovascular rarefaction/decreased capillary den-
sity in the aged brain, which contributes to a decline in
cerebral blood flow compromising oxygen and nutrient
delivery to the active neurons (Hagstadius and Risberg

1989; Martin et al. 1991; Kawamura et al. 1993; Moeller
et al. 1996; Sonntag et al. 1997; Krejza et al. 1999; Lynch
et al. 1999; Schultz et al. 1999; Bentourkia et al. 2000;
Farkas and Luiten 2001; Khan et al. 2001; Pagani et al.
2002; Riddle et al. 2003; Mitschelen et al. 2009) and the
formation of ischemic foci, neuronal dysfunction, demye-
lination, and, ultimately, to neurodegeneration (Sonntag
et al. 1997, 2000; Khan et al. 2001; Ingraham et al.
2008; Warrington et al. 2011, 2012).

Sprouting angiogenesis, which is initiated by VEGF
in poorly perfused hypoxic areas of the brain, is critical
to satisfy the metabolic requirements of the neuronal
tissue. Previous ex vivo studies provide strong evidence
that cell-autonomous mechanisms contribute to age-
related impairment of sprouting angiogenesis,
compromising cellular angiogenic processes induced
in response to VEGF in cerebromicrovascular endothe-
lial cells (including endothelial cell proliferation and
directed migration, tubulogenesis) (Ungvari et al.
2013; Csiszar et al. 2014). However, the molecular
mechanisms, by which aging impairs VEGF-induced
endothelial angiogenic processes, remain elusive
(Lahteenvuo and Rosenzweig 2012).

NAD+ acts as a coenzyme in electron transfer reac-
tions, as a donor of ADP-ribose moieties in ADP-
ribosylation reactions, as a precursor of the second mes-
senger molecule cyclic ADP-ribose, and as a substrate for
the longevity assurance factor sirtuin enzymes. Mainte-
nance of NAD+ levels is critical for normal cellular
proliferation and function, regulation of mitochondrial
metabolism and cellular bioenergetics, adaptive stress
responses, and normal activation of pro-survival, anti-
aging pathways. With advanced age, there is decreased
availability of cellular NAD+ (Massudi et al. 2012;
Gomes et al. 2013; Yoshino et al. 2018), which may be
a fundamental, evolutionarily conserved contributor to
aging processes across tissues. Aging-induced NAD+

depletion was suggested to predispose to a wide range
of chronic diseases and pathological conditions associat-
ed with old age (Yang et al. 2007; Garten et al. 2009;
Bonkowski and Sinclair 2016; de Picciotto et al. 2016;
Imai and Guarente 2016; Schultz and Sinclair 2016; Das
et al. 2018; Csiszar et al. 2019), including endothelial
dysfunction (Csiszar et al. 2019). There is strong preclin-
ical evidence that restoration of cellular NAD+ levels in
aged rodents by administration of NAD+ precursors ex-
erts potent anti-aging effects, reversing age-related organ
dysfunction (Gomes et al. 2013; Mills et al. 2016;
Johnson et al. 2018) and increasing mouse lifespan
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(Zhang et al. 2016). Recently, we demonstrated that
treatment of old mice with nicotinamide mononucleotide
(NMN), a key NAD+ intermediate, restores vascular
NAD+ levels, rescues endothelium-mediated vasodilation
in the cerebral circulation, and improves cerebral blood
supply (Tarantini et al. 2019).

The present study was designed to elucidate how
NMN treatment impacts age-related impairment of en-
d o t h e l i a l a n g i o g e n i c p r o c e s s e s . U s i n g
cerebromicrovascular endothelial cells (CMVECs) iso-
lated from young and aged F344xBN rats, we tested the
hypothesis that chronic treatment of aged endothelial
cells with NMN improves angiogenic capacity, includ-
ing proliferation, migration, and ability to form
capillary-like structures.

Materials and methods

Animals and endothelial cell isolation

We used Fischer 344x Brown Norway (F344xBN) rats
as a model of aging, since this strain has a lower inci-
dence of age-specific pathology than other rats. In
F344xBN rats, the primary effects of aging can be
studied without complications caused by age-related
pathology. Male, 3- and 24-month-old F344xBN rats
were obtained from the National Institute on Aging. All
animals were disease-free with no signs of systemic
inflammation and/or neoplastic diseases. The rats were
housed in an environmentally controlled vivarium under
pathogen-free conditions with unlimited access to food
and water and a controlled photoperiod (12 h light:12 h
dark). All experimental animals were maintained ac-
cording to National Institutes of Health guidelines, and
all animal use protocols were approved by the Institu-
tional Animal Care and Use Committees of the partici-
pating institutions. The animals were euthanized with
CO2. The brains were rapidly dissected to establish
primary cerebromicrovascular endothelial cell
(CMVEC) cultures as described.

Establishment and characterization of primary
cerebromicrovascular endothelial cell cultures

To assess the effects of NMN on endothelial angio-
genic capacity, we measured the effects of NMN on
cell proliferation, migration, and tube formation abil-
ity in cultured primary CMVECs. The establishment

and characterization of the CMVEC strains have
been recently reported. In brief, to establish primary
cultures of CMVECs, the brains of the 3- and 24-
month-old F344xBN rats were removed aseptically,
rinsed in ice cold PBS, and minced into ≈ 1 mm2. The
tissue was washed twice in ice cold 1X PBS by low-
speed centrifugation (50g, 2–3 min). The diced tissue
was digested in a solution of collagenase (800 U/g
tissue), hyaluronidase (2.5 U/g tissue), and elastase
(3 U/g tissue) in 1 mL PBS/100 mg tissue for 45 min
at 37 °C in a rotating humid incubator. The digested
tissue was passed through a 100-μm cell strainer. The
single-cell lysate was centrifuged for 2 min at 70g.
After removing the supernatant, the pellet was
washed twice in cold PBS supplemented with 2.5%
fetal calf serum (FCS), and the suspension was cen-
trifuged at 300g for 5 min at 4 °C. To create an
endothelial cell–enriched fraction, the cell suspen-
sion was centrifuged using an OptiPrep gradient so-
lution (Axi-Shield, PoC, Norway). Briefly, the cell
pellet was resuspended in Hanks’ balanced salt solu-
tion (HBSS) and mixed with 40% iodixanol thor-
oughly (final concentration 17% (v/v) iodixanol so-
lution; ρ = 1.096 g/mL). Two milliliters of HBSS was
layered on top and centrifuged at 400g for 15 min at
20 °C. Endothelial cells, which banded at the inter-
face between HBSS and the 17% iodixanol layer,
were collected. The endothelial cell–enriched frac-
tion was incubated for 30 min at 4 °C in the dark
with anti-CD31/PE (BD Biosciences, San Jose, CA,
USA) and anti-MCAM/FITC (BD Biosciences, San
Jose, CA, USA). After washing, the cells twice with
MACS Buffer (Milltenyi Biotech, Cambridge, MA,
USA) anti-FITC and anti-PE magnetic bead labeled
secondary antibodies were used for 15 min at room
temperature. Endothelial cells were collected by
magnetic separation using the MACS LD magnetic
separation columns according to the manufacturer’s
guidelines (Milltenyi Biotech, Cambridge, MA,
USA). The endothelial fraction was cultured on fi-
bronectin coated plates in Endothelial Growth Medi-
um (Cell Application, San Diego, CA, USA) for
10 days. Endothelial cells were phenotypically char-
acterized by flow cytometry (GUAVA 8HT, Merck
Millipore, Billerica, MA, USA). Briefly, antibodies
against five different endothelial specific markers
were used (anti-CD31-PE, anti-erythropoietin recep-
tor-APC, anti-VEGF R2-PerCP, anti-ICAM-fluores-
cein, anti-CD146-PE), and isotype specific antibody
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labeled fractions served as negative controls. Flow
cytometric analysis showed that after the third cycle
of immunomagnetic selection, there were virtually no
CD31−, CD146−, EpoR−, and VEGFR2− cells in the
resultant cell populations. All antibodies were pur-
chased from R&D Systems (R&D Systems, Minne-
apolis, MN, USA).

Primary CMVECs were cultured in custom-made
Rat Brain Endothelial Cell Growth Medium (Cell Ap-
plications, Inc.) with reduced nicotinamide concentra-
tion (11.04 μM). Since the results of the assays investi-
gating the endpoints used are affected by the number of
viable cells, cell viability of each population was deter-
mined as described. To assess the direct effects of NMN
on endothelial phenotype, primary CMVECs derived
from aged rats were treated with NMN (Santa Cruz,
Dallas, TX) in vitro (5 × 10−4 mol/L; for 1 to 5 days).

Cell proliferation assay

Cell proliferation capacity was assessed in CMVECs
using the flow cytometry–based Guava CellGrowth as-
say (Guava Technologies, Inc., Hayward, CA) as previ-
ously reported. Briefly, cells were collected, resuspend-
ed in PBS containing 0.1% BSA, and stained with
16 μmol/L carboxyfluorescein diacetate succinimidyl
ester (CFSE) for 15 min at 37 °C. This dye diffuses into
cells and is cleaved by intracellular esterases to form an
amine-reactive product that produces a detectable fluo-
rescence and binds covalently to intracellular lysine
residues and other amine sources. Upon cell division,
CFSE divides equally into the daughter cells halving the
CFSE concentration of the mother cell; therefore, there
is an inverse correlation between the fluorescence inten-
sity and the proliferation capacity of the cells. After
incubation, unbound dye was quenched with serum-
containing medium. Then, cells were washed three
times and incubated for 24 h with 100 ng/mL VEGF.
Finally, cells were collected, washed, stained with
propidium iodide (to gate out dead cells), and analyzed
with a flow cytometer (Guava EasyCyte 8HT;Millipore,
Billerica, MA). The inverse of the fluorescence intensity
was used as an index of proliferation.

Assessment of cell migration by ECIS-based
wound-healing assay

Electric cell-substrate impedance sensing technology
was used to monitor the migration of CMVECs in a

wound-healing assay as reported (Applied BioPhysics
Inc., Troy, NY). Briefly, CMVECs (2.5 × 105 cells/well)
were seeded in 96-well array culture dishes (electric
cell-substrate impedance sensing (ECIS), 96W1E) and
placed in an incubator (37 °C), and changes in resistance
and impedance were continuously monitored. When
impedance reached a plateau, cells in each well were
subjected to an elevated field pulse (Bwounding^) of
5 mA applied for 20 s at 100 kHz, which killed the cells
present on the small active electrode due to severe
electroporation. The detachment of the dead cells was
immediately evident as a sudden drop in resistance
(monitored at 4000 Hz) and a parallel increase in con-
ductance. VEGF (100 ng/mL) was immediately added
to each well. CMVECs surrounding the active electrode
that had not been subjected to the wounding then mi-
grated inward to replace the detached dead cells
resulting in resistance recovery (continuously monitored
at 4000 Hz for up to 24 h). The time to reach 50%
resistance recovery (corresponding to 50% confluence
on the active electrode) was determined for cells in each
experimental group, and this parameter and the known
physical dimensions of the electrode were used to cal-
culate the migration rate (expressed as μm/h).

Tube formation assay

To investigate the influence of age and NMN on tube
formation ability, young, aged, and NMN-treated
aged CMVECs were plated on Geltrex Reduced
Growth Factor Basement Membrane Matrix
(Invitrogen, Carlsbad CA) in Medium 200PRF
(Invitrogen, Carlsbad CA). To inhibit sirtuin activity,
half of the aged control cells and NMN-treated aged
cells were pre-treated with EX-527 (Active Motif
Inc., Carlsbad, CA). EX-524 is a potent and selective
sirtuin 1 (SIRT1) inhibitor (IC50 38 nM). Briefly,
150 μL/well of Geltrex was distributed in ice-cold
24-well plates. The gel was allowed to solidify while
incubating the plates for 30 min at 37 °C. CMVECs
were then seeded at a density of 5 × 104 cells/well
and placed in the incubator for 24 h. Microscopic
images were captured using a Nikon Eclipse Ti mi-
croscope equipped with a ×10 phase-contrast objec-
tive (Nikon Instruments Inc., Melville, NY). The
extent of tube formation was quantified by measuring
total tube length in five random fields per well using
NIS-Elements microscope imaging software (Nikon
Instruments Inc.), as recently reported. The mean of
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the total tube length per total area imaged (μm tube/
mm2) was calculated for each well. Experiments were
run in quadruplicates. The experimenter was blinded
to the groups throughout the period of analysis.

Measurement of cellular H2O2 production

To assess cellular peroxide production, we used the
cell-permeant oxidative fluorescent indicator dye
CM-H2DCFDA (5 (and 6)-chloromethyl-2 ′,7′-
dichlorodihydrofluorescein diacetate-acetyl ester,
Invitrogen, Carlsbad, CA) as we previously reported.
Cells were washed with warm PBS and incubated
with CM-H2DCFDA (10 μM, at 37 °C, for 30 min).
CM-H2DCFDA fluorescence was assessed by flow
cytometry.

Data analysis

Statistical analyses were performed using one-way
ANOVA. p < 0.05 was considered statistically signifi-
cant. Data are expressed as means ± S.E.M.

Results

NMN treatment improves proliferative capacity of aged
CMVECs

Proliferation represents a key step in angiogenesis. Pro-
liferative capacity of young and aged CMVECs was

compared after incubation with VEGF for 24 h. We
found that CFSE fluorescence was significantly in-
creased in aged CMVECs as compared with young
CMVECs, indicating that proliferation capacity is im-
paired by aging (Fig. 1). NMN treatment rescued pro-
liferative capacity of aged CMVECs (Fig. 1).

NMN treatment improves migratory capability of aged
CMVECs

The migratory capability of vascular endothelial cells
has a pivotal role in the maintenance of microvascular
integrity and angiogenesis. An ECIS-based wound-
healing assay was used to assess the effect of NMN
treatment on migratory capability of VEGF-treated
CMVECs. We found that aged CMVECs exhibited
impaired migratory capability as compared with young
CMVECs (Fig. 2). In contrast, migration rate of aged
CMVECs with NMN treatment did not differ signifi-
cantly from that of young CMVECs (Fig. 2).

NMN treatment increases formation of capillary-like
structures by aged CMVECs

When seeded onto Geltrex matrices, young CMVECs
form elaborated capillary networks (Ungvari et al. 2013;
Csiszar et al. 2014). Compared with young cells in aged
CMVECs, formation of capillary-like structures was
significantly impaired (Fig. 3a–e). The finding that treat-
ment with NMN significantly improved formation of
capillary-like structures by aged CMVECs (Fig. 3e)

Fig. 1 NMN treatment significantly increases proliferation capac-
ity of aged CMVECs. Cell proliferation capacity of CMVECs
isolated from aged F344xBN rats is impaired as compared with
that of cells isolated from young F344xBN rats, and it is signifi-
cantly improved by treatment with NMN. Cell proliferation ca-
pacity was assessed in primary CMVECs stimulated with VEGF

(100 ng/mL) using the flow cytometry–based Guava CellGrowth
assay (see BMaterials and Methods^). The inverse of the fluores-
cence intensity of the indicator dye CFSE was used as an index of
proliferation capacity of the cells. Data are plotted as means ±
S.E.M. (n = 6 in each group); *p < 0.05 vs. control, #p < 0.05 vs.
aged
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suggests that age-related NAD+ deficiency is causally
linked to the impaired angiogenic capacity of aged endo-
thelial cells. We found that pharmacological inhibition of
SIRT1 significantly inhibited the formation of capillary-
like structures by NMN-treated aged CMVECs (Fig. 3e).

NMN treatment attenuates oxidative stress in aged
CMVECs

Age-related oxidative stress has been implicated in endo-
thelial angiogenic dysfunction (Ungvari et al. 2013).
ROS production in young and aged CMVECs was com-
pared by assessing CM-H2DCFDA fluorescence. We
found that CM-H2DCFDA fluorescence was significant-
ly increased in aged CMVECs as compared with that in
young CMVECs, consistent with the view that endothe-
lial cells in the aged cerebral microcirculation exhibit
increased oxidative stress (Fig. 4). NMN treatment result-
ed in dramatic attenuation of H2O2 production in aged
CMVECs (Fig. 4). Recent developments in our under-
standing of mechanisms of aging (Deepa et al. 2017;
Fang et al. 2017; Grant et al. 2017; Konopka et al.
2017; Podlutsky et al. 2017; Cunningham et al. 2018;

Habermehl et al. 2018; Kim et al. 2018; Lewis et al. 2018;
Masser et al. 2018; Nacarelli et al. 2018; Olecka et al.
2018; Reglodi et al. 2018) and vascular aging processes
(Csiszar et al. 2017; Tarantini et al. 2017a, b; Tucsek et al.
2017; Ungvari et al. 2017a, b; Csipo et al. 2018; Fulop
et al. 2018; Lee et al. 2018; Reglodi et al. 2018; Sure et al.
2018; Ungvari et al. 2018b, c) highlight the importance of
in vitro screening assays that model complex physiolog-
ical processes for the evaluation of the anti-aging effects
of novel pharmacological interventions. The combination
of the in vitro assays used in this study, based on rescue of
age-related loss-of-function in endothelial cells, could
correctly identify the anti-aging effects of caloric restric-
tion (Csiszar et al. 2013, 2014) as well as neuroendocrine
factors (Banki et al. 2015).

Discussion

The principal new findings of this study are that (1) age-
related decline in cellular NAD+ levels is associated
with impaired angiogenic response in aged rat
CMVECs, and that (2) restoration of cellular NAD+

levels in aged CMVECs by treatment with NMN con-
fers pro-angiogenic effects, counteracting, at least in
part, the adverse effects of aging.

The formation of a new sprout growing out of
existing vessels represents the first step in angiogen-
esis, which is mediated by VEGF-induced stalk cell
proliferation and tip cell migration. VEGF also in-
duces in endothelial cell branching and tubulogenesis
to create microvascular networks. VEGF-induced
proliferation and migration and tube forming capac-
ity of CMVECs decline significantly with age, which
are thought to contribute significantly to aging-
induced impairment of angiogenesis and, consequen-
tially, microvascular rarefaction (Valcarcel-Ares et al.
2012a, b; Ungvari et al. 2013; Csiszar et al. 2014;
Ungvari et al. 2018a, b).

Recently, we demonstrated that age-related decline in
NAD+ levels in CMVECs can be reversed by treatment
with the NAD+ precursor NMN (Tarantini et al. 2019).
This is the first study to demonstrate that treatment with
NMN also improves proliferation and rescues migration
and tube forming capacity of aged CMVECs. Our stud-
ies provide strong evidence that age-related NAD+ de-
pletion compromises endothelial angiogenic responses
in the cerebromicrovasculature. Follow-up studies are
needed to determine whether in vivo treatment of aged

Fig. 2 NMN treatment significantly increases migration capacity
of aged CMVECs. Migration capacity of CMVECs isolated from
aged F344xBN rats is impaired as compared with that of cells
isolated from young F344xBN rats, and it is significantly im-
proved by treatment with NMN. VEGF (100 ng/mL)-stimulated
cell migration was monitored by electric cell-substrate impedance
sensing (ECIS) technology in a wound-healing assay (see
BMaterials and Methods^). In brief, time course of resistance
recovery after wounding (electric pulse of 5 mA for 20 s at
60 kHz) was monitored at 4000 Hz. The time to reach 50%
resistance recovery (corresponding to 50% confluence on the
active electrode) was determined for each group, and this param-
eter and the known physical dimensions of the electrode were used
to calculate the migration rate. Bar graph depicts the summary data
for migration rate in each group. Data are plotted as means ±
S.E.M. (n = 5 in each group); *p < 0.05 vs. young control,
#p < 0.05 vs. aged
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rodents with NMN restores a youthful capillary density
in brain regions important for learning and memory and
whether NMN positively affects cerebral angiogenesis
and/or collateral formation induced by physiological
(e.g., exercise, local ischemia) or pharmacological stim-
uli. As the protective effect of NMN on formation of
capillary-like structures by aged CMVECs is prevented
by disruption of SIRT1 signaling, it is likely that resto-
ration of NAD+ levels activates sirtuins, which confer
pro-angiogenic effects. This concept is supported also
by the observation that treatment of aged mice with
NMN improves skeletal muscle blood flow by

promoting SIRT1-dependent increases in capillary den-
sity (Das et al. 2018).

