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Chapter 1

Introduction

In physics and image processing, a common problem is how to obtain information
about the interior of an object in a non-destructive manner (non-destructive testing,
NDT); that is, without damaging it in any way. For this purpose, several kinds of
physical methods have been developed like X-ray, gamma-ray and neutron imaging.
In industrial metallic material examinations, neutron and gamma-ray sources are
generally used, while X-ray sources are often applied for non-metallic objects. The
imaging tool for reconstructing objects from their projection images, obtained from
some radiation source, is called tomography.

In practice, the acquisition of such projections can be a costly and time consum-
ing procedure, so one of the main efforts is to attempt to minimize the number of
projections used for the reconstruction. One way of doing this is by restricting the
type of objects for reconstruction, and applying a customized tomographic method
that exploits some a priori knowledge to compensate for having a reduced number
of projections.

Discrete tomography (DT) is a special field of tomography where the object to be
reconstructed consists of a small number of homogeneous materials/regions that
can be characterized by finitely many known absorption values. It means that, using
DT, only a special class of objects can be reconstructed. Accordingly, the result of
a DT reconstruction is a discrete image, having values only corresponding to the
known absorption coefficients. Moreover, in many cases some a priori information
is also available about the object under investigation. For example, its structure
is similar to a template object, or the object is made of materials that are nearly
homogeneous. Since industrial objects are usually made of just a few materials,
DT plays an important role in industrial NDT, where the internal configuration of a
specimen needs to be determined.

For instance, if the object is made of pure iron, the number of regions is 2 (iron
and air) and the reconstructed function can have only two values: the absorption
coefficients of iron and air. In DT one cleverly uses the information that the func-
tion has a known discrete range. This is the main difference between the DT and
classical computed tomography, as in the latter case the function/object can in gen-
eral have arbitrary (non-negative) values. (A comparison with other reconstruction
techniques can be found in [42].) A knowledge of discrete absorption values can
allow one, using DT methods, to reconstruct objects like these from a small number
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of projections (e.g. 4-10) and/or to improve the quality of the reconstruction. A
general overview on DT theory, algorithms and applications of DT can be found in
[35, 371.

In the thesis a new DT method is presented that reconstructs objects from their
parallel projections. The method treats the object being investigated as a digital
image, and the reconstruction problem is handled as an optimization task that is
solved by simulated annealing. After a presentation of the fundamentals of DT
and the method in Chapter 2, the results obtained using the latter in phantom
experiments are introduced in Chapter 3.

In order to assess the efficiency of the technique, several simulation experiments
were performed. We were also interested to know how a certain reconstruction pa-
rameter (e.g. the number of projections) or the amount of noise affects the recon-
structed image. These results and conclusions are presented in Section 3.2.3. Next,
we introduce an extension and experiments for the DT technique in Section 3.5,
which can be applied to reconstruct multi-level discrete images (i.e. their range
contains more than two values) from their projections.

We also had the opportunity to test the algorithms for reconstructing real, and
not necessarily binary objects. Chapter 4 introduces the physical background of
the acquisition apparatus. Since the measured projection images were usually dis-
torted by several different effects, it is common practice to apply some correction
techniques before making any reconstruction from the projections. These effects
are usually due to the incorrect settings of the image acquisition apparatus and
the physical properties of the radiation used (e.g. non-uniform sensitivity during
acquisition and on the detector plane, bright specks and the presence of statistical
noise). These distorting effects and a description of the proposed pre-processing
techniques are given in Section 4.5, while the benefits of using them are outlined
in Section 4.6.

The reconstruction results with acquired data are given in chapters 5 and 6.
Chapter 5 discusses the reconstructions of three physical phantoms, while the latter
presents two applications and shows how the new DT method can be applied when
the materials constituting the object cannot be assumed to be homogeneous. That
is, a reconstruction was attempted for cross-sections that are neither discrete nor
continuous images, but may lie somewhere between the two.

The method was integrated into the system called DIRECT (DIscrete REConstruc-
tion Techniques) [3, 53]. DIRECT is a programming environment available on-line.
It incorporates various DT methods as well as testing and visualization tools that
are being developed at the Department of Image Processing and Computer Graphics
at the University of Szeged. The DIRECT framework is presented in Chapter 7.



Chapter 2

Preliminary background

In 1917 Johann Radon presented the following transformation, which can be re-
garded as the fundamental theorem of parallel tomography [65]. Let us assume s
and u denote the real variables of the Cartesian coordinate system rotated by the
angle 1, and let us assume that f: R? — R is an integrable function in the Euclidean
space. R f is the Radon transformation of f if

[Rf](s,ﬂ):/f(scosﬁ—usinﬁ,ssinﬁJrucosﬁ) du 2.1)

or equivalently

[Rf](s,9) = / f(z,y) 6 (xcos? +ysind — s) dedy, (2.2)

where § (x) is the Dirac delta function. The Radon transformation data is often
called a sinogram because the Radon transformation of a Dirac delta function is
a distribution supported on the graph of a sine wave. Furthermore, [Rf](s,7)
for a fixed angle ¥ is the ¥ angle parallel projection of f or 9 projection of f (see
Figure 2.1).

Mathematically, there is an interesting inverse problem of how to find the func-
tion f for a given R f that satisfies the inverse transformation

T

f(z,y) = / [Rf] (xcos? + ysind, ) dv (2.3)
0

of Eq. 2.1. This theoretical way of inversion usually requires infinitely many pro-
jections, whose condition does not hold after discretization, and R can no longer
be considered injective. Other problems arise when R~ is applied to the perturbed
version of [R f] (s, ). Therefore, the inverse problem has to be rephrased as follows.

Given g;: R? — R, gy = Rf, the Radon transformation of an unknown f: R* —
R function. The Tomographic Reconstruction Problem is to find a function f (not
necessarily equal to f) that fulfills the equation f = R 'g;. In other words, the
goal is to find a function f such that its projections are equal to some given function

3
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[ projection

Figure 2.1: A homogeneous object (grey area) and its two continuous parallel projections
taken at angles « and S.

g(s, V). The technique used to calculate f is called the tomographic reconstruction,
and the functions f and f are sometimes called the original and reconstructed image
functions or simply images.

2.1 Classical reconstruction techniques

Although several different classifications of tomographic techniques can be given,
over the past few decades three widely accepted families of reconstruction methods
have emerged in tomography. They approach the problem from different mathe-
matical aspects and try to tackle it with the suboptimal conditions arising in real
applications. They are the following:

The direct analytical approach

Back Projection (BP) is the most obvious analytic reconstruction technique deduced
directly from Eq. 2.1. BP and its discrete form can be viewed as the inverse Radon
transformation, where the line integrals are smeared back onto the Euclidean plane
at the respective angles, in accordance with Eq. 2.3.