Previous studies established a causal link among age-
related oxidative stress, decreased bioavailability of NO,
and impaired angiogenic capacity of aged endothelial
cells (Koike et al. 2003; Sadoun and Reed 2003; Bach
et al. 2005; Reed et al. 2005; Ungvari et al. 2013;
Ungvari et al. 2018a, b). Our previous studies demon-
strate that increased cellular H2O2 levels promote down-
regulation of Dicer-dependent angiomirs (pro-
angiogenic miRNAs) in aged CMVECs (Ungvari et al.
2013). Further, induction of oxidative stress by

Fig. 3 NMN treatment significantly improves the tube formation
ability of aged CMVECs. Tube formation ability of CMVECs
isolated from aged F344xBN rats is impaired as compared with
that of cells isolated from young F344xBN rats (dashed line), and
it is significantly improved by NMN treatment. Inhibition of
SIRT1 by EX-524 significantly impairs the ability of NMN-
treated aged CMVECs to form capillary-like structures, suggesting
that the protective effects of NMN are mediated by sirtuin

activation. CMVECs were plated on Geltrex matrix–coated wells,
and tube formation was induced by treating cells with VEGF
(100 ng/mL, for 24 h). Representative examples of capillary-like
structures are shown on panels a, b, c, d. Summary data, expressed
as total tube length per total area scanned (μm tube/mm2), are
shown in panel e. Data are means ± S.E.M. (n = 5 in each group);
*p < 0.05 vs. aged control, #p < 0.05 vs. aged + NMN
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downregulation of key antioxidant systems impairs an-
giogenic potential of endothelial cells (Valcarcel-Ares
et al. 2012a, b). Here, we demonstrate that age-related
increase in endothelial H2O2 production is effectively
attenuated by NMN treatment. This observation extends
the findings of our recent studies showing that in vivo
treatment with NMN treatment also attenuates age-
related mitochondrial oxidative stress in CMVECs re-
storing NO bioavailability and improving endothelium-
mediated vasodilation, suggesting a key role for these
mechanisms in NAD+-mediated endothelial protection
(Csiszar et al. 2019; Tarantini et al. 2019).
Mitochondria-derived O2

− is dismutated to H2O2 by
manganese superoxide dismutase (MnSOD). H2O2 can
readily penetrate the mitochondrial membrane, and its
increased cytosolic level is likely responsible for the
anti-angiogenic effects associated with mitochondrial
oxidative stress. Previous studies provide additional
support to this concept by showing that attenuation of
mitochondrial oxidative stress using structurally differ-
ent inhibitors/scavengers of mtROS production (resver-
atrol, mitoTEMPO) increases cerebral capillary density
and/or restores angiogenic potential in aged rodents
(Oomen et al. 2009; Miura et al. 2017). Our recent
studies also demonstrate that attenuation of mitochon-
drial oxidative stress (Ungvari et al. 2009; Toth et al.
2014; Tarantini et al. 2018, 2019) also restores
endothelium-mediated vasodilation in aged mice. The
synergistic functional and structural microvascular pro-
tective effects of NMN and mitochondria-targeted

antioxidants likely significantly improve cerebral blood
flow in aging, contributing to their beneficial effects on
cognitive function (Tarantini et al. 2018, 2019). Other
age-related mechanisms, which may contribute to the
induction of the anti-angiogenic phenotype in CMVECs
exacerbating the effects of NAD+ depletion, include
age-related IGF-1 deficiency (Sonntag et al. 1997,
2012; Ungvari and Csiszar 2012) and Nrf2 dysfunction
(Valcarcel-Ares et al. 2012a, b).

Significant data are available to support the efficacy
and translational relevance of NMN and other related
NAD+ boosters (e.g., nicotinamide riboside treatment;
Yoshino et al. 2018) (Csiszar et al. 2019). Studies are
currently underway to determine whether chronic treat-
ment with nicotinamide riboside improves cerebral blood
flow (ClinicalTrials.gov Identifier: NCT03482167) in
older adults with mild cognitive impairment. If these
studies yield positive results, the effects of NMN
treatment of organ capillarization in elderly patients
should also be investigated.
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A B S T R A C T

Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) has an essential
role in maintenance of healthy cognitive function. In aging increased oxidative stress and cerebromicrovascular
endothelial dysfunction impair NVC, contributing to cognitive decline. There is increasing evidence showing that
a decrease in NAD+ availability with age plays a critical role in a range of age-related cellular impairments but
its role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis
that restoring NAD+ concentration may exert beneficial effects on NVC responses in aging. To test this hy-
pothesis 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD+

intermediate, for 2 weeks. NVC was assessed by measuring CBF responses (laser Doppler flowmetry) evoked by
contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. NMN
supplementation rescued NVC responses by increasing endothelial NO-mediated vasodilation, which was asso-
ciated with significantly improved spatial working memory and gait coordination. These findings are paralleled
by the sirtuin-dependent protective effects of NMN on mitochondrial production of reactive oxygen species and
mitochondrial bioenergetics in cultured cerebromicrovascular endothelial cells derived from aged animals. Thus,
a decrease in NAD+ availability contributes to age-related cerebromicrovascular dysfunction, exacerbating
cognitive decline. The cerebromicrovascular protective effects of NMN highlight the preventive and therapeutic
potential of NAD+ intermediates as effective interventions in patients at risk for vascular cognitive impairment
(VCI).

1. Introduction

Maintenance of cerebral homeostasis requires a tightly-controlled
supply of oxygen and nutrients as well as washout of harmful

metabolites through uninterrupted cerebral blood flow (CBF), which
represents 15% of cardiac output [1]. The human brain comprises only
2% of the body's mass, yet it accounts for 20% of the resting total body
O2 consumption. The brain has limited energy reserves and cerebral
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oxygen content can sustain unimpeded neuronal function for only a
short time if CBF decreases [2]. Thus, during periods of intense neu-
ronal activity there is a requirement for rapid adjustment of regional
oxygen and glucose delivery to metabolic demand through spatially
localized adaptive increases in CBF. This is ensured by an evolutionarily
conserved physiological mechanism known as neurovascular coupling
(NVC) or functional hyperemia [1]. The cellular mechanisms of NVC
include release of vasodilator NO from the microvascular endothelium,
in response to increased neuronal and astrocytic activation [3,4].

It is now increasingly recognized that (micro)vascular contributions
to cognitive impairment and dementia (VCID) play a critical role in
elderly patients [1]. There is growing evidence that NVC responses are
compromised both in elderly subjects [5–8] and aged laboratory ani-
mals [4,9], which may importantly contribute to the age-related decline
in higher cortical function, including cognition [10] and gait perfor-
mance [11]. This concept is supported by recent findings that phar-
macologically induced neurovascular dysfunction in mice mimics im-
portant aspects of age-related cognitive impairment [12]. Further, our
recent studies demonstrate that rescue of NVC responses by treatment
with the mitochondria-targeted antioxidative peptide SS-31 [13] or
pharmacological SIRT1 activators [4,14] mitigates cognitive impair-
ment in aged mice. These successful preclinical studies provide proof-
of-concept that development of translationally relevant therapeutic
interventions that target molecular/cellular mechanisms contributing
to age-related neurovascular dysfunction is feasible for prevention/
treatment of cognitive impairment in elderly patients [4].

NAD+ is a rate-limiting co-substrate for sirtuin enzymes, which are
key regulators of pro-survival pathways and mitochondrial function in
the endothelial cells [15–18]. There is increasing evidence that with age
cellular NAD+ availability decreases [19,20], which is a critical driving
force in aging processes. In support of this theory it was demonstrated
that enhancing NAD+ biosynthesis extends lifespan in lower organisms
[21] and improves health-span in mouse models of aging [22]. There is
particularly strong evidence that in aged mice enhancing NAD+ bio-
synthesis by treatment with nicotinamide mononucleotide (NMN; a key
NAD+ intermediate) [23] reverses age-related dysfunction in multiple
organs, including the eye [24], skeletal muscle [19] and peripheral
arteries [15,25]. A key mechanism underlying the anti-aging action of
NMN treatment is reversing age-related decline in mitochondrial
function [24]. Although there is strong evidence that mitochondrial
dysfunction and increased mitochondrial oxidative stress contribute to
cardiovascular dysfunction [26–28] and neurovascular impairment in
aging [13], the potential protective effects of NMN on the aged cerebral
microvasculature and NVC responses have not been investigated.

The present study was designed to test the hypothesis that NMN
supplementation can rescue neurovascular coupling responses in aged
mice by attenuating mitochondrial oxidative stress in cere-
bromicrovascular endothelial cells. To achieve this goal, aged mice
were treated with NMN for two weeks. Mice were behaviorally eval-
uated on a battery of tests for characterization of cognitive function and
motor coordination, which are sensitive to alterations in NVC re-
sponses. Then, functional tests for NVC responses and cere-
bromicrovascular endothelial function were performed. Markers of
oxidative stress and expression of genes regulating neurovascular cou-
pling responses, antioxidant defenses and mitochondrial function were
assessed. To substantiate the in vivo findings the effects of NMN on
mitochondrial ROS production and mitochondrial bioenergetics in
cerebromicrovascular endothelial cells derived from aged animals were
obtained in vitro.

2. Material and methods

2.1. Animals, NMN supplementation

Young (3 month, n= 30) and aged (24 month, n=40) male
C57BL/6 mice were purchased from the aging colony maintained by the

National Institute on Aging at Charles River Laboratories (Wilmington,
MA). Animals were housed under specific pathogen-free barrier con-
ditions in the Rodent Barrier Facility at University of Oklahoma Health
Sciences Center under a controlled photoperiod (12 h light; 12 h dark)
with unlimited access to water and were fed a standard AIN-93G diet
(ad libitum). Mice in the aged cohort were assigned to two groups
(n= 20 each group). One group of the aged mice was injected daily
with NMN (i.p. injections of 500mg NMN/kg body weight per day) or
the equivalent volume of PBS for 14 consecutive days at 6 p.m. and 8
a.m. on day 14 and were sacrificed 4 h after last injection. Similar do-
sages of NMN has been shown to exert potent anti-aging effects on
mouse health span [25]. All procedures were approved by the Institu-
tional Animal Use and Care Committees of the University of Oklahoma
Health Sciences Center. All animal experiments complied with the
ARRIVE guidelines and were carried out in accordance with the Na-
tional Institutes of Health guide for the care and use of Laboratory
animals (NIH Publications No. 8023, revised 1978).

2.2. Behavioral studies

Previous studies suggest that alterations of neurovascular coupling
responses associate with changes in cognition as well as sensory-motor
function [12,29]. Thus, after the treatment period behavioral tasks
were performed to characterize the effect of NMN supplementation on
learning and memory, sensory-motor function, gait and locomotion
(n= 20 in each group).

2.2.1. Radial arms water maze testing
Spatial memory and long term memory in each group of mice was

tested by observing and recording escape latency, distance moved, and
velocity during the time spend in the radial arms water maze as de-
scribed [13,29]. The maze consisted of eight arms 9 cm wide that ra-
diated out from an open central area, with a submerged escape platform
located at the end of one of the arms. Paint was added into the water to
make it opaque. The maze was surrounded by privacy blinds with ex-
tramaze visual cues. Intramaze visual cues were placed at the end of the
arms. The mice were monitored by a video tracking system directly
above the maze as they waded and parameters were measured using
Ethovision software Noldus Information Technology Inc., Leesburg, VA,
USA. Experimenters were unaware of the experimental conditions of
the mice at the time of testing. During the learning period each day,
mice were given the opportunity to learn the location of the submerged
platform during two sessions each consisting of four consecutive ac-
quisition trials. On each trial, the mouse was started in one arm not
containing the platform and allowed to wade for up to one minute to
find the escape platform. All mice spent 30 s on the platform following
each trial before beginning the next trial. The platform was located in
the same arm on each trial. Over the three days of training, mice in the
young control group gradually improved performance as they learned
the procedural aspects of the task. Upon entering an incorrect arm (all
four paws within the distal half of the arm) or failing to select an arm
after 15 s the mouse was charged an error. Learning capability was
assessed by comparing performance on days 2 and 3 of the learning
period.

2.2.2. Elevated plus maze learning protocol
Mice were also assessed for learning capacity using an elevated plus

maze-based learning protocol as previously described [30]. A gray
elevated plus maze apparatus was used. Two open arms (25× 5 cm)
and two (25× 5 cm) closed arms were attached at right angles to a
central platform (5× 5 cm). The apparatus was 40 cm above the floor.
Mice were placed individually at the end of an open arm with their back
to the central platform. The time for mice to cross a line halfway along
one of the closed arms was measured (transfer latency) on day 1 and
day 2. Mice had to have their body and each paw on the other side of
the line. If a mouse had not crossed the line after 120 s, it was placed
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beyond it. After crossing the line, mice had 30 s for exploring the ap-
paratus. Learning was defined as reduced transfer latency on day 2
compared to day 1. Higher relative difference in transfer latency on day
1 and day 2 indicates superior hippocampal function.

2.2.3. Novel object recognition test
The novel object recognition task was also performed to char-

acterize the effect of NMN on learning and memory [12,31]. The results
of the test are influenced by both hippocampal and cortical micro-
vascular impairment. The test consists of a habituation phase, acquisi-
tion (familiarization) phase, and trial phase. During the habituation
phase the animals explored the empty open-field arena for 5min. Then,
in the acquisition phase the mice explore two identical objects for
2min. After a 4 h delay, a trial phase occurred. During this period an-
imals explored the familiar object and a novel object for 2min. Ex-
ploration of the objects was defined as directing the nose at a distance
≤2 cm to the object and/or touching it with the nose. For data col-
lection and analysis Ethovision software (Noldus Information Tech-
nology Inc., Leesburg, VA, USA) was used. Sitting or climbing on it was
not considered as an exploration. All objects used in this study were
made of washable odorless plastic and were different in shapes and
colors but identical in size. A percent of time spent exploring the novel
object relative to the total time spent exploring both objects was used as
a measure of novel object recognition. The Recognition Index (RI, re-
presenting the time spent investigating the novel object [Tnovel] relative
to the total object investigation) was used as the main index of reten-
tion, which was calculated according to the following formula:
[RI= Tnovel/(Tnovel + Tfamiliar)]. The arena and the objects were
cleaned with 70% ethanol between the trials to prevent the existence of
olfactory cues.

2.2.4. Rotarod performance
Motor coordination was assessed in each group of mice by using an

automated four-lane rotarod (Columbus Instruments, Columbus, OH) as
described [12]. In brief, mice were pre-trained by placing them on the
moving rotarod at 10 r.p.m. until they performed at this speed for 120 s.
On the day of testing, mice were habituated in their home cages and
acclimate to the testing room for at least 15min. The test phase con-
sisted of 3 trials (separated by 15min inter-trial intervals). The testing
apparatus was set to accelerate from 4 to 40 r.p.m. in 300 s. One mouse
was then placed on each lane and the rotarod was started with an initial
rotation of 4 r.p.m. The rotational velocity was set to increase every 10 s
and the latency to fall was recorded. Latency to fall was recorded in
seconds by an infra-red beam across the fall path along with the max
r.p.m. sustained by each mouse [32].

2.2.5. Grip strength test
A grip strength test was used to measure the maximal muscle

strength of forelimbs of the mice [12]. Forelimb grip strength was as-
sessed using a grip strength meter (Chatillon Ametek Force Measure-
ment, Brooklyn, New York). The strength measurements of each group
of mice were measured three times by the same investigator. The
maximum grip strength values were used for subsequent analysis.

2.2.6. Analysis of gait function
To determine how aging and NMN treatment affect gait coordina-

tion, we tested the animals using an automated computer assisted
method (CatWalk; Noldus Information Technology Inc. Leesburg, VA)
as described [13,29,33]. Using the CatWalk system the detection of paw
print size, pressure and pattern during volunteer running on an illu-
minated glass walkway by a camera placed under the glass surface
provides an automated analysis of gait function and the spatial and
temporal aspects of interlimb coordination [12,34]. Briefly, animals
were trained to cross the walkway and then, in a dark and silent room
(< 20 lux of illumination), animals were tested in three consecutive
runs. Data were averaged across ten runs in which the animal

maintained a constant speed across the walkway. After manual identi-
fication and labeling of each footprint, spatial and temporal indices of
gait were calculated (including swing speed, cadence, regularity index,
brake and propulsion phase duration, stand index, duty cycle; size-ad-
justed base of support, stride length and distance between ipsilateral
prints; stride length and stride time coefficient of variance, interlimb
couplings).

2.3. Measurement of neurovascular coupling responses and cerebral blood
flow

After behavioral testing, mice in each group were anesthetized with
isoflurane (4% induction and 1% maintenance), endotracheally in-
tubated and ventilated (MousVent G500; Kent Scientific Co, Torrington,
CT). A thermostatic heating pad (Kent Scientific Co, Torrington, CT)
was used to maintain rectal temperature at 37 °C [4]. End-tidal CO2 was
controlled between 3.2% and 3.7% to keep blood gas values within the
physiological range, as described [12,35]. The right femoral artery was
canulated for arterial blood pressure measurement (Living Systems In-
strumentations, Burlington, VT) [4]. The blood pressure was within the
physiological range throughout the experiments (90–110mmHg). Mice
were immobilized and placed on a stereotaxic frame (Leica Micro-
systems, Buffalo Grove, IL) and the scalp and periosteum were pulled
aside. Mice were equipped with an open cranial window and changes in
CBF were assessed above the left barrel cortex using a laser Doppler
probe (Transonic Systems Inc., Ithaca, NY), as described [4,12,35]. The
cranial window was superfused with artificial cerebrospinal fluid
(ACSF, composition: NaCl 119mM, NaHCO3 26.2mM, KCl 2.5mM,
NaH2PO4 1mM, MgCl2 1.3 mM, glucose 10mM, CaCl2 2.5mM,
pH=7.3, 37 °C). The right whisker pad was stimulated by a bipolar
stimulating electrode placed to the ramus infraorbitalis of the trigem-
inal nerve and into the masticatory muscles. The stimulation protocol
used to investigate neurovascular coupling consisted of 10 stimulation
presentation trials with an intertrial interval of 70 s, each delivering a
30-s train of electrical pulses (2 Hz, 0.2 mA, intensity, and 0.3ms pulse
width) to the mystacial pad after a 10-s prestimulation baseline period.
Changes in CBF were averaged and expressed as percent (%) increase
from the baseline value [36]. Experiments lasted ∼20–30min/mouse,
which permitted stable physiological parameters to be obtained. To
assess the role of NO mediation, CBF responses to whisker stimulation
were repeated in the presence of the nitric oxide synthase inhibitor Nω-
Nitro-L-arginine methyl ester (L-NAME; 3× 10−4 moL/L, 20min). In
separate experiments CBF responses to whisker stimulation were ob-
tained before and after topical administration of the mitochondrial
antioxidant mitoTEMPO (10−5 moL/L). To assess microvascular en-
dothelial function, CBF responses to topical administration of acet-
ylcholine (ACh; 10−5 moL/L) were obtained before and after topical
administration of the mitochondrial antioxidant mitoTEMPO
(10−5 moL/L).

Basal CBF was assessed in a separate cohort of control and experi-
mental mice (n=5 in each group) anesthetized with isoflurane using
arterial spin labeling magnetic resonance imaging following published
protocols [33].

In each study the experimenter was blinded to the treatment of the
animals. At the end of the experiments the animals were transcardially
perfused and decapitated. The brains were immediately removed and
pieces of the somatosensory and motor cortex were isolated and frozen
for subsequent analysis. All reagents used in this study were purchased
from Sigma-Aldrich (St Louis, MO) unless otherwise indicated.