Since, in practice, BP performs well only under ideal circumstances (e.g. no
distortion in the acquired projections and an unlimited number of projections are
available), Filtered Back Projection (FBP), an extended variant of the direct inverse
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method is commonly used. FBP is based on the result of the Fourier slice theo-
rem [39], which says that the 1-dimensional Fourier transformation (FT) of a par-
allel projection taken at angle ¢ equals the central radial slice at angle 9 in the
2-dimensional FT of the original object. This statement allows one to apply fre-
quency filters on the projection data in the frequency domain. Accordingly, the FBP
technique involves the following steps:

e Fourier transformation of the 1-dimensional projections.
e Multiplication by a suitable frequency domain filter.
e Taking the inverse FT.

e Back projection of filtered projection profiles.

One may ask why it is necessary to transform the projection data into the fre-
quency domain, when we know that a convolution in the spatial domain gives the
same results as a pointwise multiplication in the frequency domain (see convolution
theorem in [18]). The answer is more practical than theoretical. The transfor-
mations between spatial and frequency domains plus the pointwise operations in
frequency space usually require less computation than a convolution in the spatial
domain.

BP/FBP has several advantages. For instance, it is the fastest tomographic recon-
struction technique, it is easy to understand, and not hard to implement. However,
it is quite sensitive to distorting effects (e.g. a big amount of noise) that cannot be
eliminated by frequency filters. These artifacts usually appear as strong streaks in
the reconstruction, degrading the quality of the resultant image.

The algebraic approach

The Algebraic Reconstruction Technique (ART), first proposed by Gordon et al. in
[32] and Herman in [33], is an iterative reconstruction method. It treats the recon-
struction problem as the solution of a linear system of equations (Figure 2.2) given
below.

Let f; denote the value belonging to the ith picture element in the image f, and
let N be the total number of cells in f. Let us define

N
pi=Y wijfj, (2.4)

j=1
where ¢ = 1,2,..., M (M is the number of lines in all the projections) and w; ; is

the weighting factor that represents the contribution of the jth element to the ith
line integral. It yields the equation system defined in Eq. 2.5.
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wigfi Fwigfo+ - Fwinfv =m
wa 1 fi + wepfo+ -+ wonfn = D2
(2.5)

wpafi +Fwaafo+ o Fwu N =Dy

Figure 2.2: Scheme of the algebraic reconstruction technique.

Each equation here determines a hyperplane in the N-dimensional space. When
a unique solution exists, all the hyperplanes intersect at a single point and provide
the solution. In order to find this point a recast of the iterative Kaczmarz method
[38] was suggested in [32]. That is, the solution is iteratively converged with the
sequence of f f1) . images, where

@) — p-y L7 (2.6)
/ / Z]kvz1 wiQ,lc !
and
N .
¢ = Z wipfy Y (2.7)
k=1

assuming an initial guess of (%) and i > 1. In other words, for each iteration the
difference between p; and ¢; is distributed between the pixels hit by the ith pro-
jection line, where the distribution is proportional to the length of intercepted line
segments. In this manner, the method projects the f(¢~) point onto the hyperplane
represented by the ith equation in Eq. 2.5.
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ART gives acceptable reconstructions even when only a limited number of pro-
jections are available, but it produces results of worse quality when the projections
are corrupted by statistical noise. This can be moderated by applying a smoothing
operator during the reconstruction, but this removes the image details as well.

A number of algebraic reconstruction techniques have evolved besides ART, such
as Simultaneous Iterative Reconstruction Technique (SIRT) [30], the ART variant
Multiplicative Algebraic Reconstruction Technique (MART)[32], and Simultaneous
Algebraic Reconstruction Technique (SART)[10]. The latter combines the best as-
pects of ART and SIRT.

The probabilistic approach

ART and FBP do not give satisfactory results if the reconstruction is performed us-
ing just a few noisy projections. So is there a mathematical method that solves
this problem and provides acceptable results under such circumstances? In general,
the answer to this question is no. However, if the original reconstruction prob-
lem is approached in a different way, there is some hope. One possible answer to
the challenge of image reconstruction from noisy projections is hidden in standard
probability theory.

Maximum likelihood (ML) [22] and maximum a posteriori (MAP)-based image
reconstruction methods have their roots in Bayesian probability theory. According
to Bayes’ theorem, the posterior distribution of an image f given a P set of projec-
tions can be calculated via the formula

() L(P|S)

P(p)
where II (f) denotes the a priori knowledge on f, P (P) is the probability of projec-
tions P, and L (P|f) is the likelihood function having the probability of P given the
image f. The task is to find the location f*, where Eq. 2.8 is maximal. Since P (P)
is constant for a fixed set of projections and independent of f, the optimization
problem can be formulated as

P(flP) = (2.8)

m;xxH(f)L(P|f), (2.9)

upon which the essence of the MAP technique is based.

The a priori information contained in I (f) usually expresses the expectations
against the reconstruction result like smoothness, big contiguous regions, minimal
total length of edges, or other local properties. Geman and Geman [29] and Matej
et al. [60] extensively discuss how such information can be incorporated into II ( f)
using the Gibbs distribution. L (P|f) establishes the connection between the P set
of projections and the candidate image f; in addition, it includes a noise model. In
[21], Chan et al. apply the Gaussian prior of the ¢ standard deviation

1 _ ZN (T’i_’"i)2
———e = T (2.10)
vV 2mo?

whereas Frese et al. [25] suggest the Poisson noise model

L(P[f) =
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N N
. TPt
L(P|f)=]]L i) =]]e T (2.11)
i=1 =1
assuming that p; denote the ith measurement in P, and r; is the ith measurement
in the R set of projections of f. Here, p; (or r;) is defined according to Eq. 2.4.
The expression in Eq. 2.9 can be computed in numerous ways:

e Analytically, if the posterior probability can be expressed in a closed form.
e By employing the expectation-maximization algorithm.
e By choosing a numerical optimization method.

e Via a stochastic optimizer like a Monte Carlo method.

As Eq. 2.9 rarely has a simple form, the stochastic optimization procedure is
often unavoidable. In practice, Monte Carlo or Gibbs samplers [60] are normally
used to find the optimal solution.

Fisher’s model fitting ML method [24] is closely related to MAP, but it utilizes a
reduced optimization objective that omits the a priori distribution. Due to the lack
of a priori information, ML apparently underperforms MAP, which is demonstrated
in [21] quantitatively. Generally speaking, MAP can be easily adapted to the needs
of DT, which gives a technique that is robust against additive Gaussian noise.