2.4. Assessment of the effect of NMN supplementation on markers of
oxidative stress

To characterize the effect of NMN treatment on cellular redox
homeostasis in aging, 3-nitrotyrosine (3-NT, a marker for peroxynitrite
action) was assessed in homogenates of cortical samples using OxiSelect
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Protein Nitrotyrosine ELISA Kits (Cell Biolabs), according to the man-
ufacturer's guidelines, as previously described [4]. In the micro-
circulation of aged rodents endothelium-derived NO was shown to react
with O2

.- forming ONOO− thus decreasing the bioavailability of NO
[37,38]. Previously we showed that aged mouse brains exhibit an in-
creased 3-nitrotyrosine content [4], a biomarker of increased ONOO−

formation, suggesting that impaired endothelial mediation of cere-
bromicrovascular dilation in aging is due to increased scavenging of
vasodilator NO [9].

As an additional marker of oxidative stress, 8-isoprostane content in
the cortical tissue was measured using the 8-isoprostane EIA kit
(Cayman Chemical Company, Ann Arbor, MI) according to the manu-
facturer's guidelines as previously reported [4].

2.5. Assessment of endothelial function in the aorta

To assess the specific effect of NMN treatment on endothelial
function, endothelium-dependent vasorelaxation was assessed in iso-
lated aorta ring preparations as described previously [39]. In brief,
aortas were cut into ring segments 1.5 mm in length and mounted in
myographs chambers (Danish Myo Technology A/S, Inc., Denmark) for
measurement of isometric tension. The vessels were superfused with
Krebs buffer solution (118mM NaCl, 4.7 mM KCl, 1.5 mM CaCl2,
25 mM NaHCO3, 1.1 mM MgSO4, 1.2mM KH2PO4, and 5.6mM glucose;
at 37 °C; gassed with 95% air and 5% CO2). After an equilibration
period of 1 h during which an optimal passive tension was applied to
the rings (as determined from the vascular length-tension relationship),
they were pre-contracted with 10−6 M phenylephrine and relaxation in
response to acetylcholine was measured.

2.6. Assessment of vascular oxidative stress

To characterize vascular ROS production isolated segments of the
aorta were loaded with the redox sensitive dye dihydroethidium (DHE,
Invitrogen, Carlsbad CA; 3× 10−6 moL/L; for 30min) in oxygenated
Krebs' solution (at 37 °C) as previously reported [34,39–42]. After
loading the dye was washed out five times with warm Krebs buffer, and
the vessels were allowed to equilibrate for another 20min. Then, the
vessels were embedded in OCT medium and cryosectioned. Confocal
images were captured using a Leica SP2 confocal laser scanning mi-
croscope (Leica Microsystems GmbH, Wetzlar, Germany). Average nu-
clear DHE fluorescence intensities were assessed using the Metamorph
software (Molecular Devices LLC, Sunnyvale, CA) and values for each
animal in each group were averaged.

2.7. Measurement of vascular and endothelial NAD+ levels

To confirm efficiency of NMN treatment, NAD+ levels were mea-
sured in snap frozen aortas from young and aged mice using a biolu-
minescent assay (NAD/NADH-Glo Assay; Promega, Madison, WI), ac-
cording to the manufacturer's instructions. Briefly, tissue was
homogenized in PBS and lysed in a base solution with 1% DTAB. To
measure the levels of the oxidized form, HCl was added to the solution
and heated for 15min at 60 °C. The luminescence signal was detected
with a Tecan Infinite M200 plate reader. A similar protocol was fol-
lowed for cultured endothelial cells (see below). Protein quantification
was used for normalization purposes.

2.8. Establishment and characterization of primary CMVEC cultures

To evaluate the anti-aging action of NMN in vitro, we assessed the
effects of NMN on cellular mtROS production and mitochondrial phe-
notype in cultured primary cerebromicrovascular endothelial cells
(CMVECs). The establishment and characterization of the CMVEC
strains used has been recently reported [4]. In brief, to establish pri-
mary cultures of CMVECs, the brains of male 3 and 24 month old

F344xBN rats (obtained from the National Institute on Aging) were
removed aseptically, rinsed in ice cold PBS and minced into ≈1mm
squares. The tissue was washed twice in ice cold 1X PBS by low-speed
centrifugation (50 g, 2–3min). The diced tissue was digested in a so-
lution of collagenase (800U/g tissue), hyaluronidase (2.5U/g tissue)
and elastase (3U/g tissue) in 1ml PBS/100mg tissue for 45min at 37 °C
in a rotating humid incubator. The digested tissue was passed through a
100 μm cell strainer. The single cell lysate was centrifuged for 2min at
70 g. After removing the supernatant the pellet was washed twice in
cold PBS supplemented with 2.5% fetal calf serum (FCS) and the sus-
pension centrifuged at 300 g for 5min at 4C. To create an endothelial
cell enriched fraction the cell suspension was centrifuged using an
OptiPrep gradient solution (Axi-Shield, PoC, Norway). Briefly, the cell
pellet was resuspended in Hanks' balanced salt solution (HBSS) and
mixed with 40% iodixanol thoroughly (final concentration: 17% (w/v)
iodixanol solution; ρ=1.096 g/ml). 2 ml of HBSS was layered on top
and centrifuged at 400 g for 15min at 20 °C. Endothelial cells, which
banded at the interface between HBSS and the 17% iodixanol layer,
were collected. The endothelial cell enriched fraction was incubated for
30min at 4 °C in the dark with anti-CD31/PE (BD BD Biosciences, San
Jose, CA, USA), anti-MCAM/FITC (BD Biosciences, San Jose, CA, USA).
After washing the cells twice with MACS Buffer (Milltenyi Biotech,
Cambridge, MA, USA) anti-FITC and anti-PE magnetic bead labeled
secondary antibodies were used for 15min at room temperature. En-
dothelial cells were collected by magnetic separation using the MACS
LD magnetic separation columns according to the manufacturer's
guidelines (Milltenyi Biotech, Cambridge, MA, USA). The endothelial
fraction was cultured on fibronectin coated plates in Endothelial
Growth Medium (Cell Application, San Diego, CA, USA) for 10 days.
Endothelial cells were phenotypically characterized by flow cytometry
(GUAVA 8HT, Merck Millipore, Billerica, MA, USA). Briefly, antibodies
against five different endothelial specific markers were used (anti-
CD31-PE, anti-erythropoietin receptor-APC, anti-VEGF R2-PerCP, anti-
ICAM-fluorescein, anti-CD146-PE) and isotype specific antibody labeled
fractions served as negative controls. Flow cytometric analysis showed
that after the third cycle of immunomagnetic selection there were vir-
tually no CD31−, CD146-, EpoR- and VEGFR2-cells in the resultant cell
populations. All antibodies were purchased from R&D Systems (R&D
Systems, Minneapolis, MN, USA).

Primary CMVECs were cultured in custom-made Rat Brain
Endothelial Cell Growth Medium (Cell Applications, Inc.) with reduced
nicotinamide concentration (11.04 μM). Since the results of assays in-
vestigating mtROS, mitochondrial function and ATP concentration are
affected by the number of viable cells, cell viability of each population
was determined as described [43]. To assess the direct effects of NMN
on endothelial mitochondrial function primary CMVECs derived from
young and aged rats were treated with NMN (Santa Cruz, Dallas, TX) in
vitro (5× 10−4 moL/L; for 1–5 days).

2.9. SIRT1 and SIRT2 shRNA transfection

To determine the role of sirtuin signaling in the anti-aging en-
dothelial effects of NMN treatment, the downregulation of SIRT1 and
SIRT2, key anti-aging proteins whose activity is regulated by NAD le-
vels, in CMVECs was achieved by RNA interference using proprietary,
tested SIRT1 and SIRT2 short hairpin RNA (shRNA) sequences
(GeneCopoeia, Rockville, MD). CMVECs were transfected using the
electroporation-based Amaxa Nucleofector technology (Amaxa,
Gaithersburg, MD), as we have previously reported [16,18]. Experi-
ments were performed on day 2 after the transfection when gene si-
lencing was optimal.

2.10. Measurement of mitochondrial ROS production and endothelial H2O2

and NO release

The assess the effect of NMN treatment on age-related
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mitochondrial oxidative stress, mitochondrial production of ROS
(mtROS) in CMVECs was measured using MitoSOX Red (Invitrogen/
Thermo Fisher Scientific), a mitochondrion-specific hydroethidine-de-
rivative fluorescent dye [27,28,44–48]. In brief, cells were incubated
with MitoSox (5× 10−6 moL/L; for 30min, at 37 °C, in the dark). The
cells were then washed with PBS and MitoSox fluorescence was mea-
sured by flow cytometry (GUAVA 8HT, Merck Millipore, Billerica, MA,
USA).

In separate experiments, the effect of NMN treatment on age-related
increases in cellular H2O2 production was measured fluorometrically in
CMVECs using the Amplex red/horseish peroxidase assay as described
[45]. The H2O2 generation rate was compared by measuring the time
course of the buildup of resorufin fluorescence for 60min by a Tecan
Infinite M200 plate reader.

To assess the effect of NMN treatment on age-related decline in NO
release, the production of NO in CMVECs was measured using the
fluorescent indicator DAF-FM (4-amino-5-methylamino- 2′,7′-di-
fluorescein; 5 μmoL/L for 30min at 37 °C; Invitrogen/Thermo Fisher
Scientific).

2.11. Measurement of mitochondrial membrane potential

To further elucidate the effects of NMN on mitochondrial function,
we determined how it impacts mitochondrial membrane potential in
CMVECs using the mitochondrial membrane potrential indicator
fluorescent dye JC-1 (Guava Technologies, Hayward, CA). JC-1 is a
cationic carbocyanine dye that accumulates in energized mitochondria.
When it is present in its monomer form in the mitochondria at low
concentrations (due to low mitochondrial potential), the dye exhibits
green fluorescence. When it accumulates in the energized mitochondria
and forms J-aggregates at higher concentrations (due to high mi-
tochondrial potential), it exhibits red fluorescence. These character-
istics render JC-1 a sensitive marker for mitochondrial membrane po-
tential: a decrease in the aggregate red fluorescence and an increase in
monomer green fluorescence is indicative of depolarization whereas an
increase in the aggregate red fluorescence and a decrease in monomer
green fluorescence is indicative of hyperpolarization. Cells were labeled
with JC-1 for 30min at 37 °C and fluorescence was analyzed with glow
cytometry. The red/green fluorescence ratio was calculated as an in-
dicator of mitochondrial membrane potential.

2.12. Mitochondrial bioenergetics assay

To substantiate the endothelium-protective effect of NMN, we per-
formed real-time measurements of the oxygen consumption rate (OCR;
a marker of oxidative phosphorylation) in young and aged CMVECs
after treatment with NMN (5× 10−4 mM NMN, for 5 days) using a
Seahorse XF96 extracellular flux analyzer.

In brief, CMVECs were seeded into XF96 cell culture microplates in
Seahorse XF-Assay media (Agilent Technologies) supplemented with
25mM glucose and 1mM sodium pyruvate (pH 7.4) the day before the
assay. Plates were maintained for 45min at 37 °C in 0% CO2 prior to the
measurement. Basal respiration, coupling efficiency, and spare re-
spiratory capacity were compared using the Mito Stress Test Kit fol-
lowing the manufacturer's protocol. OCR was monitored before and
after the addition of the electron transport inhibitors oligomycin
(1.0 μM) and FCCP (1.0 μM), an ionophore that is a mobile ion carrier,
and a mixture of antimycin-A (1.0 μM) (which is a complex III inhibitor)
and rotenone (1.0 μM), a mitochondrial inhibitor that prevents the
transfer of electrons from the Fe–S center in complex I to ubiquinone.
Basal respiration (baseline respiration minus antimycin-A post injection
respiration), ATP synthesis coupled respiration (baseline respiration
minus oligomycin post injection respiration), maximal respiratory ca-
pacity (FCCP stimulated respiration minus antimycin-A post injection
respiration) and reserve respiratory capacity (FCCP stimulated re-
spiration minus baseline respiration) were calculated. Sample protein

content was used for normalization purposes.

2.13. Quantification of ATP levels

To correlate these observed changes in OCR directly to ATP pro-
duction, we also measured cellular ATP concentration in CMVECs. ATP
levels in endothelial cells were assessed using the ENLITEN ATP bio-
luminescent assay (Promega) according to the manufacturer's instruc-
tions. Briefly, CMVEC were seeded in 96-well plates (for 24 h at 37 °C
under 5% CO2). For ATP determination the cells were homogenized in
Passive Lysis Buffer (Promega). The samples were diluted 1:10 and
mixed with an equal volume of the luciferase reagent. The plates were
incubated at room temperature for 10min and then the luminescence
signal was detected with a Tecan Infinite M200 plate reader. ATP
quantification was carried out from a standard curve using ATP dis-
odium salt hydrate. BCA protein determination was performed for
normalization purposes. Cell viability of each population was de-
termined by flow cytometry (Guava easyCyte 8HT) to ensure similar
viability of CMVECs in each group in a parallel experiment using the
ViaCount Assay (Millipore).

2.14. Electron microscopy

Brains (n=5 animals in each group) were perfusion fixed under
100mmHg pressure using Karnowsky's method [49]. Thin sections
were obtained with an ultramicrotome, stained with osmium tetroxide,
and examined with a transmission electron microscope as previously
described [50]. Mitochondrial volume densities were obtained in a
blinded fashion using the principles of Weibel [51]. Data were ex-
pressed as relative changes in volume density (volume of mitochondria
per cytoplasmic volume).

2.15. Measurement of mitochondrial DNA content in CMVECs

Total DNA was isolated from CMVECs using the QIAamp DNA Mini
QIAcube Kit (QIAGEN). Mitochondrial DNA (mtDNA) copy number was
determined by qPCR as described [17], using cytochrome oxidase III
and β-actin as markers for the copy numbers of mtDNA and genomic
DNA, respectively.

2.16. Quantitative real-time RT-PCR

A quantitative real time RT-PCR technique was used to analyze
mRNA expression of genes relevant for neurovascular impairment and
age-related mitochondrial dysfunction in cortical, cerebrovascular,
aortic and endothelial samples using validated TaqMan probes (Applied
Biosystems) and a Strategen MX3000 platform, as previously reported
[4,35,52]. Targets included the nitric oxide synthases eNOS and nNOS
(Nos3 and Nos1, respectively), arginases (Arg1, Arg2; which regulate NO
synthase activity and were proposed to contribute to endothelial dys-
function in aging [53]), antioxidant enzymes, enzymes involved in NAD
metabolism and nuclear- and mitochondrion-encoded subunits of the
electron transport chain. In brief, total RNA was isolated with a Mini
RNA Isolation Kit (Zymo Research, Orange, CA) and was reverse tran-
scribed using Superscript III RT (Invitrogen) as described previously
[35]. Quantification was performed using the efficiency-corrected
ΔΔCq method. The relative quantities of the reference genes Hprt,
Ywhaz, B2m, Actb and S18 were determined and a normalization factor
was calculated based on the geometric mean for internal normalization.
Fidelity of the PCR reaction was determined by melting temperature
analysis and visualization of the product on a 2% agarose gel.

2.17. Quantitative mass spectrometry analysis

Selective reaction monitoring (SRM) mass spectrometry was used to
quantify vascular anti-oxidant protein expression, as previously

S. Tarantini, et al. 5HGR[�%LRORJ\�����������������

�



described [54]. For these assays, 60-μg amounts of aorta lysates were
mixed with 8 pmol of bovine serum albumin (BSA) as an internal
standard and 50 μl of 10% SDS. The samples were heated at 80 °C for
15min before precipitating the proteins in 80% acetone overnight at
−20 °C. The protein pellet was dissolved in 60 μl of sample buffer and a
20-μl aliquot containing 20 μg of protein run 1.5 cm into a 12.5% SDS-
polyacrylamide gel. The gel was fixed and stained with GelCode Blue
(Pierce). For each sample, the entire 1.5-cm lane was cut out of the gel
and divided coarsely. The gel pieces were washed to remove the stain,
reduced with DTT, alkylated with iodoacetamide, and digested with
1 μg of trypsin overnight at room temperature. The peptides produced
in the digest were extracted with 50% methanol, 10% formic acid in
water. The extract was evaporated to dryness and reconstituted in
150 μl of 1% acetic acid in water for analysis. The samples were ana-
lyzed using SRM with a triple quadrupole mass spectrometer (Ther-
moScientific TSQ Vantage) configured with a splitless capillary column
HPLC system (Eksigent, Dublin, CA, USA). Samples (10 μl) were in-
jected onto a 10 cm× 75 μm C18 capillary column (Phenomenex, Ju-
piter C18). The column was eluted at 160 nL/min with a 30-min linear
gradient of acetonitrile in 0.1% formic acid. Data were processed by
using Pinpoint to find and integrate the correct peptide chromato-
graphic peaks. The response for each protein was taken as the total
response for all peptides monitored. To quantify protein expression, the
relative abundance of each protein was first normalized to the BSA
internal standard and then normalized to the geometric mean of cel-
lular reference proteins [54].

2.18. Statistical analysis

Statistical analysis was carried out by one-way ANOVA followed by
Tukey's post hoc test or unpaired t-test, as appropriate. Dose-response
curves for vascular relaxations were analyzed by two-way ANOVA for
repeated measures followed by Bonferroni multiple comparison test. A
p value less than 0.05 was considered statistically significant. Data are
expressed as mean ± S.E.M.

3. Results

3.1. NMN supplementation rescues NVC responses in aged mice by restoring
endothelial NO mediation

CBF responses in the whisker barrel cortex elicited by contralateral
whisker stimulation were significantly decreased in aged mice com-
pared to young animals indicating impaired NVC in aging (re-
presentative CBF tracings are shown in Fig. 1A, summary data are
shown in Fig. 1B) [9]. We found that a 14-day treatment with NMN
significantly increased CBF responses induced by contralateral whisker
stimulation in aged mice, restoring NVC to levels observed in young
mice (Fig. 1A–B). Further, perfusion mapping of cerebral coronal slices
in each group of animals was performed by MRI. We found that basal
CBF was decreased in aged mice as compared to young animals. NMN
treatment significantly increased CBF in aged mice (Supplemental Fig.
S1).

There is strong experimental evidence, obtained using both phar-
macological inhibitors and genetically modified animals, that NO pro-
duction by the microvascular endothelium plays a critical role in NVC
responses and that cerebromicrovascular endothelial dysfunction sig-
nificantly contributes to age-related neurovascular uncoupling [3,4].
Accordingly, in untreated aged animals administration of the NO syn-
thase inhibitor L-NAME was without effect, whereas in young mice it
significantly decreased NVC responses, eliminating the differences be-
tween the age groups (Fig. 1B). In NMN treated aged mice L-NAME
significantly decreased CBF responses elicited by whisker stimulation
(Fig. 1B), suggesting that NMN treatment restored the NO mediation of
NVC in aged animals. To further ascertain the endothelial protective
effects of NMN supplementation, endothelium-dependent vasodilator

responses to acetylcholine were tested. In young mice topical admin-
istration of acetylcholine resulted in significant CBF increases, whereas
these responses were significantly attenuated in aging mice. Treatment
of aged mice with NMN significantly improved acetylcholine-induced
vasodilation (Fig. 1C).