2.2 Discrete tomography

Historically, discrete tomography was born when researchers sought to address the
following problem. Let us consider the domain of an unknown discrete function f
as a finite set of ordered pairs of integers. Let us suppose that the range of f is a
known finite discrete set, and then assume that the row and column sums of f are
also known. The task is to find a method that reconstructs f. For example, the row
sums of a 13 x 13 discrete image are depicted in Figure 2.3.

The name discrete tomography, as a branch of tomography dealing with such
problems, was introduced by Larry Shepp, who organized the first meeting on this
topic in 1994. Here the author will introduce and discuss a new DT method that is
capable of performing reconstructions using a set of (at least two) weighted sums.

2.2.1 Historical overview

Since 1994 several interesting mathematical problems in this field have been raised
and solved, and numerous others are still waiting to be studied. Since then this
branch of computer science has evolved into a separate field, whose mathematical
tools and methods are independent of its tomography ancestor. The theory of DT
is based on discrete mathematics, but it has connections with combinatorics and
function analysis as well.
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Figure 2.3: A homogeneous object (denoted by light grey rectangles) and its row sums. The
sums are calculated by summing the number of light grey rectangles along the projection
lines. The dark grey rectangles depict the projection presented as a bar diagram.

Its foundation and first results date back to 1949 [59], when a necessary and
sufficient condition was given by Lorentz to decide if a function-pair are the pro-
jections of a 2-dimensional measurable set. Lorentz also proved that there always
exist two different bounded sets that have the same & projections for any integer k.
Then in the 1950s Ryser [67] provided another necessary and sufficient condition
for a pair of integral vectors being the row and column sums of a special kind of
measurable set, namely the binary (0, 1)-matrix, and much later Kaneko and Huang
discussed the relation between discrete and continuous cases in [40].

The authors of [28] and [26] focused on the geometric aspects of tomography
like the reconstruction of planar convex bodies in the continuous and discrete cases.
They pointed out that all such bodies can be reconstructed using four suitable pro-
jections. This theorem had a very important impact on DT reconstruction problems
as well. It was shown that an arbitrary discrete set, in general, cannot be recon-
structed from a finite number of projections. However, if the number of points in
the discrete set is known, a unique solution can be produced from the finitely many
projections. Actually, there are three cornerstone problems in DT, namely consis-
tency, uniqueness and image reconstruction. These will be discussed later on.

In the past few years a number of theoretical DT methods were elaborated. Each
of them approaches the reconstruction problem in different ways. Matej, Vardi, Her-
man, and Vardi [60] suggested representing the image function f by a hexagonal
grid, which is assumed to have a Gibbs distribution with known local properties, as
described in [29]. Other reconstruction methods are based on Bayesian probability
principles, and apply maximum a posteriori expectation maximization [34, 58] or
maximum likelihood [68] techniques. Kuba, Nagy and Balogh were interested in
the reconstruction of hv-convex binary patterns and published reconstruction algo-
rithms [46, 48-50] using two orthogonal projections. Adaptations of ART and its
variants are also applicable for DT reconstruction, and provide promising results
even when there are few projections available. A detailed summary of the theory,
algorithms, and applications of DT is given in [35].
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2.2.2 Fan- and parallel-beam geometry

Two types of projection systems are commonly employed in tomography. The differ-
ence lies in the arrangement of the projection lines and the number of their origin.
As these arrangements originate from radiography, their terminology is often used
in tomography as well. Accordingly, the projection lines are usually called radiation
beams or projection beams. The origin of a radiation beam is knwon as the radiation
source, which is the origin of projections lines in tomography. Next, the device that
measures the radiation passing through the object being investigated (giving line
integrals after some transformation) is called the detector bin, or detector for short.

In the fan-beam projection system the projection lines originate from a pointwise
source and diverge radially. A typical layout for this can be seen in Figure 2.4,
where the beams are set up equiangularly in the same plane, and the line integrals
are measured by the detectors. This arrangement is widely used in practice, such
as in medical examinations.

2IN0S

detectors

-— |
- | =

- |
-
-

Figure 2.4: Scheme of a fan-beam projection system.

The other family of projection systems is the parallel-beam configuration, where
each projection line has its own source. They are parallel and have the same direc-
tion. This solution is depicted in Figure 2.5. It is realizable only if the source of the
beams in a fan-beam arrangement is located infinitely far from the object to be pro-
jected; then the system yields the same integral measurements as the parallel-beam
set-up. A parallel-beam scheme describes the imaging system of research reactors
well, where usually just a narrow radiation beam is produced.

Here we assume that every projection is produced by a parallel-beam projection
system. For research results and reconstruction experiments concerning the fan-
beam system, see Nagy and Kuba’s article [62].
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detectors
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Figure 2.5: Scheme of a parallel-beam projection system.

2.2.3 The discretized model

With continuous functions, the parallel-beam Radon transformation is applied using
Eq. 2.1. However, in the case of discrete spaces it is necessary to turn the model
into a discrete form. Hence we will consider f as a discrete function over a regular
lattice set W having the size h x h (h € Z, h > 1), where each element takes a value
from D = {ki,...,k.},(k; €[0,1],1 <i<mn,n>2). Itis seen that the simplest
situation is when n = 2; that is, the range of f consists of two values only. In this
special case f is called the binary digital image, or binary image for short.
Let us define

[Rf(s,0) = > wijunf (i,5) , (2.12)

(3,)eEW

where i, j € Z°*, and w; ; , ¢ is a non-negative real number. w; ;  » is non-zero if and
only if the projection line (s, ¥) crosses the lattice element (i, j) in f, and expresses
the length of the line segment intercepted by the edges of (i,7), as depicted in
Figure 2.6. Other measures can also be applied instead of using line integrals. For
instance, Nagy calculates ‘strip’ (area) integrals in [63]. Here the author will only
use line integrals, and not other approaches that are just as valid.

In addition, let

Ws,9 = Z Wi j,s,9 5 (2.13)

(4,7)EW

which can be interpreted as the length of the intersection of W and the projection
line (s,v). Consequently, the values of [Rf](s,) can be regarded as weighted
sums of values in f intersected by the corresponding projection lines. Recall that
[Rf] (s,v) is called the sinogram of f, which can be discretized and represented
as a 2-dimensional matrix and visualized as a grey-level map. The sinogram in
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- W

lattice element (i,))

Figure 2.6: Interception of the projection beam (¢, ) and lattice element (i, j).

Figure 2.7(c) contains 180 projections, while Figure 2.7(d) contains only one tenth
of them. The grey-level values represent the sums calculated along the projections
lines, where a brighter pixel means a greater sum. If a sinogram is treated as a
2-dimensional function, s and ¥ lie on the horizontal and vertical axes, respectively.
For a fixed angle ¥, € R the 1-dimensional vector [Rf] (s, 1) is called the ¥,
projection of f. For the sake of brevity, it will be denoted by Pgo or Py, if f is
unambiguous. A ¥, projection of f is a 1-dimensional (column) vector

T
Pl = Rf](W0) = (Phoss Pl Phya) - (2.14)

where d € Z*,d > 1, and

pg()aq - Z wi,j,q,ﬁof(i,j) (2.15)

(4,7)EW

is the line integral measured by the gth detector bin, as shown in Figure 2.6. The
superscript f may be dropped when there is no ambiguity.

The definitions above imply that each column (or row if rotated) of a sinogram
is a projection vector. Such a vector, actually the 270° projection of the image in
Figure 2.7(a), is shown as a bar diagram in Figure 2.7(b).

2.2.4 Consistency and uniqueness

After the image reconstruction problem, consistency and uniqueness are the most
important issues of DT. Their exact definitions are not provided here, but can be
found in [47]. These issues can be summarized by asking the following questions.

e Consistency problem. Given a {Py,,..., Py, } set of projections, does there
exist a discrete image f, where Py, = [Rf]|(s,%;), i = 1,...,m? In other
words, does there exist an image f that satisfies the given projections?
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(a) Animage containing two values: (b) The 270° projection of
0 (black), and 1 (white). (a) represented as a bar di-
agram

T ——
(d) A sinogram of (a) containing
18 projection vectors represented as
a grey-level map. Horizontal axis:
number of measurements. Vertical
axis: projection angle. Each row
may be regarded as a projection vec-
tor represented as a grey-level map.

(c) A sinogram of (a) containing
180 projection vectors represented
as a grey-level map.

Figure 2.7: A projection vector and two sinograms of a binary image.

It is trivial to see that one can construct a sinogram ¢ = [f’ﬁl .. .ﬁﬁm} , where

an image f such that f = R~'§ does not exist. In this case § is said to be in-
consistent, while g is considered consistent otherwise. Examples of inconsistent
projections are shown in Figure 2.8.

Clearly, a necessary condition of consistency is that Zflzl Do = 27:1 Dy
holds for all ¥; and ¥, projections; otherwise no suitable image can be con-
structed for the given sums. As this condition is commonly violated by the
physical measurements, the reconstruction techniques used in practice have
to take the inconsistency case into account.

e Uniqueness problem. Given an image f and a set P = {Py,,..., Py, } of its
(consistent) projections, do there exist other images that satisfy P, but are
different from f?

In general, a number of images may satisfy a fixed set of consistent projec-
tions. If a reconstruction has already been calculated, other images can be
constructed by applying switching components. When considering the image f
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Figure 2.8: Two inconsistent natural (a column and a row) projection vectors.

and the set of its projections, applying a switching component means chang-
ing f without resulting in any changes in P. Switching components are de-
pendent on the number of intensity levels, number of projections, and their
directions, but independent of other properties of the image. For example, a
switching component pair for binary images and two natural (a column and
a row) projection vectors are shown in Figure 2.9. This topic is discussed at
length in [35].

Figure 2.9: A switching component pair for binary images with column and row
projection vectors.

Reconstruction techniques usually provide only one resultant image, but do not
produce every possible image that fits the given projections. However, by using
switching components other solutions can also be constructed. Nevertheless, the
question arises of how the image from which the projections were taken can be
chosen from the variety of possible solutions. For this purpose, some additional
properties known about the image to be reconstructed need to be incorporated into
the image reconstruction model. In the next section, a stochastic technique will
be introduced that can handle inconsistency problems and apply a priori expecta-
tions for selecting the desired image reconstruction from the number of possible
solutions.

The definitions and a detailed discussion of consistency, uniqueness and com-
plexity can be found in [27, 44, 47].
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2.3 The pixel-based reconstruction method

Here an alternative method is presented that treats the image reconstruction prob-
lem in a different way from ART, FBP and MAP. While classical methods give good
reconstruction results when there are a lot of projections available, the method de-
scribed here can produce good results even with 10 or fewer projections. In order
to compensate for the loss of information caused by reducing the number of projec-
tions, this method needs to know the range (intensity levels) of the image function
to be reconstructed. Recall that it is a basic condition of DT. Besides the range, other
additional a priori information is also often included for a successful reconstruction.
This information may be the number of homogeneous regions appearing in the im-
age to be reconstructed, the size of the image or some geometric information about
the objects contained in the image (e.g. a prototype function [63] or a parametric
description [42]).

The new pixel-based method (published by the author in [17, 42]) essentially
turns the reconstruction problem into an optimization task, and minimizes the ob-
jective functional

O(f) = Y INRFW) = Boll* +70(f) . (2.16)

where Py denotes the 1) projection, f is the 2-dimensional image function that ap-
proximates the solution, [R f] (¥) denotes the projection of image f calculated at the
angle v, ||.|| is the Euclidean norm, ¢(f) is the so-called regularization (or penalty)
term, and v > 0 is the regularization parameter.

In Eq. 2.16 the first term is a functional, which represents the distance between
the projections of f and the given projection data Py. This term tells us how well
the projections of f approximate the given projections.

As mentioned above, the fewer the number of projections used, the more a priori
information should be exploited. Some pieces of information can be incorporated
into the regularization term, which helps one choose the right solution from the
number of possible reconstructions. (The existence of more than one solution can
be accounted for by the phenomenon of switching components, as described in Sec-
tion 2.2.4.) For example, if the regularization term contains the so-called prototype
image, it has the form

o(f) = Ilf = foll*, (2.17)

where f, is the prototype function or object. f;, is an image function like f that
has the same domain and range, and is similar to the expected reconstruction re-
sult. Evidently, Eq. 2.17 describes the difference between f and a given prototype
object fy. For instance, if f; is a non-zero image, the penalty term prefers images
being similar to fy. Should f; be the zero image, solutions are sought that have a
small norm. Several studies have been published that employ this regularization
approach. For more details, see [63].

Next, the positive regularization parameter -~ is used to control the relative im-
portance of the first and second terms. If ~ is big, the reconstruction procedure
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should return a solution that fits the a priori information, but it is less suitable for
the given projection data. It is not hard to see that different values of + need to
be adjusted for different reconstruction goals. As usual for energy minimization
methods, there exists no general rule on the selection of regularization parameters,
so 7 has to be suitably chosen based on specific requirements.

The formulation in Eq. 2.16 clearly reveals the difference between the pixel-
based method and MAP. While MAP uses the Bayesian probabilistic model presented
in Section 2.1, the pixel-based method employs a general functional and does not
require probabilistic tools.