Previously we found that treatment with the mitochondria-targeted
antioxidative peptide SS-31 can improve both NVC responses and
acetylcholine-induced vasodilation in the brains of aged mice [13]. Our
results showing that treatment with MitoTEMPO also restores NVC re-
sponses and acetylcholine-induced responses in aged mice extend these
findings (Supplemental Fig. S2). Similar findings were obtained in
isolated aorta ring preparations from aged mice supplemented with
NMN (Fig. 1E). To assess the role of endothelium-derived NO, L-NAME
was applied. L-NAME significantly inhibited acetylcholine-induced va-
sorelaxation, eliminating the differences between the three groups.
These finding suggests that NMN significantly improves endothelial
function by restoring endothelial NO mediation in aged vessels, ex-
tending recent findings [25]. Efficiency of NMN treatment was con-
firmed by demonstration of increased vascular NAD+ levels (Fig. 1F).
NMN treatment attenuated age-related increases in oxidative/ni-
trosative stress, as indicated by the reduced tissue 3-nitrotyrosine
(Fig. 1D) and isoprostane (Supplemental Fig. S3, panel A) levels and
vascular DHE staining (Supplemental Fig. S3, panel B), whereas it did
not affect mRNA and protein expression of NO synthases or antioxidant
enzymes (Supplemental Figs. S4 and S5, respectively). The effects of
aging on expression of Nmnat1, Nmnat3 and Nampt in cerebral vessels
and aortas are shown in Supplemental Fig. S6 panels A and B.

3.2. NMN attenuates mitochondrial oxidative stress and improves
mitochondrial bioenergetics in aged cerebromicrovascular endothelial cells

To substantiate the endothelial protective effects of NMN in vitro, we
assessed the effects of NMN on cellular mtROS production in cultured
primary cerebromicrovascular endothelial cells (CMVECs) derived from
aged animals using the MitoSox fluorescence method. First we de-
monstrated that in aged CMVECs NAD+ content was significantly de-
creased, whereas it was normalized by treatment with NMN (Fig. 2A).
We found that in aged CMVECs mtROS production was significantly
increased as compared to that in CMVECs derived from young animals
(Fig. 2B and C), which associated with a decreased production of NO
(DAF fluorescence; Fig. 2D) as well as impaired mitochondrial mem-
brane potential (Fig. 2E), and decreased ATP levels (Fig. 2F). NMN
treatment attenuated mtROS generation (Fig. 2B and C), increased NO
production (Fig. 2D), rescued mitochondrial membrane potential
(Fig. 2E) and restored cellular ATP content (Fig. 2E) in aged CMVECs,
eliminating the difference between the two age groups. NMN treatment
also attenuated increased H2O2 release from aged CMVECs as measured
by the Amplex Red assay (Supplemental Fig. S7). Attenuation of mtROS
production in NMN-treated aged CMVECs was associated with sig-
nificant improvement of both basal and maximal mitochondrial re-
spiration (Fig. 2G–H). Combined shRNA knockdown of SIRT1/SIRT2
prevented the beneficial effects of NMN on mtROS (Fig. 2C), NO pro-
duction (Fig. 2D), mitochondrial membrane potential (Fig. 2E) and
mitochondrial respiration (Fig. 2H) in aged CMVECs. The effects of
aging on expression of Nmnat1, Nmnat3 and Nampt in CMVECs are
shown in Supplemental Fig. S6 panel C.

3.3. NMN reverses age-related decline in mitochondrially encoded genes
without promoting mitochondrial biogenesis

We could exclude that mitochondrial protective effects of NMN are
linked to promotion of mitochondrial biogenesis. Using electron mi-
croscopy and unbiased morphometric methods we found that mi-
tochondrial volume density in endothelial cells in the cerebral micro-
circulation was unaffected by NMN treatment (Fig. 3A–D). NMN
treatment of aged mice also does not affect mtDNA content in cerebral
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arteries (Fig. 3E). Findings obtained in cultured CMVECs showing un-
altered mtDNA content after NMN treatment extend the in vivo data
(Fig. 3F).

Previous studies suggest that age-related decline in oxidative
phosphorylation may be due to the specific loss of mitochondrially
encoded transcripts [19]. Accordingly, we found that in aged cerebral
arteries (Fig. 3G) and aged CMVECs (Supplemental Fig. S8) mRNA
expression of mitochondrially encoded components of the electron
transport chain was significantly decreased as compared to young ones,
whereas those encoded by the nuclear genome remained unchanged
with age (Supplemental Fig. S9). Importantly, NMN supplementation
partially rescues age-related decreases in mRNA expression of mi-
tochondrially encoded subunits of the electron transport chain both in
cerebral arteries (Fig. 3G) and CMVECs (Supplemental Fig. S8).

3.4. Restoration of cerebromicrovascular function is associated with
improved cognitive function in aged mice treated with NMN

Recently we demonstrated that specific, pharmacologically-induced
neurovascular un-coupling results in detectable cognitive impairment
[12]. To determine how rescue of cerebromicrovascular function by
NMN supplementation impacts cognitive performance in aged mice,
animals were tested in the radial arms water maze (Fig. 4A). We
compared the learning performance of mice in each experimental group
by analyzing the day-to-day changes in the combined error rate,
working memory errors, successful escape rate, path length and time
latency. During acquisition, mice from all groups showed a decrease in
the combined error rate (Fig. 4B) across days, indicating learning of the
task. After the first day of learning young mice consistently had lower

combined error rate than aged mice (Fig. 4B). Decreases in the com-
bined error rate induced by NMN supplementation in aged mice
reached statistical significance by trial block 6.

To analyze working memory function (short-term memory that is
involved in immediate conscious perception) we examined re-entries
into incorrect arms (without hidden platform) that were previously
attempted for escape. We found that working memory function was
impaired in aged mice as compared to young controls (Fig. 4C). Aged
mice with NMN supplementation showed significant restoration of
working memory to levels comparable to young animals (Fig. 4C). NMN
treatment thus resulted in complete behavioral rescue of working
memory.

Successful escape rate from the maze was assessed by measuring the
percent of animals that could find the hidden platform within the 60 s
allowed for each trial. During acquisition, mice from all groups showed
an increase in successful escape rate consistent with the learning of the
task. Young mice exhibited significantly better escape success than
untreated aged mice (Fig. 4D). Although in aged mice NMN treatment
tended to increase the successful escape rate, the differences did not
reach statistical significance (Fig. 4D).

We also compared path length (i.e. the distance that the mouse
swam between maze entry and successful escape through the hidden
platform) and escape latency (i.e. the time elapsed between entry and
successful escape). During acquisition, mice from all groups displayed
shorter path length (Fig. 4E) and lower escape latencies (Fig. 4F), in-
dicating spatial learning. Young mice exhibited shorter path length
(Fig. 4E) and lower escape latency (Fig. 4F) than untreated aged mice,
which differences became pronounced by day 3. In aged mice NMN
supplementation did not affect significantly either path length and

Fig. 1. NMN supplementation improves microvascular endothelial function and rescues NO mediation of neurovascular coupling responses in aged mice.
A) Representative traces of cerebral blood flow (CBF; measured with a laser Doppler probe above the whisker barrel cortex) during contralateral whisker stimulation
(30 s, 5 Hz) in the absence and presence of the NO synthase inhibitor L-NAME in young (3 month old), aged (24 month old) and NMN treated aged mice. B) Summary
data showing that in aged mice NMN supplementation restores NO mediated component of NVC responses. C) In aged mice NMN supplementation improves
endothelium-mediated CBF responses elicited by topical perfusion of acetylcholine. D) NMN supplementation decreases protein 3-nitrotyrosine content in the aged
cortex, indicating decreased peroxynitrite formation. E-G) In aged mouse aortas NMN supplementation rescues acetylcholine-induced endothelium-mediated re-
laxation (E), increases tissue NAD+ levels (F) and attenuates oxidative stress (G; see Methods). Data are mean ± S.E.M. (n = 5–8 for each data point).*P < 0.05 vs.
Young; #P < 0.05 vs. Aged. (one-way ANOVA with post-hoc Tukey's test). n.s.: not significant.
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escape latencies. The analyses of noncognitive parameters revealed a
slight age-related decline in swimming speed and an age-dependent
increase in non-exploratory behavior (the cumulative time the mice
spent not actively looking for the platform, e.g. floating), which were
partially normalized toward young control levels by NMN treatment
(Fig. 4G and H).

We also evaluated hippocampal-dependent learning and memory
employing the elevated plus-maze. For young mice, transfer latency on
day 2 was significantly decreased (by ∼49%) compared to day 1
(Fig. 5A), indicating an intact learning effect. In contrast, for aged mice
the transfer latency on day 1 and day 2 were similar, indicating im-
paired learning capability. NMN supplementation in aged mice restored

learning performance to youthful levels (Fig. 5A).
Subsequently we also tested the performance of the mice in the

novel object recognition test. We found no significant difference in the
time that mice from each group spent exploring the two identical ob-
jects placed at the opposite ends of the arena during the acquisition
phase, confirming that the location of the objects did not affect the
exploration behavior of mice. In the trial phase with two different ob-
jects (one novel, the other familiar), young mice explored the novel
object for a significantly longer time period, indicating their memory
for the familiar object (Fig. 5B). In contrast, aged mice had a sig-
nificantly lower calculated Recognition Index (RI). NMN supple-
mentation in aged mice significantly improved their performance,

Fig. 2. Treatment with NMN improves mitochondrial energetics and attenuates mitochondrial ROS production in aged cerebromicrovascular endothelial
cells (CMVECs). A) Treatment with NMN (5× 10−4 moL/L; for 5 days) restores NAD+ levels in primary CMVECs derived from aged rats. B) Treatment with NMN
(5× 10−4 moL/L; for 1–5 days) attenuates age-related increases in mtROS production in CMVECs (MitoSox fluorescence, assessed by flow cytometry). C) shRNA
knockdown of SIRT1/SIRT2 prevents NMN-induced attenuation of mtROS in aged CMVECs. D-E) Treatment of aged CMVECs with NMN rescues cellular NO
production (D; DAF fluorescence, assessed by flow cytometry) and increases mitochondrial membrane potential (E; JC-1 mitochondrial membrane potential probe) to
levels observed in young cells. shRNA knockdown of SIRT1/SIRT2 prevents the NMN effect. F) Treatment of aged CMVECs with NMN restores cellular ATP levels.
Data are mean ± S.E.M (n = 5–10 for each data point in A-F). *P < 0.05 vs. Young; #P < 0.05 vs. Aged. G) Attenuation of mtROS production and improved
mitochondrial membrane potential in NMN treated aged CMVECs were associated with significant improvement of cellular oxygen consumption rate (OCR; a marker
of oxidative phosphorylation; measured using the Seahorse XFe96 analyzer). Vertical dashed lines indicate assay drug injections. OCR in untreated young and aged
CMVECs is shown for reference. Note the marked NMN-induced increase in both basal and maximal respiration in aged CMVECs. Right panel shows the effects of
shRNA knockdown of SIRT1/SIRT2 on NMN-induced changes in OCR in aged CMVECs. OCR in aged CMVECs transfected with scrambled shRNA is shown for
reference. H) Summary data showing the effects of aging and NMN on basal respiration, ATP-linked respiration and maximal respiration. Data are mean ± S.E.M.,
n = 9 for each data point.*P < 0.05 vs. Young; #P < 0.05 vs. Aged. $ P < 0.05 vs. Aged + NMN (one-way ANOVA with post-hoc Tukey's test). n.s.: not
significant.
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which is consistent with an improved hippocampal- and cortical-de-
pendent recognition memory (Fig. 5B).

3.5. NMN supplementation improves gait performance in aged mice

To investigate the effects of age and NMN treatment on the motor
performance of mice we measured performance of the accelerating
rotarod and grip strength which evaluate muscle strength, balance, and
endurance. NMN supplementation did not affect significantly age-re-
lated decreases in latency to fall from the rotarod (Fig. 5C) and did not
reverse age-related decline in grip strength (Supplemental Fig. S10).

Age-related deficiencies in NVC responses in human patients [11]
and animal models of aging [29] have been linked to gait abnormal-
ities. Recent studies also demonstrate that pharmacologically-induced
neurovascular uncoupling associates with subclinical gait alterations in
mice [33]. To identify age- and treatment-related systematic differences
between mouse gait patterns, principal component analysis (PCA) was
carried out on the correlation matrix of spatial and temporal indices of

gait. This analysis identified three principal components that accounted
for ∼63% of the variance in the data. We plotted the position of each
mouse against the PC1, PC2, and PC3 axis in three-dimensional space
(Fig. 5D). The most conspicuous trend was that aged and young mice
were well separated along the PC1 axis, whereas NMN treated aged
mice were clustered together with young mice. Collectively, the
aforementioned results support the view that rescue of NVC by NMN
treatment is associated with improved gait performance in aged mice.
Selected individual gait parameters are shown in Supplemental Fig.
S11.

4. Discussion

The key finding of this study is that short-term treatment with the
NAD+ precursor NMN rescues NVC responses and improves higher
brain functions in a mouse model of aging that recapitulates key aspects
of cerebromicrovascular dysfunction and cognitive deficit manifested in
elderly patients.

Fig. 3. Treatment with NMN rescues age-related downregulation of mitochondrially encoded subunits of the electron transport chain without promoting
mitochondrial biogenesis. A-C) Representative electronmicrographs showing mitochondria in cerebromicrovascular endothelial cells in young (A), aged (B) and
NMN treated aged mice (C); (arrowheads, mitochondria; nu, nucleus; bm, basal lamina; AC, astrocyte; scale bar: 500 nm). D) Summary data showing that NMN
treatment does not affect mitochondrial volume density in aged cerebromicrovascular endothelial cells. E) NMN treatment of aged mice does affect mtDNA content in
cerebral arteries. F) NMN treatment (5× 10−4 moL/L; for 5 days) of aged CMVECs does not affect mtDNA content. G) NMN supplementation rescues age-related
decreases in mRNA expression of mitochondrially encoded subunits of the electron transport chain in cerebral arteries. Data are mean ± SEM (n = 5–6 for each data
point in D-G). *P < 0.05 vs. Young; #P < 0.05 vs. Aged. (one-way ANOVA with post-hoc Tukey's test). n.s.: not significant.
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Elucidating the mechanisms by which aging impairs NVC responses
is critical for the development of new targets and effective therapies for
VCI. Here we show for the first time that NMN supplementation rescues
NO mediation of NVC in aged mice supporting the concept that its
potent cerebromicrovascular endothelial protective effects contribute
significantly to its anti-aging, neuroprotective action. Additional evi-
dence in support of this concept comes from the observations that NMN

treatment restores NO release in aged CMVECs in vitro and that NMN
supplementation also rescues endothelial NO-mediated vasodilation in
the aortas of aged mice. Importantly, endothelium-derived NO plays
versatile biological roles in addition to its role in vasoregulation. It is a
paracrine regulator of cellular metabolism and mitochondrial function,
it modulates the function of dozens of proteins by promoting ni-
trosylation on their cystine residues, it inhibits platelet aggregation,

Fig. 4. In NMN treated aged mice rescue of neurovascular coupling responses associates with improved performance in the radial-arm water maze
(RAWM). Young (3 month old), aged (24 month old) and NMN treated aged mice were tested in the RAWM. A) Heatmap representing the percentage of time spent in
different locations in the maze for a randomly selected animal from each group during experimental day 3. Note that the untreated aged mouse required a greater
amount of time and a longer path length in order to find the hidden escape platform. Older mice also re-enter a previously visited arm multiple time, accruing
working memory errors. B) Older animals have higher combined error rates throughout day 2 and 3 of the learning phase. Combined error rate is calculated by
adding 1 error for each incorrect arm entry as well as for every 15 s spent not exploring the arms. C) Older animals make significantly more working memory errors
(repetitive incorrect arm entries) as compared to young mice. In contrast, aged mice treated with NMN perform this task significantly better than untreated aged
mice. D) The ratio of successful escapes, averaged across trial blocks, is shown for each group. Note day-to-day improvement in the performance of young mice,
which was significantly delayed in aged mice. Although aged mice treated with NMN tended to be more successful at finding the hidden escape platform in
comparison to untreated age-matched controls, the difference did not reach statistical significance. Average path length (Panel E) and escape latencies (Panel F)
required to reach the hidden platform in the RAWM for trial blocks 1–6. Young mice find the hidden platform sooner while swimming significantly less than aged
animals. In aged mice treated with NMN the escape latencies and the average path length required to reach the hidden platform did not differ from that in aged mice.
G) NMN had only marginal effect on the swimming speed. H) Aged control mice exhibited longer non-exploratory behavior compared to young mice. Treatment with
NMN partially reduces the non-exploratory time to young levels. All data are shown as mean ± SEM. (n= 20 for each data point).
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smooth muscle cell proliferation and leukocyte adhesion, promotes
stability of atherosclerotic plaques and exerts potent anti-inflammatory,
anti-apoptotic and pro-angiogenic effects. In that regard it is significant
that NMN treatment was also shown to increase capillary density in the
skeletal muscle [15]. Thus, rescue of cerebromicrovascular NO bioa-
vailability by treatment with NAD precursors likely has clinical sig-
nificance beyond restoration of NVC responses, potentially exerting
diverse protective effects both on the cerebral vasculature and phy-
siological function of other cell types, including neurons, astrocytes and
microglia. The mechanisms underlying age-related decline in NAD+ in
endothelial cells are likely multifaceted and may include down-reg-
ulation of NAMPT (which catalyzes the rate limiting step in the bio-
synthesis of NAD+) and increased utilization of NAD+ by activated
PARP-1 [55]. Thus, it is possible that combination treatments that si-
multaneously increase NAD production and inhibit its degradation (e.g.
NMN plus a PARP-1 inhibitor) may offer additional benefits for neu-
rovascular protection.

Our studies are the first to demonstrate that NMN treatment effec-
tively attenuates age-related mitochondrial oxidative stress in cerebo-
microvascular endothelial cells, suggesting a key role for this me-
chanism in NAD+-mediated endothelial protection. In support of this
concept using structurally different inhibitors/scavengers of mtROS
production, including SS-3113, resveratrol [4,45] and mitoTEMPO, we
have demonstrated that age-related mitochondrial oxidative stress

plays a central role in impaired NO mediation of NVC responses in
aging. Recovery of endothelial function in aged peripheral arteries has
also been reported using the SS-3113, resveratrol [39] and MitoQ [56].
The mechanisms contributing to mitochondrial oxidative stress in the
aged endothelium, which are affected by NMN treatment, are likely
multifaceted and involve a dysfunctional electron transport chain. Re-
duced electron flow through the electron transport chain, in particular
due to age-related dysfunction of complex I and complex III [57], likely
increases electron leak and favors mtROS production. It is believed that
dysregulation of mtDNA-encoded subunits of these complexes con-
tribute to their age-related dysfunction. Increases in NAD+ levels in-
duced by NMN treatment were shown to activate SIRT1 [19], which
regulates the expression of mtDNA-encoded subunits of the ETC [19].
Importantly, our results suggest that disruption of sirtuin signaling
prevents NMN-induced mitochondrial protection and attenuation of
mtROS production in aged CMVECs. Importantly, pharmacological
sirtuin activators were also shown to attenuate mtROS and improve
endothelial function in aged animals [58]. On the basis of the afore-
mentioned findings and the data available in the literature [15,19] we
speculate that increased sirtuin activation elicited by increased NAD+

levels restores expression of mtDNA-encoded subunits, improving effi-
ciency of the ETC, restoring bioenergetics and attenuating mtROS
production. In addition, increased NAD+∶NADH ratio itself may also
contribute to the reduction of mitochondrial oxidative stress [59],

Fig. 5. In NMN treated aged mice rescue of neurovascular coupling responses associates with improved cognitive performance. A) NMN treatment improved
learning ability in aged mice, as assessed using the elevated plus maze-based learning protocol (see Methods section). For young mice, transfer latency on day 2 was
significantly decreased compared to day 1, indicating an intact learning effect. For aged mice the transfer latency on day 1 and day 2 were similar, indicating
impaired learning capability. NMN supplementation in aged mice restored learning performance to youthful levels. B) NMN treatment restored recognition memory
in aged mice as measured by the novel object recognition test (see Methods). Recognition memory is expressed as a recognition index which is defined as the ratio of
time spent exploring the novel object over the total time spent exploring both familiar and novel objects. C) NMN supplementation in aged mice does not affect mean
latencies to fall from the rotarod. All data are shown as mean ± SEM. (n = 20 for each data point). Statistical significance was calculated using one-way ANOVA
with Tukey's post hoc test to determine differences among groups. *P < 0.05 vs. Young; #P < 0.05 vs. Aged control. D) NMN supplementation improves gait
performance in aged mice. Shown is the 3D triplot of first three principal components (PC) identified by PCA on the correlation matrix of spatial and temporal indices
of gait. Each point represents an individual mouse. Note, that mice in the same age groups clustered together. Differences between young and aged mouse gait were
evident. NMN supplementation partially reverses age-related changes in mouse gait (MANOVA; P < 0.01 Aged vs. Aged treated; P < 0.01 Young vs. Aged). E)
Scheme showing proposed role for increased NAD+ deficiency and mitochondrial oxidative stress in cerebromicrovascular endothelial impairment and neurovascular
dysfunction in aging and their pathophysiological consequences.
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whereas alterations in cellular and mitochondrial expression of anti-
oxidant enzymes appear less important. Other mitochondrial factors
affecting mtROS levels that may be potentially affected by sirtuin-
regulated pathways include the mitochondrial Nox4-containing
NADPH-oxidase, p66shc, as well as the ratios of reduced/oxidized co-
factors (NAD(P)H, GSH) and thiol groups of proteins, that act as a
mitochondrial redox buffer [26,59]. These factors should be in-
vestigated in future studies.