A key question is, of course, what optimization method should be chosen for the
minimization of ®(f) defined in Eq. 2.16. Since we usually have no information
about the properties of the objective functional, and there is no technique available
that tells us how to find a good initial point that is close to a global minimum, the
method used must be chosen from the family of discrete global optimizers like the
greedy randomized adaptive search procedure (GRASP) [23], genetic algorithms
[31] or simulated annealing [41, 61]. Here the author opted for simulated anneal-
ing.

2.3.1 Simulated annealing

Simulated annealing (SA) [61, 70] is a procedure that originates from models which
describe the annealing process in metallurgy. The procedure is applied in order to
let the material reach a defect-free crystal state via heating and controlled anneal-
ing. Heating causes the atoms to wander from their initial positions, whereas a slow
annealing provides the possibility of finding a new position of a lower energy than
the initial one.

From an optimization point of view, SA is a statistical iterative technique and it
performs well for arbitrary discrete functions. Firstly, SA was a reasonable choice
because it did not require the variation of the objective functional in Eq. 2.16, whose
calculation would have been rather complicated to perform. Secondly, heuristic op-
timizers were soon excluded, as the search space was quite big, and it was difficult
to define the neighbourhood of a heuristic step.

It is also widely known for SA that finding a global minimum of an arbitrary dis-
crete function has a probability of 1, but this statement is only true if infinitely many
iteration steps are performed. It may sound intractable, but these days computers
are fast enough to speedily execute a sufficient number of iterations.

SA has already been successfully applied to other fields of image processing like
the segmentation of images [29]. This should really come as no surprise, because
there is a close connection between DT and segmentation. If the result of a DT
technique is regarded as a globally labelled image, where each contiguous region
of the same intensity belongs to the same segment, a segmentation of f immediately
follows. However, while the image segmentation is based on f, a DT reconstruction
is carried out using R f.
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2.3.2 The reconstruction strategy

The reconstruction method was mainly based on the article [66], and was devel-
oped in the way shown by the flow chart in Figure 2.10, which can be described as

follows.

Figure 2.10: Flow chart for the homogeneous SA method.

Initial parameters

f(O)’T(O), h > i=0
v v
[ i=i+1 - Calculated)(f('))
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f'=Modify(f)
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Iterative core
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Calculate @ (")

Modification
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efficiency?
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A reconstruction result is obtained via a sequence of approximating image functions
such that |®(f®) — ®(f*)| — 0 when i — oo, where f( denotes the
image function in the sth iteration, i € Z%*, and f* is a minimum locus of ®. For
each iteration step, the (i + 1)th image function is constructed by perturbing the ith
image according to a predefined modification rule.

O, 0,



18 Preliminary background

Perturbation of f(*)

The simplest example for the modification process is when the range of the function
f@ consists of two values only, such as 0 and 1. The rule for changing the binary
image function f® is quite simple. Let us randomly choose a pixel of f*, and
switch its (0 or 1) intensity to the other intensity value. In this way we get the new
image f’, differing from f by one pixel only.

Figure 2.11: A 3-level discrete image.

When f® contains more than two values, f*) is a so-called multi-level image
function (see Figure 2.11). A multi-level image takes its values from a known D =
{k1, ko, ..., k,} discrete set of intensity values, where n (> 3) is an integer, namely
the cardinality of the range of f). Hence the modification rule also differs from
the one used for binary images. If ¥ has the value k; (1 < j < n) at the randomly
selected position, then set its new value to k; in f’, where [ is randomly picked from
the discrete set {1,...,n}. An alternative modification strategy might be when £; is
calculated according to the following formula:

kj*h 1f2§j§n—1and£<05
k; if2<j<mn—1land&>0.5
s P2 j<n—land 205 (2.18)
ki, ifj=n
ki, ifj=1

where ¢ is a probability variable of the uniform distribution taking its value from
[0,1).

Acceptance criterion

An f’ perturbation of f) is accepted if @ (f') < @ (f) (dashed arrow in Fig-
ure 2.10). After, let f(+1) = f'; that is, the optimization procedure carries on with
the newly created f’ image in the next iteration. Otherwise, if ® (f') > @ (f@), f’
can still be accepted with a certain probability depending on A® = @ (') — @ (f7),
the current temperature, and a randomly generated z value of the uniform distri-
bution from the interval (0, 1), allowing the optimizer to escape from local minima.
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The acceptance condition for bad configurations is given by the Metropolis criterion,
namely

e AR/RTY , (2.19)

where « is the Boltzmann constant (11.3805 x 10~ *m?kg s 2K~1) and T is the
temperature in the current iteration. The denominator in the exponent is the prod-
uct of x and T, reflecting the fact that the individual values here are irrelevant
from an algorithm point of view. It allows us to fix x = 1, instead of using the orig-
inal miniscule value of the Boltzmann constant, thus avoiding the need for having
extremely high temperatures to get reasonable ~7'®) products.

Temperature scheduling

T decreases during the iterations according to a suitable schedule, but as seen
in the flow chart, the temperature is not reduced for each iteration. It is only
reduced in the case where the optimizer attains an equilibrium state at the current
temperature level. By equilibrium, we mean that the optimizer is unable to reduce
the objective values any further due to the many accepted bad configurations at a
given T level. This variant of SA is called homogeneous simulated annealing.

A pitfall of the technique is how ‘equilibrium’ should be defined mathematically.
For this purpose, an easily computable indicator was chosen, which is based on the
variance of the last ®s. Formally, the method attains equilibrium when

ol < op, (2.20)

where o7 is the variance calculated from ®;_;,,, ®;_tp—1, - - ., Pirr1)o1, @3 = @ (fV),
and v denotes the sample size the variance is calculated from. That is, a session ter-
minates at a given temperature level if the variance of ®s is greater in the last v
than in the preceding v iterations.

Another interesting question is how the temperature should be reduced every
time the equilibrium state is attained. For this,

T — @) o p (2.21)

is generally used, where h is called the cooling factor, taking its value from the
interval (0,1). In other words, T is decreased by (1 — h) - 100% each time T'® is
reduced.

For the sake of completeness, the inhomogeneous form of SA lowers the temper-
ature for each iteration. Experience tells us that this sort of SA terminates faster, but
it usually gives worse results than the homogeneous scheduling process. Hence the
optimizer developed applies the above-mentioned homogeneous annealing sched-
ule.

Termination condition

Since the optimization process could run endlessly, a termination criterion has to
be included in the algorithm. The most obvious termination condition is when
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some f configuration is found where the first term of ® (f) attains 0. However,
especially under noisy circumstances, the projections are usually inconsistent, and
no such f satisfying the projections exists (see Section 2.2.4). Such situations have
been extensively analyzed in [21]. A better solution is to compute an efficiency
measure, which indicates that no further improvements can be perceived in the
recent objective values. It is defined by the ratio

Nrej
Natt

Here N,.; denotes the number of rejected configurations in the last IV, iterations.

Table 2.1 summarizes the five parameters needed for the optimizer, and it also
specifies the domains the values should be selected from. In the next chapter this list
will be supplemented with arguments describing the input data, and the enlarged
list will be used in the image reconstruction.

(2.22)

Parameter Notation Domain
initial temperature 7O R
cooling factor h (0,1)cR
number of iterations for the variance calculation v 7+
number of modifications in a run Nt 7+
number of rejected modifications in a run Niej 7+

Table 2.1: Parameters of SA.

2.4 Summary

After giving a brief survey of tomography and DT, the chapter introduced the new
pixel-based stochastic reconstruction technique that was designed for the recon-
struction of digital images by using a limited number of projections, and where the
range of the reconstructed image function contains just a small number of known in-
tensity levels. Here the author presented the objective functional whose minimum
location provides the reconstruction result, and described how the SA optimizer
was employed for the minimization of the objective. In addition, as the original
technique was devised for binary images only, he also provided two possible exten-
sions to allow the method to reconstruct images containing more than two intensity
values.



Chapter 3

Simulations

In this chapter we present the simulation system developed to test the reconstruc-
tion technique in a simulation environment. It incorporates the experiences gained
using software phantoms under both noiseless and noisy circumstances. In addi-
tion, we introduce the image reconstructions for the multi-level extension.

The author published his results and achievements in [17, 42, 43].

3.1 The simulation system

In order to examine the properties of the new pixel-based technique introduced in
Section 2.3, a complete simulation system was implemented. The system has three
main components related to the three major tasks encountered during the study.
These are the

e generation of projections,
e image reconstruction,
e evaluation and visualization of the results.

The way these tasks are related to each other and what data flows between them
will be described in Chapter 7 in more detail. Chapter 7 will also present the format
of the DIRECT file interface, which was designed to contain all the data necessary to
control the components and to enable inter-component communication.

3.1.1 Generation of projections

In the early stage of the research work, neither simulated nor real projections were
available, but it was necessary to have input data to perform the simulation tests.
To resolve this problem, a software component was developed that allowed one to
generate parallel projections of an arbitrary digital image by accepting the digital
image (f) itself, a list of projection angles (see ¢ in Eq. 2.1) and the number of
projection lines per projection as input parameters. Based on these arguments, this
component calculated the set of corresponding Py, , Py,, - . ., Py,, projection vectors.

21
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In real life conditions the projections are mostly taken equiangularly, so from
here on it will be assumed that ©J; — ¢;,1 = Ay and m - Ay = 180° for all i =
1,2,...,m — 1. In practice, the neighbouring parallel projection lines are usually
considered to be equidistant too, hence they will be calculated accordingly as well.

Statistical noise

In order to simulate the physical conditions, this component was designed to sim-
ulate the biggest degrading effect the physical projections are distorted by, hence
here some noise was added to the generated projections. The proper noise model
depends on the way the measurements in the physical projections are acquired (ra-
diation type, detector type, physical filters, etc.), which is the subject of the very
active field of signal processing. In this study the author settled for additive Gaus-
sian noise, which can be characterized by its standard deviation o, while the mean
value of the distribution is conventionally set to 0.

In the case where ¢ is a non-zero number, a noise generator routine produces the
vectors =1, Za, ..., =y, Where =, = (§1,&2, ..., &q) and & ; (1 <j<d,1<i<m)
is a probability variable of the Gaussian distribution type having 0 mean and o
standard deviation. Next, the routine creates the new set of Py , P ,..., Py pro-
jections, where Py = Py, + Z;.

The list of parameters needed for generating noisy projections and their domains
is summarized in Table 3.1.

Parameter Notation Domain
2-dimensional digital image f 7t X7t — D
angles of the projections Yy, 0, ... 0, R

(m e Z+\ {1})
number of projection lines per projection d 7"
standard deviation of Gaussian noise o RO

Table 3.1: Parameters of the projection generator.

3.1.2 Reconstruction

The input parameters of the reconstruction component can be divided into two
groups. First, the module receives the projections and its parameters coming from
the projection generation phase (see Table 3.2). Second, some additional parame-
ters have to be set for the optimizer. The latter parameters and the corresponding
domains were given in Table 2.1. When the reconstruction procedure terminates,
the component produces the reconstruction result denoted by f in earlier sections.

3.1.3 Evaluation and visualization

After completing the reconstruction, the third task is the visualization of the results
and the extraction of quantitative measurements that verify the goodness of the
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Parameter Notation
angles of the projections V1,09, ... 0
number of projection lines per projection d
projections Py,, Py,,..., Py,

Table 3.2: Parameters of the projection set.

resultant images as well as the efficiency of the technique. The data visualization
options are given in Chapter 7. It is just mentioned here that the image reconstruc-
tions in this thesis are presented in a popular 256-level lossless image format.

In order to measure the accuracy of the reconstruction quantitatively, three error
indicators were tested, namely the mean square error, relative mean error and shape
error [36]. It was found that the relative mean error (RME for short) is the most
suitable indicator for showing the discrepancy between the original image and its
reconstruction.

RME for binary images

Let f° and f" be two discrete functions over a h x h lattice set, where f° has at least
one non-zero element. The RME for binary images is defined by the formula

2= S
RME (f°, ) = T - 100%, (3.1)

where i = 1,...,h?%, and f?, ff € {0,1} denote the value of the ith pixel in the
original image and reconstructed image, respectively. It is obvious that RME > 0,
and RME = 0 holds if and only if f? = ff. It is also clear that a smaller value of
RME indicates a better reconstruction result, and that the RME can exceed 100%.
The latter can be deduced directly from the formula when there are more misplaced
pixels in f* than the number of non-zero ones in f°.

RME for multi-level images

The goodness of multi-level reconstructions was measured by an adapted variant
of RME. A customization of Eq. 3.1 was necessary since the calculated value was
dependent on the total intensity in the original image. This can be seen by assuming
that f°1, f°2 and their reconstructions f™, f'2 are such that f'+c = f? and f;'+c =
/12 for a fixed c integer (i = 1, ..., h?). That is, there is no discrepancy in the quality
of the two reconstructions f* and f™, and the numerator of RME(f°, f™) is equal
to the numerator of RME( f°2, f®). Under such a condition, if

Z < Z £, (3.2)

then
RME(f°, ) > RME(f°, f2) (3.3)



24 Simulations

indicating that f™ is a better result than f*2.