We find that restoration of NAD+ levels by NMN treatment, in ad-
dition to reducing ROS generation, increases mitochondrial membrane
potential and improves mitochondrial respiration in CMVECs in a sir-
tuin-dependent manner. We posit that sirtuin-mediated increases in
mitochondrial membrane potential drives increased ATP production in
NMN treated CMVECs. Such a mechanism is likely also operational in
the cerebral microcirculation of NMN treated aged mice. In addition to
sirtuin-mediated effects, because mitochondrial ATP production and
membrane potential require NAD as an essential coenzyme, restoring
an optimal NAD/NADH ratio itself should also promote efficient mi-
tochondrial metabolism.

Normalization of mitochondrial membrane potential and increased
efficiency of ATP generation likely also improve cellular functions in-
dependent of decreasing mtROS. For example, the microvascular en-
dothelium in the brain, which maintains the blood-brain-barrier and
exhibits controlled transcellular transport systems, has high energy
demands. Future studies should determine how restoration of cellular
energetics by NMN supplementation impacts barrier and transport
function in capillaries in the aged brain. Interestingly, both NMN and
the related NAD precursor nicotinamide riboside have recently been
shown to improve neuronal mitochondrial function and behavioral
phenotypes in models of neurodegenerative disease [60,61,62], sug-
gesting that the net benefit in vivo could reflect effects on multiple
distinct cell types within the brain. Astrocytic end feet also contain
significant amounts of mitochondria. We predict that NMN treatment of
aged mice may also exert beneficial effects on astrocytic functions that
are affected by impaired mitochondrial energy metabolism and/or in-
creased mtROS, including astrocytic contributions to NVC responses
(e.g. release of ATP upon neuronal stimulation). This possibility should
be tested in future studies.

There is a growing evidence from clinical [10,11] and experimental
[12] studies that impairment of NVC responses contributes to the age-
related decline in higher cortical functions. Restoration of this key
homeostatic mechanism matching energy supply with the needs of ac-
tive neuronal tissue is expected to exert beneficial effects on brain
function in aging. The present study is the first to demonstrate that
rescue of NVC by NMN supplementation in aging is associated with
improvement of multiple domains of brain function, including hippo-
campal encoded memory functions. These results extend the findings of
our previous studies demonstrating that rescue of NVC responses in
aged mice by treatment with the mtROS inhibitors resveratrol [4] and
SS-31 [13] is also associated with significant cognitive benefit [14]. In
previous studies NMN supplementation was shown to improve health of
obese aged mice [63]. Because there is strong evidence that aging and
obesity exerts synergistic deleterious effects on NVC responses and
mouse cognition [64], further studies are warranted to evaluate the
potential benefits of NMN treatment on these endpoints in mouse
models of geriatric obesity as well.

Neurovascular dysfunction in older adults [11] as well as in animal
models of aging [29] has been linked to gait alterations. Recent ex-
perimental studies in mouse models of pharmacologically-induced
neurovascular uncoupling established a mechanistic link between im-
paired NVC responses and gait abnormalities [12]. The present study
extends these findings showing that rescue of NVC responses by NMN
supplementation reverses age-related alterations in gait performance in
mice. Gait dysfunction in geriatric patients is a major cause of func-
tional impairment, contributes to falls and predicts increased risk of
institutionalization and mortality. Identification of interventions

targeting the cerebral microvasculature that can improve gait function
in aging has great relevance for maintaining functional independence in
late life and preventing falls.

4.1. Limitations of the study

A number of important limitations of the present study need to be
considered. First, DHE is not specific to superoxide and is more con-
sidered a semi-quantitative assay. Also, the DAF assay is not specific to
NO as it can also react with oxidation products of NO. Recent reports
suggest that hydrogen sulfide can reverse aging-induced vascular al-
terations and promote NO synthesis, at least in part, by augmenting the
effects NAD precursors [15,65,66]. Further studies are warranted to
elucidate the interaction of hydrogen sulfide and NAD-dependent
pathways as well as the role of reactive sulfur species in the aged cer-
ebral microcirculation. We acknowledge as a limitation of the study
that we could measure NAD + levels and ROS production only in the
aorta.

5. Conclusions

In conclusion, our findings show that NMN supplementation exerts
significant cerebromicrovascular protective effects in aged mice. NMN
treatment attenuates endothelial oxidative stress, improves endothelial
function and rescues NVC responses in the aged cortex, which likely
contributes to improvement of higher cortical function (Fig. 5E). Our
findings, taken together with the results of earlier studies
[15,19,23,24], point to benefits at several levels of cerebrovascular and
systemic pathology of aging and to the potential use of NMN as therapy
for prevention of aging-induced vascular cognitive impairment. Im-
portantly, NVC is compromised both in patients with Alzheimer's dis-
ease (AD) and in mouse models of AD, which is believed to accelerate
clinical deterioration [1]. Thus, our findings are likely relevant to the
treatment of AD in elderly patients as well. In laboratory animals long-
term intake of NMN is well-tolerated without side effects [24] and
clinical trials have been already started to assess the tolerability of
NMN in humans [67] to develop it as an anti-aging nutraceutical. Thus,
future clinical trials with NMN supplementation in elderly subjects are
feasible, which would allow the potential of NMN in improving cere-
bromicrovascular and cognitive outcomes to be evaluated.
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cellular NAD+ levels by treatment with the NAD+ booster
nicotinamide mononucleotide (NMN) exerts significant
vasoprotective effects, improving endothelium-dependent
vasodilation, attenuating oxidative stress, and rescuing
age-related changes in gene expression. Strong experimen-
tal evidence shows that dysregulation of microRNAs
(miRNAs) has a role in vascular aging. The present study
was designed to test the hypothesis that age-related NAD+
depletion is causally linked to dysregulation of vascular
miRNA expression. A corollary hypothesis is that func-
tional vascular rejuvenation in NMN-treated aged mice is
also associated with restoration of a youthful vascular
miRNA expression profile. To test these hypotheses, aged
(24-month-old) mice were treated with NMN for 2 weeks
and miRNA signatures in the aortas were compared to
those in aortas obtained from untreated young and aged
control mice. We found that protective effects of NMN
treatment on vascular function are associated with anti-
aging changes in themiRNAexpression profile in the aged
mouse aorta. The predicted regulatory effects of NMN-
induced differentially expressed miRNAs in aged vessels
include anti-atherogenic effects and epigenetic rejuvena-
tion. Future studies will uncover the mechanistic role of
miRNA gene expression regulatory networks in the anti-
aging effects of NAD+ booster treatments and determine
the links between miRNAs regulated by NMN and sirtuin
activators and miRNAs known to act in the conserved
pathways of aging and major aging-related vascular
diseases.

Keywords Senescence . Atherosclerosis . Vascular
cognitive impairment . Epigenetics . Vascular aging .

Endothelial dysfunction . Oxidative stress

Introduction

Age-related diseases of the cardiovascular system are a
leading cause of morbidity and mortality in the elderly
(Abdellatif et al. 2018; Minamino and Komuro 2007;
Wang and Bennett 2012; Alfaras et al. 2016; Ungvari
et al. 2018). Vascular aging is associated with stiffening
of the large arteries, endothelial dysfunction, oxidative
stress, and inflammation, promoting the development of
atherosclerotic vascular diseases (ischemic heart diseases,
stroke, peripheral artery disease) and aorta aneurysm
(Wang and Bennett 2012; Ungvari et al. 2018). Microvas-
cular aging is also a major contributing factor to the
pathogenesis of vascular cognitive impairment (VCI),

Alzheimer’s disease, cerebral microhemorrhages,
sarcopenia, heart failure, chronic kidney disease and
(Ungvari et al. 2018; Mullins et al. 2014; Ungvari et al.
2017a; Toth et al. 2017; Tarantini et al. 2017a; Tarantini
et al. 2016a; Sagare et al. 2013; Sweeney et al. 2018;
Montagne et al. 2017; Kisler et al. 2017; Payne 2006;
Hoenig et al. 2008; Long et al. 2012). Understanding
molecular mechanisms involved in vascular aging is es-
sential to develop novel interventional strategies for treat-
ment and prevention of age-related vascular pathologies.

MicroRNAs (miRNA) are short, endogenous, non-
coding transcripts that repress gene expression at the
post-transcriptional level in both physiological and patho-
logical conditions. Strong experimental evidence suggest
that miRNAs have a role in regulation of lifespan in model
organisms (Boehm and Slack 2005; Grillari and Grillari-
Voglauer n.d.; Ibanez-Ventoso et al. 2006) and that alter-
ations in cellularmiRNAexpression profile also play a role
in mammalian aging (Bates et al. n.d.; Maes et al. 2008;
Inukai et al. 2012; Inukai and Slack 2013; Ito et al. 2010;
Mercken et al. 2013; Smith-Vikos and Slack 2012;
Ungvari et al. 2013a; Zhang et al. 2012; Zovoilis et al.
2011; Smith-Vikos et al. 2016; ElSharawy et al. 2012).
Importantly, miRNAs were also reported to regulate sev-
eral important aspects of endothelial biology and vascular
function (Bonauer et al. 2009; Doebele et al. n.d.;
Kuehbacher et al. 2007; Chen et al. 2015a; Hergenreider
et al. 2012; Kim et al. 2014; Leung et al. 2013; Lovren
et al. 2012; O’Rourke and Olson 2011; Rotllan et al. 2013;
Stellos and Dimmeler 2014; Weber et al. 2014; Zampetaki
et al. 2014). Several studies have demonstrated that age-
related miRNA dysregulation importantly contributes to
the development of vascular aging phenotypes (Ito et al.
2010; Ungvari et al. 2013a,b; Menghini et al. 2014; Badi
et al. 2018; Guo et al. 2017; Hazra et al. 2016; Regina et al.
2016; Boon et al. 2013; Csiszar et al. 2014) and promotes
the pathogenesis of atherosclerotic diseases (Ono et al.
2011) encompassing every step from sterile vascular in-
flammation, plaque formation to plaque destabilization and
rupture (Hartmann et al. 2016; Lu et al. 2018; Zhang et al.
2018). Dysregulation of miRNA expression has also been
linked to microvascular aging phenotypes, including im-
paired angiogenesis (Ungvari et al. 2013b; Csiszar et al.
2014; Che et al. 2014; Jansen et al. 2015). Experimental
interventions that both extend lifespan and prevent/delay
age-related vascular dysfunction in rodents, including ca-
loric restriction (Csiszar et al. 2014) and induction of early-
life IGF-1 deficiency (Tarantini et al. 2016b), were shown
to reverse aging-induced alterations in vascular miRNA
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expression. Despite these advances, fundamental cellular
and molecular processes of aging that are responsible for
dysregulation of vascular miRNA expression have not
been elucidated.

NAD+ is a rate-limiting co-substrate for sirtuin en-
zymes, which are key regulators of pro-survival pathways
in the vasculature (Das et al. 2018; Csiszar et al. 2009a;
Csiszar et al. 2009b; Csiszar et al. 2008). Aging is asso-
ciated with cellular NAD+ depletion (Gomes et al. 2013;
Massudi et al. 2012), which has been proposed to be a
critical driving force of aging processes. In support of this
theory, it was demonstrated that enhancing NAD+ bio-
synthesis extends lifespan in lower organisms (Anderson
et al. 2002) and improves health-span inmousemodels of
aging (Mitchell et al. 2018). Recent studies provide crit-
ical evidence that vascular aging is also characterized by
NAD+ depletion (Tarantini et al. 2019; Csiszar et al.
2019; Kiss et al. 2019). Importantly, we 69 and other
laboratories demonstrated (Das et al. 2018; de Picciotto
et al. 2016) that in agedmice restoration of cellular NAD+

levels by treatment with the NAD+ precursor nicotin-
amide mononucleotide (NMN) (Yoshino et al. 2018)
confers potent anti-aging vascular effects, reversing en-
dothelial dysfunction, improving mitochondrial function,
and attenuating oxidative stress.

The present study was designed to test the hypothesis
that age-related NAD+ depletion is causally linked to
dysregulation of vascular miRNA expression. A corollary
hypothesis is that functional vascular rejuvenation in
NMN-treated aged mice is also associated with restoration
of a youthful vascular miRNA expression profile. To test
these hypotheses, aged mice were treated with NMN for
2 weeks and miRNA signatures in the aortas were com-
pared to those in aortas obtained from untreated young and
aged control mice.

Methods

Animals, NMN supplementation

Young (3-month-old) and aged (24-month-old) male
C57BL/6 mice were purchased from the aging colony
maintained by the National Institute on Aging at
Charles River Laboratories (Wilmington, MA). The
biological age of 24-month-old mice corresponds to
that of ~ 60-year-old humans. Mice were housed un-
der specific pathogen-free barrier conditions in the
Rodent Barrier Facility at University of Oklahoma

Health Sciences Center under a controlled photope-
riod (12 h light; 12 h dark) with unlimited access to
water and were fed a standard AIN-93G diet (ad
libitum). Mice in the aged cohort were assigned to
two groups. One group of the aged mice was injected
daily with NMN (i.p. injections of 500 mg NMN/kg
body weight per day) or the equivalent volume of
PBS for 14 consecutive days at 6 PM and 8 AM on
day 14 and were sacrificed 4 h after last injection.
Similar dosages of NMN have been shown to exert
potent anti-aging effects on mouse health span (de
Picciotto et al. 2016). All procedures were approved
by the Institutional Animal Use and Care Committees
of the University of Oklahoma Health Sciences Cen-
ter. All animal experiments complied with the AR-
RIVE guidelines and were carried out in accordance
with the National Institutes of Health guide for the care
and use of Laboratory animals (NIH Publications No.
8023, revised 1978). The effects of NMN treatment on
cognitive function, cerebromicrovascular responses,
and aorta endothelial function in the same cohort of
mice have been recently reported (Tarantini et al. 2019).

Quantitative real-time RT-PCR and miRNA expression
profiling

A quantitative real time RT-PCR technique was used to
analyze miRNA expression profiles in the aorta of mice
from each experimental group as reported (Ungvari et al.
2013b; Csiszar et al. 2014; Tarantini et al. 2016b). In
brief, total RNAwas isolated with a mirVana™ miRNA
Isolation Kit (ThermoFisher Scientific) and was reverse
transcribed using TaqMan® MicroRNA Reverse Tran-
scription Kit as described previously (Ungvari et al.
2013b; Csiszar et al. 2014; Tarantini et al. 2016b). The
expression profile of mouse miRNAs in aortas derived
from young and aged control mice and aged NMN-
treated mice was analyzed using the TaqMan Array Ro-
dent MicroRNA A+B Cards Set v3.0 (ThermoFisher
Scientific). The qPCR data were quantified using the
ΔΔCt method (Livak and Schmittgen 2001). Predicted
and experimentally validated microRNA targets were
obtained from the TargetScan database (Agarwal et al.
2015), and Gene Ontology enrichment analysis was per-
formed on differentially expressed microRNA targets
using Fisher’s exact test between TargetScan targets and
annotations from the Gene Ontology database (Harris
et al. 2004). To identify relationships between miRNA
targets and terms in the biomedical literature, we utilized
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the IRIDESCENT system (Wren and Garner 2004). IR-
IDESCENTuses a statistical model to determine whether
each target gene co-occurs with a term of interest more
frequently than would be expected by chance, and quan-
tifies this in terms of the mutual information measure.

Results

Changes in vascular miRNA expression profile in mice
associated with aging and with NMN treatment

We assessed changes in miRNA expression in the
mouse aorta associated with aging and with NMN treat-
ment. Hierarchical clustering (Fig. 1a) and principal
component analysis (Fig. 1b) of miRNA expression
showed a clear separation between the young and aged
groups. Aged control mice and aged NMN-treated mice
were also separated in the principal component analysis
and hierarchical clustering. In contrast, miRNA expres-
sion in young mice and NMN-treated aged mice was
similar and these groups did not separate well in the
principal component analysis and hierarchical cluster-
ing. The Venn diagram in Fig. 1c shows that expression
of several miRNAs, which are differentially expressed
in the aortas of young and aged mice, was restored to
youthful levels in aortas of NMN-treated aged mice.
These data suggest that NAD+ depletion has a critical
role in age-related dysregulation of vascular miRNA
expression. Figure 2 shows changes in expressions of
individual miRNAs in the mouse aorta associated with
age and NMN treatment.

Since the discovery of miRNA regulation of genes,
several studies have been focused on predicting the biolog-
ically relevant target genes for miRNAs. We have used
TargetScan database to predict putative biological targets
of miRNAs differentially expressed with age whose expres-
sion is restored to youthful levels in aortas of aged mice by
NMN supplementation (Table 1). GO terms enriched
among miRNAs differentially expressed with age whose
expression is restored to youthful levels in aortas of aged
mice by NMN supplementation are shown in Table 2.
Analysis of the differentially expressed miRNAs indicated
that a statistically significant number of them had target sites
within genes associated with pathways regulating the intra-
cellular signaling, protein homeostasis, and inflammation
(Table 2). The results are consistent with the predicted
anti-aging effects of NMN treatment.

Fig. 1 NMN treatment reverses age-related changes in miRNA ex-
pression profile in the mouse aorta. a The heat map is a graphic
representation of normalized miRNA expression values in aortas de-
rived from young (3-month-old), aged (24-month-old), and NMN-
treated aged mice. Hierarchical clustering analysis revealed the similar-
ities on miRNA expression profiles of aortas from young and NMN-
treated aged mice. b Principal component analysis (PCA) plot of
miRNA expression profiles from aortas derived from young, aged
control, and NMN-treated aged mice. The profiles from aged mice
(red dots) cluster separately to clusters representative of young mice
(blue circles) and NMN-treated aged mice (green triangles). PC1 and
PC2: Principal components 1 and 2, respectively. c Venn diagrams
showing the differentially expressed miRNAs in each group, which
are significantly up- or down-regulated in aortas from aged mice
compared to those from young mice or aged NMN-treated mice
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We also attempted to predict the biological effects of
the differentially expressed miRNAs by identifying re-
lationships between miRNA targets and terms in the
biomedical literature utilizing the IRIDESCENT system
(Wren and Garner 2004). The results of this analysis
suggest that NMN supplementation likely promotes epi-
genetic rejuvenation and confers anti-atherogenic ef-
fects (Table 3).

Discussion

Our study demonstrates that protective effects of NMN
treatment on vascular function is associated with anti-
aging changes in the miRNA expression profile in the
aorta in a mouse model of aging that recapitulates

vascular alterations and deficits present in elderly
humans at risk for cardiovascular and cerebrovascular
diseases.