To prevent it being dependent on the total intensities, the following formula was
applied for multi-level images.

S =1
RMER U = 57791

i

-100% , (3.4)

where [.] is the ceiling function, and it is used to compute the number of non-zero
pixels in the original image. It is readily seen that RME™ measures the ratio of
intensity differences between the original and resultant images with the number of
non-zero intensities in the original image. The smaller the pixelwise intensity dif-
ferences between the original and result images, the lower an RME™ is calculated.

3.2 Preparations

Since [66] only provides a rough guide for the parameter set-up used in the op-
timizer, a lot of effort went into the determination of suitable settings. In this
section we will show how the initial parameter values were determined in an ana-
lytical fashion. We will also present the test environment, the test protocol, and the
considerations made before constructing the two different software phantoms that
were applied in the simulation tests.

3.2.1 The test environment and protocol

The simulation tests were run on a dual processor computer. Both processors were
a 3.06 GHz Intel® Xeon™ CPU with a 512kB cache. The PC had a 2 GB physical
memory, but the reconstruction never used more than 100 MB during the simula-
tions.

As mentioned above, the reconstruction method is a statistical one, hence its ro-
bustness and efficiency cannot be judged from a single reconstruction. Accordingly,
each parameter set-up was executed 50 times, so the author’s simulation experi-
ence was based on average reconstruction results. It led to a remarkable amount
of statistical data. For example, over 170 parameter configurations were examined
just for the two-valued images, which meant that over 8500 binary reconstructions
were performed.

Here for each parameter set-up the average timing information and the average
RME of the resultant and original images are provided in terms of the varying pa-
rameter. Using the averages of these indicators helps shed light on the problematic
hidden features of the reconstruction technique. However, in order to get a visual
understanding of the charts and numeric data, some average resultant images are
also presented.
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3.2.2 The binary phantoms

The first tests were performed for the simplest case, namely the class of binary
images. Two kinds of phantom images with different geometrical properties were
constructed, one of which can be seen in Figure 3.1(a). It contained circular shapes
and had no edges parallel to the projection beams. The other one (Figure 3.1(b))
contained a square that had defects of varying sizes on its edges.

(a) Binary phantom image contain- (b) Binary phantom image contain-
ing circle-shaped objects. ing square-shaped objects.
(c) The projection of the phantom (d) The projection of the phantom
seen in (a) taken at 180°. seen in (b) taken at 180°.

Figure 3.1: The binary phantom images and one of their projections used for tests.

The reason why two phantoms were created comes from the following consid-
eration: an object having edges parallel to the beams results in sharp gaps in the
objective that may be easily discovered by the optimizer, even in the case of a sub-
optimal parameter set-up. (One such projection is shown in Figure 3.1(d).) In other
words, when the phantom image comprises shapes with smooth projections, as in
Figure 3.1(c), the optimizer has an uphill task due to the probably larger number
of shallow local minima. Hence, the expectation was that the method would reveal
a significant deviation in both performance (given by average run-time) and qual-
ity (measured by RME) depending on the phantom used, and a strong sensitivity
should be observed for type of geometrical structure. It should confirm why the
circular phantom is generally regarded as nearly the worst-case binary phantom.
We had another goal with the square-shaped phantom. The defects in the edges
could be used to see how the technique was able to cope with small details.
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Both phantom images were of dimensions 200 x 200. The circular one contained
an annulus (with diameters 160 (inner) and 180 (outer) pixels) involving four disks
(with diameters 60, 50, 30 and 25 pixels), as seen in Figure 3.1(a). The second
image (see Figure 3.1(b)) comprised a square-shaped object and fulfilled the second
aim, where the sizes of the defects were 40 x 40,20 x 20,10 x 10,5 x 5,2 x 2, and
1 x 1 in descending order.

It should also be noted here that the pixel intensities in the phantom images
will be normalized to the [0, 1] interval, while the visualizations depict the natural
grey-level image representation utilizing 256 values. That is, the phantom object
itself is visualized by white pixels (intensity value 1), as long as the background is
denoted by black ones (intensity value 0).

3.2.3 Initial reconstruction parameters

There is no general rule on the optimal SA parameter settings, so the initial tests
were carried out by applying the values suggested below.

Boltzmann constant and initial temperature (x, 7))

Recalling Section 2.3, it was already found that f’ is always accepted if A® < 0.
Otherwise, f’ is accepted according to the probability determined by the inequality

e = > RAND(0,1). (3.5)

As for SA, in the case where A® > 0, the optimizer should accept f’ with a higher
probability at the beginning of the optimization process. It means that the magni-
tude of k7T in the exponent must be close to A® to accept a sufficient number of
bad configurations in the initial phase.

For this purpose, let us examine the parameters on the left hand side. A® =
®(f) — @ (f@) tells us the difference caused by changing a single pixel intensity
from O to 1, or vice versa. The value of the difference is dependent on the number
of beams crossing the pixel, the corresponding weights, and the intensity differ-
ences. (This latter is 1 for binary images made up of Os and 1s.) When the distance
between two neighbouring parallel projection beams is equal to the length of pixel
edges in f, a rough upper bound can be determined for A®. Making this assump-
tion, at most two beams cross a pixel. In this way, their aggregated weight cannot
be greater than 2a+/2; thatis 0 < |A®| < 2a-m+/2, where a and m denote the length
of pixel edges and the number of projections, respectively. In the case of « = 1 and
8 projections, 0 < |Ad| < 23.

The expectation for Eq. 3.5 is that the left hand side should be sufficiently close
to 1 in the initial iterations; that is, the quotient A®/xT® should approach 0 at the
beginning of the optimization. For instance, the choice of K70 = 10 and A® = 23
gives a value of 2.3. Then the left hand side of Eq. 3.5 has the value ~ 0.1, resulting
in the acceptance of approximately 10% bad configurations.

It was mentioned in the preceding chapter that the separate specification of s
and T is unimportant, because only their product is involved in the optimization,
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and neither x nor 7% is used at other points in the reconstruction algorithm. Hence
the Boltzmann constant  can be set to 1, while 7% is the initial temperature value.
In the binary tests, a value of 7®) = 10 was applied.

Cooling factor (h)

It is a good idea not to reduce the temperature too fast as it can cause the optimizer
to get stuck in a local minimum. At the same time, ~ should be kept as low as pos-
sible, otherwise the program will run for a long time. Therefore a 5-15% reduction
in temperature seems to be acceptable when the optimizer reaches an equilibrium
state. We used h = 0.95 for the simulation tests, but a higher value could be used
for reconstructions from noisy projections.