Age-related changes in vascular miRNA expres-
sion likely play important pathogenic roles targeting
critical signaling pathways, inflammatory processes,
and cellular mechanisms involved in protein homeo-
stasis and thereby impairing the structural and func-
tional integrity of the vasculature (Fig. 3). Among
others, miR-29a (Huang et al. 2016), miR-27b
(Signorelli et al. 2016), miR-652 (Pilbrow et al.
2014), miR-221 (Wei et al. 2013), miR-28 (Wang
et al. 2017), miR-21 (Urbich et al. 2008), miR-125b-
5p (Ohukainen et al. 2015) , miR-494 (Wezel et al.
2015), and miR-145 (Faccini et al. 2017), which are
up-regulated in aging, have been implicated in vas-
cular inflammation and atherogenesis.

Fig. 2 Effects of aging and NMN treatment on miRNA expres-
sion in the mouse aorta. a, b qPCR data showing miRNA expres-
sion in aortas isolated from young (3-month-old), aged (24-month-

old), and NMN-treated aged mice. Data are mean ± S.E.M. (n = 3–
4 for each data point). *P < 0.05 vs. young; #P < 0.05 vs. aged
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To our knowledge, this is the first study to
demonstrate that NMN treatment in aged mice
reverses, at least in part, age-related, pro-inflam-
matory, and pro-atherogenic alterations in miRNA
expression profile in the aorta. These findings raise
the possibility that changes in post-transcriptional
control of expression of genes that encode critical
targets for vascular health contribute to the bene-
ficial effects of treatment with NAD+ boosters on
health span. Demonstration of NMN-induced
changes in miRNA biology in the vasculature is
particularly important as alterations in miRNA ex-
pression profile have been causally linked to the
development of cardiovascular aging phenotypes
(Ungvari et al. 2013a; Boon et al. 2013; Csiszar
et al. 2014) and the pathogenesis of cardiovascular
diseases (Ono et al. 2011). A single miRNA can
target up to several hundred mRNAs, thus capable
of significantly altering gene expression regulatory
networks. Systematic prediction of target pathways
supports the concept that chronic NMN treatment
may exert significant anti-atherogenic effects via
epigenetic rejuvenation of the vasculature. These
miRNA-mediated vasoprotective effects of NMN
treatment appear to be synergistic with its endo-
thelial protective, anti-aging, and pro-angiogenic
effects demonstrated by recent studies (Tarantini
et al. 2019; Csiszar et al. 2019; Kiss et al. 2019).

The molecular mechanisms contributing to
aging-induced decline in NAD+ in the vasculature
are likely multifaceted and may include down-
r e g u l a t i o n o f n i c o t i n a m i d e
phosphoribosyltransferase (NAMPT, also known
as NMN synthase; which catalyzes the rate limit-
ing step in the biosynthesis of NAD+) (Tarantini
et al. 2019) and increased utilization of NAD+ by
activated Poly [ADP-ribose] polymerase 1 (PARP-
1) (Csiszar et al. 2019; Pacher et al. 2002). Addi-
tional studies are warranted to determine the effi-
cacy of combination treatments that simultaneously
increase NAD+ production and inhibit its degrada-
tion (e.g., NMN plus a PARP-1 inhibitor) for the
prevention of age-related vascular pathologies.

Previous studies demonstrate that restoration of
NAD+ levels by NMN treatment exert protective
effects on endothelial vasodilation in aged rodents
by reducing ROS generation and restoring mito-
chondrial function in a sirtuin-dependent manner
(Tarantini et al. 2019). The mechanisms by whichTa
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NAD+ boosters regulate miRNA expression are
likely multifaceted and may include both transcrip-
tional and post-transcriptional regulatory mecha-
nisms (Fig. 3). NMN-induced transcriptional regula-
tion may involve changes in the expression of
miRNA genes due to altered transcription factor
activity, changes in genome accessibility (e.g., his-
tone modifications), and altered methylation status
of the promoter of the miRNA genes. Post-

transcriptional mechanisms affected by NMN treat-
ment may include rescue of miRNA processing
pathways (Ungvari et al. 2013b) and miRNA stabil-
ity. Activation of sirtuins by NAD+ boosters, which
has been linked to attenuation of age-related vascu-
lar oxidative stress (Tarantini et al. 2019; Kiss et al.
2019), may potentially contribute to both transcrip-
tional and post-transcriptional regulation of miRNA
expression in the vasculature. In particular, future

Table 2 Predicted regulatory effects of miRNAs whose expres-
sion is restored to youthful levels in aortas of aged mice by NMN
supplementation. Shown are GO terms enriched among miRNAs
differentially expressed with age in the aorta whose expression is
significantly affected by NMN treatment. N = genes in each GO

category, targeted by miRNAs that are differentially regulated in
the aged mouse aorta. Significance was determined by Fisher’s
exact test; odds ratio: (observed to expected ratio); SLPV: signed
log10 P value

GO term ID Name of biological process/molecular function N Odds Ratio SLPV

6886 Intracellular protein transport 20 3.17 3.26

7218 Neuropeptide signaling pathway 7 7.32 2.54

5198 Structural molecule activity 6 9.40 2.45

51082 Unfolded protein binding 7 5.49 2.20

45778 Positive regulation of ossification 6 6.27 2.07

50839 Cell adhesion molecule binding 10 3.49 1.92

15137 Citrate transmembrane transporter activity 3 inf 1.84

48227 Plasma membrane to endosome transport 3 inf 1.84

8188 Neuropeptide receptor activity 3 inf 1.84

7217 Tachykinin receptor signaling pathway 3 inf 1.84

42594 Response to starvation 3 inf 1.84

70536 Protein K63-linked deubiquitination 6 4.70 1.77

71108 Protein K48-linked deubiquitination 6 4.70 1.77

5102 Receptor binding 27 1.82 1.72

90630 Activation of GTPase activity 10 2.85 1.71

31338 Regulation of vesicle fusion 7 3.66 1.68

1664 G-protein coupled receptor binding 6 3.76 1.52

6631 Fatty acid metabolic process 6 3.76 1.52

45777 Positive regulation of blood pressure 4 6.25 1.47

32924 Activin receptor signaling pathway 4 6.25 1.47

70530 K63-linked polyubiquitin binding 4 6.25 1.47

10863 Positive regulation of phospholipase C activity 4 6.25 1.47

16579 Protein deubiquitination 8 3.13 1.47

18107 Peptidyl-threonine phosphorylation 9 2.57 1.42

48015 Phosphatidylinositol-mediated signaling 5 3.91 1.36

7200 Phospholipase C-activating G-protein coupled receptor signaling pathway 5 3.91 1.36

71837 HMG box domain binding 5 3.91 1.36

61578 Lys63-specific deubiquitinase activity 3 9.37 1.33

33674 Positive regulation of kinase activity 3 9.37 1.33

43122 Regulation of I-kappaB kinase/NF-kappaB signaling 3 9.37 1.33

50995 Negative regulation of lipid catabolic process 3 9.37 1.33
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studies should determine how NMN treatment and
sirtuin activation affect activity/expression of the
Dicer/TRBP complex (Ungvari et al. 2013b). Fur-
ther, the anti-aging vascular effects of caloric restric-
tion also have been causally linked to sirtuin activa-
tion (Csiszar et al. 2009a). Importantly, caloric re-
striction also promotes significant anti-inflammatory
and anti-atherogenic changes in vascular miRNA
expression (Csiszar et al. 2014). Various humoral
factors (e.g., hormones, cytokines) can also affect
vascular miRNA expression. Additional studies are
needed to determine the indirect effects of NMN-
induced changes in humoral factors (e.g. ,
adipokines) on vascular miRNA expression profile.
The available evidence also supports the concept
that a bi-directional link exists between NAD+
levels and miRNA expression (Choi et al. 2013).
Recent studies identify the miR-34a/NAMPT (nic-
otinamide phosphoribosyltransferase) regulatory
axis, which regulates SIRT1 activity through alter-
ing NAD+ levels (Choi et al. 2013). Interestingly,
miR-34a tends to be increased in the aged mouse
aorta (~ 2.9-fold), which associates with a down-
regulation of NAMPT (Tarantini et al. 2019).

Conclusions

In conclusion, rescue of vascular function and atten-
uation of oxidative stress in the vasculature of
NMN-treated aged mice is accompanied by anti-
aging changes in miRNA expression profile in the
aorta. The predicted regulatory effects of NMN-
induced differentially expressed miRNAs in aged
vessels include anti-atherogenic affects and epige-
netic rejuvenation (Fig. 3) and are consistent with
the anti-aging functional effects of treatment with
both NMN (Das et al. 2018; Tarantini et al. 2019;
Kiss et al. 2019; de Picciotto et al. 2016) and sirtuin
activators (Pearson et al. 2008; Csiszar et al. 2012;
Mattison et al. 2014; Toth et al. 2015; Toth et al.
2014; Zhang et al. 2009; Oomen et al. 2009; Minor
et al. 2011; Chen et al. 2015b; Gano et al. 2014)
observed both in vivo and ex vivo. We hope that our
findings will facilitate future endeavor of uncovering
the mechanistic role of miRNA gene expression
regulatory networks in the anti-aging effects of
NAD+ booster treatments. Future studies should
also investigate the links between miRNAsTa
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regulated by NMN and sirtuin activators and
miRNAs known to act in the conserved pathways
of aging (Ungvari et al. 2018; Menghini et al. 2014;
Tarantini et al. 2016b; Kennedy et al. 2014; An et al.
2017; Ashpole et al. 2017; Bennis et al. 2017;
Deepa et al. 2017; Fang et al. 2017; Fulop et al.
2018; Lee et al. 2018; Reglodi et al. 2018; Menghini
et al. 2009; Fan et al. 2018) and major aging-related
diseases (Csiszar et al. 2017; Meschiari et al. 2017;
Tarantini et al. 2017b; Tucsek et al. 2017; Ungvari
et al. 2017b; Carlson et al. 2018; Csipo et al. 2018;
Tana et al. 2017; Feinberg and Moore 2016). Poten-
tially, miRNA-regulated anti-aging mechanisms of
NAD+ booster treatments and sirtuin activators
could be harnessed for development of new pharma-
cological approaches for the prevention and treat-
ment of age-related vascular diseases.
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Abstract Aging-induced structural and functional al-
terations of the neurovascular unit lead to impairment
of neurovascular coupling responses, dysregulation of
cerebral blood flow, and increased neuroinflammation,
all of which contribute importantly to the pathogenesis
of age-related vascular cognitive impairment (VCI).

There is increasing evidence showing that a decrease
in NAD+ availability with age plays a critical role in
age-related neurovascular and cerebromicrovascular
dysfunction. Our recent studies demonstrate that restor-
ing cellular NAD+ levels in aged mice rescues
neurovascular function, increases cerebral blood flow,
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and improves performance on cognitive tasks. To deter-
mine the effects of restoring cellular NAD+ levels on
neurovascular gene expression profiles, 24-month-old
C57BL/6 mice were treated with nicotinamide mononu-
cleotide (NMN), a key NAD+ intermediate, for 2 weeks.
Transcriptome analysis of preparations enriched for
cells of the neurovascular unit was performed by
RNA-seq. Neurovascular gene expression signatures in
NMN-treated aged mice were compared with those in
untreated young and aged control mice. We identified
590 genes differentially expressed in the aged
neurovascular unit, 204 of which are restored toward
youthful expression levels by NMN treatment. The tran-
scriptional footprint of NMN treatment indicates that
increased NAD+ levels promote SIRT1 activation in
the neurovascular unit, as demonstrated by analysis of
upstream regulators of differentially expressed genes as
well as analysis of the expression of known SIRT1-
dependent genes. Pathway analysis predicts that
neurovascular protective effects of NMN are mediated
by the induction of genes involved in mitochondrial
rejuvenation, anti-inflammatory, and anti-apoptotic
pathways. In conclusion, the recently demonstrated pro-
tective effects of NMN treatment on neurovascular func-
tion can be attributed to multifaceted sirtuin-mediated
anti-aging changes in the neurovascular transcriptome.
Our present findings taken together with the results of
recent studies using mitochondria-targeted interventions
suggest that mitochondrial rejuvenation is a critical
mechanism to restore neurovascular health and improve
cerebral blood flow in aging.

Keywords Aging . Geroscience . Vascular cognitive
impairment . Mitochondria dysfunction . Transcriptomics

Introduction

In recent years, there has been increasing appreciation
that the health of the neurovascular unit (NVU) is crit-
ical for brain health (Kisler et al. 2017; Zlokovic 2010,
2011; Iadecola 2017; Stanimirovic and Friedman 2012).
The extended NVU consists of cerebral microvessels
that receive input from neurons via astrocytic endfeet,
pericytes, and perivascular microglia (Iadecola 2017;
Stanimirovic and Friedman 2012). The NVU is respon-
sible for the tight coupling between neural activity and
regional cerebral blood flow (“neurovascular cou-
pling”), which ensures adequate oxygen and nutrient

delivery to the brain (Tarantini et al. 2017a; Toth et al.
2017). Endothelial dysfunction and/or impaired astro-
cytic function results in neurovascular uncoupling con-
tributing to cognitive impairment (Toth et al. 2017;
Tarantini et al. 2015, 2018, 2017b). In addition, cells
constituting the NVU form andmaintain the blood-brain
barrier (Zlokovic 2010, 2011; Montagne et al. 2017;
Sweeney et al. 2018, 2019a; Zlokovic 2008), regulate
transport processes and waste removal, deposit the ex-
tracellular matrix, control the structural remodeling of
the cerebral microcirculation (including angiogenesis,
vessel regression, adaptation to hypertension (Csiszar
et al. 2017; Tarantini et al. 2016, 2017c; Tucsek et al.
2014; Warrington et al. 2013; Ungvari et al. 2013,
2018a, 2017; Toth et al. 2015)), form and operate the
glymphatic system (Iliff et al. 2013; Jessen et al. 2015;
Kress et al. 2014), maintain stem-cell niches (Solano
Fonseca et al. 2016), synthesize the glycocalyx, and
control the adhesion and extravasation of inflammatory
circulating cells that participate in central nervous sys-
tem immune surveillance (Stanimirovic and Friedman
2012). With age, the phenotype and function of the cells
constituting the NVU are altered, which fundamentally
affects all of the aforementioned physiological process-
es (Kisler et al. 2017; Zlokovic 2010, 2011; Tarantini
et al. 2017a). Age-related neurovascular dysfunction is
now considered as a critical contributing factor to the
pathogenesis of both vascular cognitive impairment
(VCI) and neurodegenerative diseases, including
Alzheimer’s disease (Sweeney et al. 2019b). In order
to develop novel methods for prevention and treatment
of these diseases and to preserve cognitive function in
older adults, it is important to identify therapeutic inter-
ventions that can reverse age-related impairment of the
NVU. Understanding the role of fundamental cellular
and molecular mechanisms of aging in age-related
neurovascular impairment is critical in that regard.

Nicotinamide adenine dinucleotide (NAD+) is a co-
enzyme central to hundreds of redox reactions in eu-
karyotic cells. NAD+ also has a critical role in the
regulation of the activity of NAD+-consuming enzymes,
including SIRT1 and other sirtuins (Gomes et al. 2013;
Michan et al. 2010; Mitchell et al. 2014; Yang et al.
2007). Sirtuin enzymes are implicated in regulation of
cellular processes of aging, mitochondrial function,
stress resilience, apoptosis, and inflammation (Das
et al. 2018; Csiszar et al. 2009a, b, 2008a). Aging is
associated with cellular NAD+ depletion (Gomes et al.
2013; Massudi et al. 2012) (Yoshino, 2018 #10180),
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which has been proposed to be a critical driving force of
aging processes (Imai and Guarente 2014), impairing
nuclear and mitochondrial functions and contributing to
the genesis of many age-associated pathologies. Ac-
cordingly, restoration of cellular NAD+ biosynthesis
extends lifespan in model organisms (Anderson et al.
2002) and improves health span and extends lifespan in
murine models of aging (Zhang, 2016 #10167)
(Mitchell et al. 2018). There is emerging evidence that
vascular aging is also characterized by cellular NAD+

depletion (Tarantini et al. 2019a; Csiszar et al. 2019;
Kiss et al. 2019a). Importantly, our recent studies
showed (Tarantini et al. 2019a) that in murine models
of aging restoration of cellular NAD+ levels by chronic
treatment with the NAD+ precursor, nicotinamide
mononucleotide (NMN) (Yoshino et al. 2018) confers
potent anti-aging neurovascular effects, rescuing
cerebromicrovascular endothelial dysfunction and
neurovascular coupling responses, increasing cerebral
blood flow, and improving cognitive performance. In
cultured cerebromicrovascular endothelial cells derived
from aged rats, 5 days of treatment with NMN restored
NAD+ levels and rescued mitochondrial function and
attenuated mitochondrial oxidative stress in a sirtuin-
dependent manner (Tarantini et al. 2019a).

The present study was designed to test the hypothesis
that age-related NAD+ depletion in the NVU is causally
linked to dysregulated expression of genes important for
normal neurovascular function. A corollary hypothesis
is that functional neurovascular rejuvenation in NMN-
treated aged mice is associated with SIRT1-mediated
restoration of a youthful neurovascular mRNA expres-
sion profile. To test these hypotheses, aged mice were
treated with NMN for 2 weeks and transcriptomic sig-
natures in cells of the neurovascular unit were compared
with those in cells obtained from untreated young and
aged control mice. The transcriptomic footprint of
SIRT1 activation was analyzed, and the predicted mul-
tifaceted protective effects of NMN supplementation on
diverse aspects of cerebromicrovascular and
neurovascular biology were tested.

Methods

Animals, NMN supplementation

Young (3 months old) and aged (24 months old) male
C57BL/6 mice were purchased from the aging colony

maintained by the National Institute on Aging at Charles
River Laboratories (Wilmington, MA). The biological
age of 24-month-old mice corresponds to that of ~ 60-
year-old humans. Mice were housed under specific
pathogen-free barrier conditions in the Rodent Barrier
Facility at University of Oklahoma Health Sciences
Center under a controlled photoperiod (12 h light; 12 h
dark) with unlimited access to water and were fed a
standard AIN-93G diet (ad libitum). Mice in the aged
cohort were assigned to two groups. One group of the
aged mice was injected daily with NMN (IP injections
of 500 mg NMN/kg body weight per day) or the equiv-
alent volume of PBS for 14 consecutive days at 6 PM
and 8 AM on day 14 and were sacrificed 4 h after last
injection. Similar dosages of NMN has been shown to
exert potent anti-aging effects on mouse health span
(Csiszar et al. 2019; de Picciotto et al. 2016), including
rescue of neurovascular coupling responses, attenuation
of vascular oxidative stress, and rescue of gene expres-
sion changes in the aorta (Tarantini et al. 2019a; Kiss
et al. 2019b). All procedures were approved by the
Institutional Animal Use and Care Committees of the
University of Oklahoma Health Sciences Center. All
animal experiments complied with the ARRIVE guide-
lines and were carried out in accordance with the Na-
tional Institutes of Health guide for the care and use of
Laboratory animals (NIH Publications No. 8023, re-
vised 1978). The effects of NMN treatment on cognitive
function, neurovascular coupling responses, and micro-
vascular and aorta endothelial function in a similar
cohort of mice have been recently reported (Tarantini
et al. 2019a).

Isolation of cells of the neurovascular unit

Animals were killed and transcardially perfused with
PBS as previously described (Tarantini et al. 2019a;
Kiss et al. 2019b). The brains were quickly removed
and rinsed in ice-cold PBS, and minced into ≈ 1 mm2

pieces. The tissue was washed twice in ice-cold 1× PBS
by low-speed centrifugation (50g, 3 min). The diced
tissue was digested in a buffer solution containing col-
lagenase (800 U/g tissue), hyaluronidase (2.5 U/g tis-
sue), and elastase (3 U/g tissue) in 1 mL PBS/100 mg
tissue for 45 min at 37 °C in a rotating humid incubator.
The digested tissue was passed through a 100-μm cell
strainer. The single-cell lysate was centrifuged for 2 min
at 70g. After removing the supernatant, the pellet was
washed twice in cold PBS supplemented with 2.5% fetal

GeroScience (2020) 42:527–546 529



calf serum (FCS), and the suspension was centrifuged at
300g for 5 min at 4 °C. To create fraction enriched for
cells of the neurovascular unit, the cell suspension was
centrifuged using an OptiPrep gradient solution (Axi-
Shield, PoC, Norway). Briefly, the cell pellet was resus-
pended in Hanks’ balanced salt solution (HBSS) and
mixed with 40% iodixanol thoroughly (final concentra-
tion 17% (v/v) iodixanol solution; ρ = 1.096 g/mL).
Two milliliters of HBSS was layered on top and centri-
fuged at 400g for 15min at 20 °C. Endothelial cells with
attached astrocytes and pericytes, which banded at the
interface between HBSS and the 17% iodixanol layer,
were collected. The neurovascular-enriched fraction
was incubated for 30 min at 4 °C in the dark with anti-
CD31/PE (BD Biosciences, San Jose, CA, USA) and
anti-MCAM/FITC (BD Biosciences, San Jose, CA,
USA). After washing the cells twice with MACS buffer
(Milltenyi Biotech, Cambridge, MA, USA), anti-FITC
and anti-PE magnetic bead–labeled secondary antibod-
ies were used for 15 min at room temperature. The
endothelial/neurovascular enriched fraction was collect-
ed by magnetic separation using the MACS LD mag-
netic separation columns according to the manufac-
turer’s guidelines (Milltenyi Biotech, Cambridge, MA,
USA). Our pilot studies indicated that this method using
gentle cell dissociation protocols results in enrichment
for cerebromicorvascular endothelial cells with astro-
cytes and pericytes.

RNA isolation, cDNA synthesis, library construction,
and next generation sequencing

RNA was isolated from the samples using AllPrep
DNA/RNA Mini Kit (Qiagen) as previously described
(Imperio et al. 2016; Valcarcel-Ares et al. 2018). RNA
quantity and quality (> 8 RNA integrity number) were
measured using the RNA 6000 Nano Assay with an
Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA).
Using 1 μg RNA, cDNAwas synthesized from purified
RNA using ABI High-capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems, Foster City, CA)
(Imperio et al. 2016; Valcarcel-Ares et al. 2018). Library
construction was performed in a stranded manner to
retain the directionality of the transcripts for as de-
scribed (Valcarcel-Ares et al. 2018). In brief, prior to
RNA-seq analysis, quality control measures were im-
plemented. Concentration of RNA was ascertained via
fluorometric analysis on a Thermo Fisher Qubit Fluo-
rometer. Overall quality of RNA was verified using an

Agilent Tapestation instrument. Following initial QC
steps, sequencing libraries were generated using the
Illumina Truseq Stranded mRNA with library prep kit
according to the manufacturers protocol. Briefly, mature
mRNA was enriched for via pull down with beads
coated with oligo-dT homopolymers. The mRNA mol-
ecules were then chemically fragmented, and the first
strand of cDNA was generated using random primers.
Following RNase digestion, the second strand of cDNA
was generated replacing dTTP in the reaction mix with
dUTP. Double stranded cDNA then underwent
adenylation of 3′ ends following ligation of Illumina-
specific adapter sequences. Subsequent PCR enrich-
ment of ligated products was further selected for those
strands not incorporating dUTP, leading to strand-
specific sequencing libraries. Final libraries for each
sample were assayed on the Agilent Tapestation for
appropriate size and quantity. These libraries were then
pooled in equimolar amounts as ascertained via fluo-
rometric analyses. Final pools were absolutely quanti-
fied using qPCR on a Roche LightCycler 480 instru-
ment with Kapa Biosystems Illumina Library Quantifi-
cation reagents. Sequencing was performed on an
Illumina NovaSeq 6000 instrument with paired-end
50 bp reads.

RNA-seq data analysis and visualization

Raw sequencing reads were trimmed of their Illumina
TruSeq adapter sequences using Trimmomatic v0.35
(Bolger et al. 2014), then aligned to the mouse genome
version GRCm38 using Kallisto v0.43.03 (Bray et al.
2016). Samples were checked for outliers and separation
by principle components analysis (PCA) with the R
function prcomp. Raw expression counts were summa-
rized at the gene level to transcript-length adjusted,
library-size scaled counts per million (CPM) with the
R package tximport (Soneson et al. 2015). Differential
expression analysis was performed using the empirical
Bayes approach implemented in the R/Bioconductor
package DESeq2 (Love et al. 2014). Significantly dif-
ferentially expressed (DE) genes had an absolute log2
fold-change ≥ 0.585 (corresponding to a change of 50%
or more in expression) and the false discovery rate
(FDR)-adjusted p value ≤ 0.05. Gene annotation was
done using biomaRt (Durinck et al. 2009) in R/
Bioconductor package. Hierarchical clustering was per-
formed via the R package ComplexHeatmap.
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Functional annotation

The org.Mm.eg.db v3.8.2 R/Bioconductor package was
used to collect Gene Ontology terms associated with our
differentially expressed genes. The hypergeometric test
implemented in GOstats v2.51.0 R/Bioconductor pack-
age was used to calculate enrichment of the individual
terms (Falcon and Gentleman 2007).

We used upstream regulator analysis (URA) algo-
rithm (Kramer et al. 2014) implemented in the Ingenuity
Pathway Analysis (QIAGEN) software find upstream
regulators that potentially explains the observed gene
expression changes in our samples. The IPA uses a
manually curated database (Ingenuity Knowledge Base)
to calculate “enrichment” score (Fisher’s exact test
(FET) p value), measures the overlap of observed and
predicted regulated gene sets, and a z-score assessing
the match of observed and predicted up/downregulation
patterns.

Results

NMN treatment reverses age-related changes
in neurovascular mRNA expression profile in mice

To isolate NVU-enriched mRNA, we employed an en-
dothelial cell isolation-based strategy. Using RNA-seq
to sequence the neurovascular transcriptome, we com-
pared normalized mRNA expression values for each
sample to that in individual cell types constituting the
NVU (endothelial cells, astrocytes, and pericytes). To
achieve that goal, we developed a list of cell-specific
markers from published RNA-seq data of purified cor-
tical cell types (GEO dataset GSE52564 (Zhang et al.
2014)). Comparison of mRNA levels in the NVU sam-
ples with the input shows a significant enrichment for
endothelial cell, astrocyte, and pericyte genes (Fig. 1a).

We assessed transcriptomic changes in the NVU
associated with aging and with NMN treatment (Fig.
1b). We performed unsupervised clustering of RNA-seq
data from all samples using the topmost variably
expressed genes across all samples. This showed that
biological replicates from the same group cluster togeth-
er, and that young samples segregate away from aged
ones (Fig. 1b). PCA (Fig. 1c) of the transcriptomic data
also showed a clear separation between the young and
aged groups. Aged control mice and aged NMN-treated
mice were also segregated in the PCA and hierarchical

clustering. This finding indicated a clear difference be-
tween the transcriptome profiles of the two age groups.
In contrast, mRNA expression in young mice and
NMN-treated aged mice were similar, and these groups
did not separate well in the PCA and hierarchical
clustering.

We then determined the number of genes that are
significantly upregulated or downregulated (DE, fold-
change ≥ 1.5 or < 0.67; p < 0.05 adjusted for multiple
comparisons) in the NVU by aging or by NMN treat-
ment. We then filtered for genes that are significantly
altered (adjusted p < 0.05), expressed at an appreciable
level (fragments per kilobase of transcript per million
mapped reads > 1), and are expressed in cells of the
NVU. We identified 590 differentially expressed genes
in aged animals compared with young controls. We also
identified 459 DE genes in the NMN-treated aged mice
compared with the untreated aged controls. In Fig. 1d, a
volcano plot shows statistical significance (p value)
versus magnitude of age-related change in gene expres-
sion. Red symbols denote genes, whose expression
levels differed in the aged phenotype, but have shifted
back toward the young phenotype by NMN treatment
(discordant DE genes). The Venn diagram in Fig. 1f
shows that neurovascular expression of 204 genes,
which are differentially expressed in aged mice, was
shifted back toward youthful levels by NMN treatment
of aged mice.

We realized that significance cutoffs to identify dif-
ferentially expressed genes shared between the age-
effect and NMN-effect datasets may be too stringent,
and the analysis illustrated in Fig. 1d may miss discor-
dant patterns (youthful shifts) of gene expression with
important biological relevance for NMN-induced
neurovascular rejuvenation. Thus, we also used an ap-
proach to detect discordant transcriptional patterns
(youthful shifts) by comparing the age-effect and
NMN-effect gene expression datasets using combina-
tion criteria that took into account the effect direction.
Genes were ranked by their effect size direction, and
ranked lists were compared to identify overlapping
genes across a continuous significance gradient. Our
analysis required that discordant genes with youthful
shifts (1) are “differentially expressed” based on both
p value and fold-change criteria either in aging or the
NMN treatment group, (2) satisfy a fold-change criteri-
on with a cutoff of ≥ 1.5 or < 0.67 in the group in which
expression did not satisfy the statistical significance
p < 0.05, and (3) satisfy the criterion that the effect
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directions of the age-effect and NMN-effect are oppo-
site. We found that these combination criteria found
more biologically meaningful sets of genes than
p values alone.

In Fig. 1e, the magnitude of age-related changes in
gene expression is plotted against the magnitude of

NMN-induced changes in gene expression. Red sym-
bols denote discordant DE genes, whose expression
levels shifted back toward the young phenotype by
NMN treatment with statistical significance. Genes
which are DE only in one group but otherwise satisfy
the other criteria are denoted by blue (DE in aging) and
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green (DE in NMN-treated) symbols. Using this ap-
proach, we have identified 466 discordant genes with
youthful shifts, which changed in opposite directions
between the two datasets (Fig. 1f). These data suggest
that NAD+ depletion has a critical role in age-related
dysregulation of neurovascular gene expression.

Transcriptional footprint of neurovascular SIRT1
activation in NMN-treated aged mice

Previous studies suggested that restoration of NAD+

levels in aged cells by NMN treatment activates the

NAD+-dependent histone deacetylase enzyme SIRT1
(Gomes et al. 2013; Tarantini et al. 2019a). To provide
additional evidence that SIRT1 activation contributes to
the neurovascular protective effects of NMN, we exam-
ined the transcriptional footprint of neurovascular
SIRT1 activation in NMN-treated aged mice using three
approaches. First, we analyzed age-related and NMN-
induced changes in expression of SIRT1-regulated
genes identified by IPA. We found that aging is associ-
ated with changes in the expression of several known
SIRT1-regulated genes and that majority of these tran-
scriptional changes are reversed by NMN treatment
(Fig. 2a).

Ingenuity upstream regulator analysis

We have also performed IPA upstream regulator analy-
sis (Kramer et al. 2014) to identify upstream transcrip-
tional regulators that may contribute to the observed
transcriptomic changes in our dataset, which can help
to identify the mechanism of action of NMN in the aged
neurovascular unit. The upstream regulator analysis is
based on information in the Ingenuity Knowledge Base
(a curated relational database of the available biomedi-
cal literature) on the expected effects between transcrip-
tional regulators and their target genes. Using the IPA
upstream regulator analysis, it was examined how many
known targets of each transcriptional regulator were
differentially expressed in our samples, and the direction
of these gene expression changes were compared with
what is expected from the literature. On the basis of the
observed direction of change, a prediction of the activa-
tion state of the predicted transcriptional regulators (“ac-
tivated” or “inhibited”) were made (not shown). For
each potential transcriptional regulator, two statistical
measures, an overlap p value and an activation z-score,
were computed. The overlap p value calls likely up-
stream regulators based on significant overlap between
the differentially expressed genes and known targets
regulated by that particular transcriptional regulator.
The activation z-score is used to infer the activation state
of the predicted transcriptional regulators (“activated” or
“inhibited”) based on comparison with a model that
assigns random regulation directions. The results of
the IPA upstream regulator analysis are visualized in
Fig. 2b. We also determined the link between the pre-
dicted upstream regulators activated by NMN and
SIRT1 using IPA. As indicated in Fig. 2b, we found that
~ 38% of the predicted upstream regulators activated by

�Fig. 1 NMN treatment reverses age-related changes in
neurovascular mRNA expression profile. a Heatmap displaying
normalized mRNA expression values for each sample as com-
pared with that in cells of the neurovascular unit (endothelial cells,
astrocytes, and pericytes) from the reference datasets by Zhang
et al. (2014). Note that neurovascular genes are enriched in the
samples. b The heat map is a graphic representation of normalized
expression values of differentially expressed genes in
neurovascular samples derived from young (3 months old), aged
(24 months old), and NMN-treated aged mice. Hierarchical clus-
tering analysis revealed the similarities on neurovascular mRNA
expression profiles in young and NMN-treated aged mice. c Prin-
cipal component analysis (PCA) plot of neurovascular mRNA
expression profiles in young, aged control, and NMN-treated aged
mice. The profiles from aged mice (red) cluster separately from
clusters representing young mice (blue) and NMN-treated aged
mice (green). PC1, PC2, and PC3 are principal components 1, 2,
and 3, respectively. d Volcano plot depicting differentially
expressed genes comparing neurovascular samples derived from
young and aged mice. Stratified p values are plotted against
expression fold-changes for results obtained in aged samples nor-
malized to young samples. Colored points refer to genes whose
expression is significantly altered by NMN treatment. e NMN-
induced changes in gene expression plotted against age-related
changes in the neurovascular transcriptome. Red symbols indicate
discordant differentially expressed genes with youthful shifts,
whose expression significantly changes with age and is restored
by NMN treatment toward youthful levels. Blue and green sym-
bols denote discordant genes with youthful shifts, whose expres-
sion changes in aging and is restored by NMN treatment toward
youthful levels, but only the aging (blue) or the NMN effect
(green) reaches the cutoff for statistical significance. f Venn dia-
grams sowing the numbers of differentially expressed mRNAs in
each group. The blue circle represents neurovascular genes, which
are significantly up or downregulated in aged mice as compared
with young mice. The green circle represents neurovascular genes,
which are significantly up or downregulated in aged mice by
NMN treatment. The red area represents discordant differentially
expressed genes. Gray areas represent discordant genes, whose
expression is changed by NMN treatment toward youthful levels,
but the effect does not reach the cutoff for statistical significance
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NMN are known to be regulated by SIRT1-dependent
pathways. In particular, the IPA upstream regulator
analysis predicts that NMN-induced SIRT1 activation

upregulates PGC-1α (PPARGC1A), FOXO3- and
FOXO4-mediated pathways, whereas it inhibits HIF-
1α-regulated pathways (Fig. 2b). We also attempted to

Fig. 2 NMN reverses age-related changes in neurovascular ex-
pression of SIRT1-regulated genes. a IPA results showing age-
related (left) and NMN-induced (right) changes in the expression
of SIRT1-regulated genes (classified as such by IPA). Green,
downregulation; red, upregulation. b Results of the IPA upstream
regulator analysis. Shown are predicted upstream transcriptional
regulators that may contribute to the observed NMN-induced
transcriptomic changes in our dataset. Known links between the
predicted upstream regulators activated by NMN and SIRT1 ac-
tivity are indicated. c Literature-based relationships with positive
mutual information among the predicted upstream regulators.
Node size correlates with the activation z-score from IPA (bigger

= higher z-score), edge width correlates with the mutual informa-
tion of the genes within the literature, green marks which are
predicted activators and red marks predicted repressors. d The
heat map is a graphic representation of normalized expression
values of differentially expressed SIRT1-dependent genes in
neurovascular samples derived from young (3 months old), aged
(24 months old), and NMN-treated aged mice. Hierarchical clus-
tering analysis revealed the similarities on neurovascular expres-
sion profiles of SIRT1-dependent genes in young and NMN-
treated aged mice. SIRT1-dependent genes were identified based
on their differential expression in the brain of SIRT1−/− mice
(Libert et al. 2011)
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predict NMN-activated, SIRT1-dependent regulatory
networks by identifying relationships between SIRT1
and the predicted upstream regulators utilizing the IRI-
DESCENT (Implicit Relationship IDEntification by in-
Silico Construction of an Entity-based Network from
Text) system (Wren and Garner 2004). IRIDESCENT
processes all available MEDLINE abstracts and uses a
statistical model to determine whether each upstream
regulator co-occurs with a term of interest more fre-
quently than would be expected by chance, and quan-
tifies this in terms of the mutual information measure.
The results of this analysis provide additional support to
the view that the predicted NMN-induced SIRT1 acti-
vation results in inhibition of HIF-1α29 and activation of
PGC-1α- and FOXO3-dependent pathways (Hubbard
et al. 2013). PGC-1α and FOXOs are known targets for
SIRT1-mediated deacetylation (Fig. 2c).

In addition, we also intersected the list of differen-
tially expressed genes in our dataset with the list of
genes differentially expressed in the brains of SIRT1−/−

mice (NCBI Gene Expression Omnibus: GSE28790)
(Libert et al. 2011). The heat map showing the expres-
sion pattern of these SIRT1-sensitive genes is shown in
Fig. 2d. Hierarchical clustering of the data showed a
clear separation between the young and aged groups.
Aged control mice and aged NMN-treated mice were
also clearly separated. In contrast, expression of SIRT1-
sensitive genes in young mice and NMN-treated aged
mice were similar, and these groups did not separate
well in the hierarchical clustering, consistent with the
idea that aging is associated with dysregulation of
SIRT1-sensitive genes, which is rescued by NMN
treatment.

NMN-induced neurovascular transcriptomic changes
in aged mice predict mitochondrial rejuvenation

We performed GO enrichment analysis to explore po-
tential biological functions of the NMN-regulated dis-
cordant differentially expressed genes with youthful
shifts. GO enrichment analysis of discordant differen-
tially expressed genes with youthful shifts identified
functions in mitochondrial regulation and oxidative
stress, apoptosis, inflammation, endothelial activation,
and transcriptional regulation (Fig. 3).

Our recent studies, demonstrate that aging is associ-
ated with mitochondrial dysfunction and oxidative
stress in cerebromicrovascular endothelial cells, which
play a critical role in dysregulation of cerebral blood

flow and impaired neurovascular coupling responses in
aged mice (Tarantini et al. 2018, 2019a). To find out
whether mitochondria-related gene expression is altered
in the aging NVU, we analyzed expression of both
nuclear-encoded and mtDNA-encoded mitochondria-
related genes. We have used existing databases to com-
pile a list of genes with mitochondrial targeting se-
quences and known functions related to regulation of
mitochondrial processes. We used Gene Set Enrichment
Analysis (GSEA) for interpreting expression of
mitochondria-related genes (Subramanian et al. 2005).
GSEA of mtDNA-encoded genes encoding components
of the mitochondrial electron transport chain (ETC) was
performed using a pre-ranked gene list based on the
magnitude of the fold-change (largest upregulation to
most downregulated; Fig. 4a, b). Figure 4a, b depict a
running-sum statistic (enrichment score) based on Fig.
4, increasing when a gene is a member of the mtDNA-
encoded ETC gene set and decreasing when it is not.
Note that in aged mice, GSEA scores increased predom-
inantly on the right indicating downregulation of
mtDNA-encoded ETC genes by aging. In contrast, in
NMN-treated aged mice GSEA scores increased pre-
dominantly on the left indicating upregulation of
mtDNA-encoded ETC genes byNMN treatment in aged
mice. The heat maps showing the expression pattern of
nuclear-encoded and mtDNA-encoded mitochondria-
related genes are shown in Fig. 4 c and d, respectively.
Hierarchical clustering of the data showed a clear sepa-
ration between the young and aged groups. Aged con-
trol mice and aged NMN-treated mice were also sepa-
rated. In contrast, expression of mitochondria-related
genes in young mice and NMN-treated aged mice were
similar, and these groups did not separate well in the
hierarchical clustering, consistent with the idea that age-
related dysregulation of mitochondria-related genes in
the NVU is reversed, at least in part, by NMN treatment.

Fig. 3 Most significantly enriched Gene Ontology (GO) terms for
discordant genes. Note that NMN treatment is associated with
transcriptional changes indicating multifaceted anti-inflammatory,
anti-apoptotic, mitochondrial protective, and anti-oxidative effects
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NMN-induced neurovascular transcriptomic changes
in aged mice predict anti-apoptotic effects

Previous studies suggest that endothelial cell apoptosis
plays a critical role in age-related structural remodeling
of cerebromicrovascular network by contributing to mi-
crovascular rarefaction (Ungvari et al. 2018a, b). To
determine how NMN treatment alters apoptosis-related
gene expression in the aging NVU, we analyzed

expression of genes known to be involved in regulation
of programmed cell death. Apoptosis-related genes were
identified based on GO classification. GSEA analysis
suggested that aging is associated with upregulation of
pro-apoptotic genes, which tends to be reversed by
NMN treatment (Fig. 5a, b). KEGG pathway map
depicting age- and NMN treatment-related changes in
the expression of genes in the apoptosis pathways is
shown in Fig. 5c.

Fig. 4 NMN treatment reverses age-related changes in
neurovascular expression of mitochondria-related genes. Gene
Set Enrichment Analysis (GSEA) to test for enrichment of the
set of mtDNA-endcoded subunits of the electron transport chain
(ETC) by comparing NVU samples derived from aged (24months
old) mice with NVU samples derived from young (3 months old)
mice (a) and NMN-treated aged NVU samples with untreated
aged NVU samples (b). Aging-induced gene expression changes
were ranked from most upregulated (left, red) to most downregu-
lated (right, green). Dots represent identified mtDNA-encoded
ETC genes. Panels a, b depict a running-sum statistic (enrichment
score) based on panel c, increasing when a gene is a member of the
mtDNA-encoded ETC gene set and decreasing when it is not.
Note that in aged mice, GSEA scores increased predominantly on

the right indicating downregulation of mtDNA encoded ETC
genes by aging. In contrast, in NMN-treated aged mice GSEA
scores increased predominantly on the left indicating upregulation
of mtDNA-encoded ETC genes by NMN treatment in aged mice.
The heat maps are graphic representations of normalized expres-
sion values of differentially expressed mtDNA-encoded ETC
genes (c) and nuclear-encoded mitochondria-related genes (d).
Hierarchical clustering analysis revealed the similarities on
neurovascular expression profiles of mitochondria-related genes
in young andNMN-treated agedmice. Mitochondria-related genes
were identified on the basis of GO classifications (GO:0005739).
Note that one young sample was a statistical outlier and was
therefore excluded from the mtDNA-encoded gene expression
analysis
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NMN-induced neurovascular transcriptomic changes
predict anti-inflammatory effects, including inhibition
of endothelial activation in aged mice

Chronic low-grade inflammation, characterized by endo-
thelial activation, is a hallmark of vascular aging
(Ungvari et al. 2018b, 2007a; Csiszar et al. 2007, 2004,
2003). To elucidate the putative anti-inflammatory effects
of NMN treatment, we assessed its effect on the expres-
sion of endothelial activation–related genes. Endothelial
activation–related genes were identified based on

published microarray data (GEO database; GSE45880),
showing mRNA expression changes after activation of
cultured cerebromicrovascular endothelial cells
(CMVECs) by 10 ng/mL TNFα and IFNγ (Lopez-
Ramirez et al. 2013). GSEA analysis showed that aging
is associated with upregulation of endothelial activation–
related genes in the NVU (Fig. 6a). We found that NMN
treatment exerts significant anti-inflammatory effects,
downregulating endothelial activation–related genes in
the NVU (Fig. 6b). The heat map shown in Fig. 6c is a
graphic representation of normalized expression values

Fig. 5 NMN treatment reverses age-related changes in
neurovascular expression of apoptosis-related genes. Gene Set
Enrichment Analysis (GSEA) to test for enrichment of the set of
pro-apoptotic genes by comparing NVU samples derived from
aged (24months old)mice with NVU samples derived from young
(3 months old) mice (left, a) and NMN-treated aged NVU samples
with untreated aged NVU samples (right, b). Aging-induced gene
expression changes were ranked from most upregulated (left, red)
to most downregulated (right, green). Dots represent identified
pro-apoptotic genes. Panels a and b depict a running-sum statistic
(enrichment score) based on panel b, increasing when a gene is a
member of the apoptosis-related gene set and decreasing when it is
not. Note that in agedmice, GSEA scores increased predominantly

on the left indicating upregulation of pro-apoptotic genes by aging.
In contrast, in NMN-treated aged mice, GSEA scores increased
predominantly on the right indicating downregulation of pro-
apoptotic genes by NMN treatment in aged mice. b Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway map depicting
age- and NMN treatment-related changes in the expression of
genes in the apoptosis pathways. Each rectangle on the map
represents a gene product in the apoptosis pathway. The rectangles
are set to color by age-related (left side) and NMN treatment-
induced (right side) changes in gene expression (fold-change).
Red color indicates upregulation, green color indicates downreg-
ulation. Genes involved in positive regulation of apoptosis were
identified based on GO classification
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of differentially expressed endothelial activation–related
genes in NVU samples derived from young, aged, and
NMN-treated aged mice. We also found that 17 genes,
which are important for blood-brain barrier integrity
(Nyul-Toth et al. 2016) were significantly affected by
NMN treatment (data not shown) (Fig. 7).

Discussion

Our study demonstrates that protective effects of NMN
treatment on cerebromicrovascular endothelial function
and neurovascular coupling responses are associated

with anti-aging changes in the mRNA expression profile
in the NVU in a mouse model of aging that recapitulates
vascular alterations and deficits present in elderly
humans at risk for vascular cognitive impairment.

To our knowledge, this is the first study to demon-
strate that NMN treatment in aged mice reverses, at
least in part, age-related, pro-inflammatory, pro-oxi-
dative, pro-apoptotic, and endothelial dysfunction-
promoting transcriptional alterations in the cerebral
microcirculation. The results of the present study ex-
tend the findings of earlier investigations showing that
treatment with NMN confers potent anti-aging
neurovascular effects in aged mice, rescuing

Fig. 6 NMN treatment reverses age-related changes in
neurovascular expression of endothelial activation-related genes.
Gene Set Enrichment Analysis (GSEA) to test for enrichment of
the set of endothelial activation-related genes by comparing NVU
samples derived from aged (24 months old) mice with NVU
samples derived from young (3 months old) mice (a) and NMN-
treated aged NVU samples with untreated aged NVU samples (b).
Aging-induced gene expression changes were ranked from most
upregulated (left, red) to most downregulated (right, green). Dots
represent identified endothelial activation–related genes. Panels a,
b depict a running-sum statistic (enrichment score) based on the
upregulated endothelia activation–related genes in panel c, in-
creasing when a gene is a member of the endothelial activation–
related gene set and decreasing when it is not. Note that in aged
mice, GSEA scores increased predominantly on the left indicating
upregulation of endothelial activation–related genes by aging. In
contrast, in NMN-treated aged mice, GSEA scores increased

predominantly on the right indicating downregulation of endothe-
lial activation–related genes by NMN treatment in aged mice. c
The heat map is a graphic representation of normalized expression
values of differentially expressed endothelial activation–related
genes in neurovascular samples derived from young, aged, and
NMN-treated aged mice. Hierarchical clustering analysis revealed
the similarities on neurovascular expression profiles of endothelial
activation–related genes in young and NMN-treated aged mice.
Endothelial activation–related genes were identified based on
published microarray data (GEO database; GSE45880), showing
a distinct transcriptional signature of up and downregulated genes
after activation of cultured cerebromicrovascular endothelial cells
with 10 ng/mL TNFα and IFNγ (Lopez-Ramirez et al. 2013).
Included in the figure are genes whose expression in aging chang-
es similarly to the expressional changes observed in vitro upon
cytokine stimulation. Discordant genes are shown in red font
(bold, DE both in aging and NMN treated groups)
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cerebromicrovascular endothelial dysfunction and
neurovascular coupling responses, increasing cerebral
blood flow, and improving cognitive performance
(Yoshino et al. 2018). Demonstration of NMN-
induced phenotypic and functional changes in the
NVU is particularly important as neurovascular alter-
ations (including impaired neurovascular coupling,
blood-brain barrier disruption, and pro-inflammatory
changes) associated with aging have been causally
linked to the development of both neurodegenerative
diseases and the entire spectrum of brain pathologies
that contribute to vascular cognitive impairment
(Iadecola 2017; Toth et al. 2017; Sweeney et al.
2019b). Endothelial protective effects of NMN have
also been demonstrated in the peripheral circulation of
aged mice (Das et al. 2018; Yoshino et al. 2018; de

Picciotto et al. 2016), suggesting that the effects of
NMN on endothelial cells in the NVU likely play a
key role in NMN-induced neurovascular rejuvenation.
Administration of NMN or other NAD+ precursors
(e.g., nicotinamide riboside) to aged mice was report-
ed to increase NAD+ levels in homogenates of com-
plex tissues derived from multiple organs (Yoshino
et al. 2018; Mills et al. 2016; Zhang et al. 2016),
including the aorta (Tarantini et al. 2019a). In vitro
treatment with NMNwas also demonstrated to restore
NAD+ levels in aged cerebromicrovascular endothe-
lial cells (Tarantini et al. 2019a). Future studies should
determine how in vivo NMN treatment affects NAD+

levels in each cell type constituting the NVU and
elucidate the cell type–specific functional and
transcriptomic effects of NMN treatment in aging.

Fig. 7 Proposed scheme for the mechanisms by which restoration
of NAD+ levels in the aged neurovascular unit by NMN supple-
mentation promotes neurovascular rejuvenation. Themodel, based
on our present and previous findings and earlier data from the
literature (Das et al. 2018; Tarantini et al. 2019a; Csiszar et al.
2019), predicts that increased NAD+ activates sirtuin-mediated
pathways, which leads to anti-aging transcriptomic changes, re-
stores cellular energetics, and attenuates mitochondrial ROS

production, rescuing a youthful neurovascular phenotype. These
effects are predicted to act to improve endothelial function, in-
crease neurovascular coupling responses, capillary density and
cerebral blood flow (CBF), maintain blood-brain barrier (BBB)
integrity, and inhibit neuroinflammation, protecting cognitive
health (bold font, experimentally validated effects; regular fonts,
predicted effects)
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Our study demonstrates that NMN treatment, which
augments the vascular NAD+ metabolome (Tarantini
et al. 2019a), induces a neurovascular gene expression
signature suggestive of SIRT1 activation. Our results
expand the findings of previous studies showing that
increases in NAD+ levels induced by NMN treatment
also activate SIRT1 in skeletal muscle (Gomes et al.
2013). As our recent studies demonstrate that shRNA
knockdown of SIRT1 prevents the beneficial effects of
NMN on aged cerebromicrovascular endothelial cells
in vitro (Tarantini et al. 2019a), we posit that NMN-
induced SIRT1 activation plays a critical role also in
neurovascular rejuvenation in vivo. Sirtuins are
known to mediate beneficial anti-aging (Cohen et al.
2004; Moroz et al. 2014; Wood et al. 2004) and
vasoprotective effects (Csiszar et al. 2009a, 2013;
2014a) of caloric restriction as well. Our bioinformat-
ics analysis also revealed a role for Hif1α signaling,
confirming earlier findings (Gomes et al. 2013). Fur-
ther, our recent study demonstrate that NMN treatment
reverses age-related changes in miRNA expression in
the agedmouse aorta (Kiss et al. 2019b). In that regard,
it is significant that dysregulation of miRNA expres-
sion has been shown to significantly contribute to age-
related phenotypic and functional changes in the
cerebromicrovascular endothelial cells as well
(Ungvari et al. 2013). These findings raise the possi-
bility that complex changes in transcriptional and/or
post-transcriptional control of expression of genes that
encode critical factors determining neurovascular
health contribute to the beneficial effects of treatment
with NAD+ boosters. GO enrichment analysis of dis-
cordant differentially expressed neurovascular genes
identified functions in mitochondrial regulation, apo-
ptosis, inflammation, and endothelial activation.

Mitochondrial dysfunction and increased mito-
chondrial oxidative stress have a critical role in the
genesis of aging-induced cerebromicrovascular endo-
thelial impairment and neurovascular dysfunction
(Tarantini et al. 2018, 2019a). In support of this
concept, attenuation of mitochondrial oxidative stress
and restoration of mitochondrial energy metabolism
in the cerebromicrovascular endothelial cells by
treatment with the mitochondria-targeted antioxi-
dants were shown to rescue neurovascular function
in aged mice (Tarantini et al. 2018). Here, we report
that NMN treatment rescues aging-induced changes
in mitochondria-related gene expression in the NVU.
Importantly, these NMN-induced changes in the

mitochondria-related transcriptome are associated
with attenuated mitochondrial oxidative stress and
restoration of mitochondrial energy metabolism in
aging cerebromicrovascular endothelial cells
(Tarantini et al. 2019a; Kiss et al. 2019a). On the
basis of previous findings (Gomes et al. 2013), we
posit that rescue of vascular mitochondrial function
by restoring the expression of ETC subunits contrib-
utes to the neurovascular protective effects of NMN.
Treatment with NMN was also shown to rescue ex-
pression of mitochondrial-encoded ETC subunits in
cerebral arter ies of aged mice and in aged
cerebromicrovascular endothelial cells (Gomes et al.
2013). It is believed that rescue of electron flow
through the electron transport chain, due to the re-
stored expression of complex I and complex III
(Kwong and Sohal 2000), likely attenuates electron
leak, limiting mtROS production. Treatment with
NAD+ boosters was also demonstrated to upregulate
mitochondrial gene expression in the mouse skeletal
muscle (Canto et al. 2012). Our recent studies pro-
vide evidence that NMN treatment exerts its mito-
chondrial protective effects in cerebromicrovascular
endothelial cells in a SIRT1-dependent manner
(Gomes et al. 2013). Our observations accord with
findings from earlier studies showing that many of
the health benefits conferred by SIRT1 activation are
linked to improved mitochondrial function (Baur
et al. 2006). In addition to sirtuin-mediated
transcriptomic effects, a mitochondrial ATP produc-
tion requires NAD+ as an essential cofactor, rescuing
normal cellular NAD/NADH ratio per se may also
promote efficient mitochondrial function in cells of
the NVU.

Analysis of the transcriptomic signature of NMN
treatment predicts potent anti-apoptotic effects in the
NVU. This is significant, as endothelial cell apoptosis
plays a critical role in age-related cerebromicrovascular
rarefaction (Ungvari et al. 2018a, b). Thus, future stud-
ies should determine how NMN treatment affects the
number of apoptotic endothelial cells in the NVU as
well as capillary density in the aged brain. Recent stud-
ies show that NMN also protects the integrity of the
blood-brain barrier in a mouse model of brain ischemia
(Wei et al. 2017). On the basis of our findings that NMN
upregulates factors controlling barrier integrity, it will be
also of great interest to determine whether NMN treat-
ment can also protect against age-related disruption of
the blood-brain barrier.
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Our studies demonstrate that NMN treatment in
aged mice reverses, at least in part, age-related, pro-
inflammatory alterations in mRNA expression pro-
file in the NVU. Our findings expand the results of
recent studies demonstrating that treatment of aged
mice with NMN promotes anti-inflammatory pheno-
typic changes in the peripheral vasculature as well
(Kiss et al. 2019b). Previous studies attributed age-
related endothelial activation and chronic sterile mi-
crovascular inflammation to oxidative stress-
mediated activation of NF-κB and upregulation of
pro-inflammatory cytokines in the vascular wall
(Csiszar et al. 2003, 2008b, 2014a; Ungvari et al.
2007a). SIRT1 activation is known to attenuate cel-
lular and mitochondrial oxidative stress, inhibit
NF-κB, and attenuate microvascular inflammation
(Toth et al. 2015; Csiszar et al. 2008a, 2012; Baur
et al. 2012; Ungvari et al. 2009; Zhang et al. 2009;
Mattison et al. 2014). Thus, it is likely that SIRT1
activation and the previously documented anti-
oxidative neurovascular effects contribute signifi-
cantly to the observed anti-inflammatory effects as-
sociated with NMN treatment.

Additional studies are warranted to determine the
efficacy of combination treatments with NAD+

boosters (Mitchell et al. 2018; Yoshino et al. 2018;
Liu et al. 2018) and compounds that directly acti-
vate SIRT1 and/or inhibit NAD+ overutilization for
neurovascular protection. Similar to NAD+ boosters,
SIRT1-activating compounds (STACs; including
resveratrol and SRT1720) were demonstrated to ex-
ert important vasoprotective effects in models of
aging and accelerated vascular aging (Csiszar et al.
2008a; Ungvari et al. 2007a, b, 2011; Pearson et al.
2008; Zarzuelo et al. 2013; Chen et al. 2015; Gano
et al. 2014; Minor et al. 2011). These SIRT1-
mediated effects include increased mitochondrial
biogenesis (Csiszar et al. 2009b), attenuation of
mitochondrial oxidative stress (Ungvari et al. 2009;
Csiszar et al. 2012), activation of anti-oxidative
defense mechanisms (Csiszar et al. 2014b), and
inhibition of apoptosis (Pearson et al. 2008). Treat-
ment with the STAC resveratrol was shown to im-
prove cerebromicrovascular endothelial function and
rescue neurovascular coupling responses in aged
mice (Toth et al. 2014; Wiedenhoeft et al. 2019).
Resveratrol was also shown to increase capillary
density (Oomen et al. 2009) and prevent microvas-
cular fragility (Toth et al. 2015) in the aged mouse

brain and to exert similar vasoprotective effects in
non-human primate models as well (Mattison et al.
2014; Bernier et al. 2016). The molecular mecha-
nisms contributing to age-related decline in NAD+

in cells of the NVU are likely multifaceted. In
addition to downregulation of NAMPT (nicotin-
amide phosphoribosyltransferase/NMN synthase;
which catalyzes the rate limiting step in the biosyn-
thesis of NAD+) (Tarantini et al. 2019a), the in-
c reased ut i l i za t ion of NAD+ by act iva ted
poly(ADP-ribose) polymerase 1 (PARP-1) (Csiszar
et al. 2019; Pacher et al. 2002) also likely plays an
important role in age-related decline in NAD+ in the
NVU. Accordingly, treatment with PJ-34, a potent
PARP inhibitor, restores neurovascular coupling re-
sponses in aged mice, similar to the neurovascular
protective effects of NMN treatment (Tarantini et al.
2019b). Thus, future studies should determine
whether combination of NAD+ boosters with
STACs, mitochondria-targeted agents, and/or
PARP-1 inhibitors confers greater neurovascular
and cognitive health benefits as compared with
NAD+ booster treatment alone.

Conclusions

In conclusion, rescue of cerebromicrovascular endo-
thelial function and neurovascular coupling re-
sponses in NMN-treated aged mice are accompanied
by marked anti-aging changes in the neurovascular
transcriptome. We hope that our findings will facili-
tate future endeavors to uncover the mechanistic role
of neurovascular NAD+ depletion in brain aging and
the pathogenesis of VCI. The recently appreciated
complex role of NVU dysfunction (ranging from
impaired neurovascular coupling to blood-brain bar-
rier disruption) in neurodegenerative diseases and
VCI supports the concept that pharmacological treat-
ments, which maintain neurovascular health, promote
brain health (Kisler et al. 2017; Zlokovic 2010, 2011;
Csipo et al. 2019a, b; de Montgolfier et al. 2019;
Farias Quipildor et al. 2019; Fulop et al. 2019;
Sorond et al. 2019; Sagare et al. 2013). Potentially,
NAD+ booster treatments (e.g., in combination with
STACs) could be harnessed for development of new
pharmacological approaches for neurovascular pro-
tection for the prevention and treatment of VCI and
neurodegenerative diseases in older adults.
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