For example, making the assumptions given in previous section, h = 0.95 results
in the acceptance of about 10%, 8.9%, 7.8%, 6.8%, 5.9% of bad configurations for
the first five temperature levels.

Number of ®s used for equilibrium detection (v)

This input parameter determines the number of recent objective values the variance
has been calculated from (see Section 2.3.2). Needless to say, v should be big
enough to let the variances be stable values and reflect the equilibrium well. The
choice was v = 5000, which appeared to be satisfactory in practice.

Efficiency parameters (N, N,.;)

Recall that these two parameters specify the termination criterion for the optimizer,
and it means that the optimizer stops if at least V,.; configurations were rejected
in the recent NV, iterations. This criterion could also be expressed in other ways,
but the original one described in [66] was employed in the technique. We chose
Nui = 15000 and N,..; = 14999. The efficiency is less than 10~* % in this case.

3.3 Simulation studies

It was necessary to examine the behaviour of the DT technique when the input pa-
rameters are adjusted within reasonable ranges. Becoming familiar with the nature
of the parameters will enable one to see how to fine-tune the reconstruction when
a poor result is obtained. In the analysis, the binary phantom images introduced in
Section 3.2.2 were used. Apart from varying the values of a given parameter, the
reconstruction technique was configured using the set-up given in Table 3.3.

3.3.1 Number of projections

Here, the author investigated how the number of projections influences the recon-
struction results. To this end, 50 reconstructions were performed from 2, 4, 8, 10,
12, 14, 16 and 18 projections using the circle-shaped binary phantom.
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Parameter Notation Value
number of projections used m 16
projection lines per projection d 400
initial temperature 7O 10.0
cooling factor h 0.95
number of iterations for the variance calculation v 5000
number of modifications in a run Ny 14999
number of rejected modifications in a run Niej 15000
noise o 0.0

Table 3.3: Reconstruction parameters for simulation tests.

It was interesting to see how the objective values changed in terms of the itera-
tion steps in the case of different numbers of projections being used. In Figure 3.2
each diagram contains 50 curves, and each of them belongs to a reconstruction. It is
immediately apparent that the objective was nearly attained, but it never reached 0
(the perfect reconstruction) using 14 or fewer projections. That is, the method gets
stuck in a local minimum, and the reconstruction terminated before it got out of it.
Probably a smaller N,.;/N,; ratio would have been the remedy to this problem, but
it would have resulted in a dramatic increase in the run-time. Nevertheless, 16 or
more projections were already enough to recover the original phantom, which was
clearly indicated by the curves reaching 0 in Figure 3.2(d). As seen, most of the
reconstructions terminated in 20-50 million iteration steps, giving 200-1250 pixel
modifications per reconstruction for a 200 x 200 image. It should also be remarked
here that using a different reconstruction set-up and/or another phantom can result
in a different number of projections needed for perfect reconstruction.

However, the diagrams in Figure 3.2 do not offer a ready comparison of the
goodness of results for the different parameter configurations because the objective
values greatly depend on the current parameter set-up and input data being inves-
tigated. For instance, a smaller objective value can also be achieved by reducing
the number of projections, but it will probably lead to a marked drop in the recon-
struction quality. Another problem is that 50 curves cannot be properly displayed
on the same plot, so from now on goodness will be depicted by the average RME
as a function of the parameter being investigated. One such diagram is shown in
Figure 3.3(a).

Figure 3.3(a) tells us that by decreasing the number of projections to 16, the
technique still gives perfect results for the circle-shaped object, while the recon-
struction from 6 or fewer projections shows an increasingly marked discrepancy
between the original and reconstructed objects. Between 8 and 16 projections, the
RME increases, but remains at a moderate level, and the technique produces visu-
ally acceptable results (Figure 3.4). (A discussion of the square-shaped phantom
results is given in the next section.)

A visualization of the results for 4, 8, 14, and 16 projections can be seen in
Figure 3.4. Evidently, the method was unable to give perfect reconstructions using
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Figure 3.2: Objective values as a function of iteration steps for different number of projec-
tions used for reconstruction.

4 or 8 projections, and even the projection directions could be determined for the
images obtained from 4 projections. However, 14 and 16 projections were more
than ample to provide 50 acceptable results.

From a timing point of view, Figure 3.3(b) indicates that the method terminated
rapidly (=~ 100 seconds) when too few projections were used. A possible expla-
nation for this might be that the objective functional was quite smooth using 2-6
projections. As mentioned above, a smaller N, /N,.; would have been a solution
to the problem, but it caused a significant rise in the reconstruction time. Thus
efficiency involves a trade-off between the reconstruction time and quality.

Increasing the number of projections to 14, the average reconstruction time rose
to its maximum (=~ 600 seconds). The amount of computations involved allows one
to draw the conclusion that the optimizer often got stuck in local minima, but it
eventually escaped from the valleys by finding better and better extrema. After
reaching the peak value, the run-time drops to 100 seconds again. Noting the
nearly perfect results, the optimizer has an easy task using an increased number
of projections, which suggests that the objective has a deep and definite global
minimum besides having several smaller local ones.
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Figure 3.3: The average RME and run-time of both phantoms as a function of the number
of projections.

3.3.2 Geometrical properties

In order to see how sensitive the method is to the geometrical properties of the
object to be reconstructed, ‘projection number’ tests were also performed for the
square-shaped phantom. The result was quite convincing when we observe the
average image reconstructions in Figure 3.5 and the related parameter curves in
figures 3.3(a)-(b). It can readily be seen that in the case of the square-shaped object
the RME almost reaches 0 (a perfect reconstruction) just by using 6 projections,
unlike the case of the other phantom, where at least 16 projections were necessary
to achieve the same image quality. An explanation for this notable discrepancy lies
in the geometrical properties. In figures 3.1(c)-(d) one sees that the projections
of the circle-shaped phantom are smoother than those for the projections of the
square-shaped phantom. In the latter case, there are big gaps in the projections,
which can be easily found by the optimizer. The same effect was also observed in the
timing data. The average run-times of square-shaped tests always remained below
the values of circle-shaped phantom, apart from two cases (m = 2 and m = 4). In
general, the more projections there are parallel to the edges of the object, the easier
it is for the optimizer to find a good solution. For instance, in Figure 3.4, the 0° and
90° projections are parallel to the vertical and horizontal edges for the directions
specified in the definition of the Radon transformation.

The author’s efforts to construct another phantom, which shows significantly
worse reconstructability than the images containing circle-shaped objects, was un-
successful. The same experience was also published in [71], hence the circle-shaped
phantom can be reasonably considered to be practically a worst-case object for re-
construction.

As for its ability to resolve small details, the method was able to recover all the
defects at the edges using just 6 projections, even the one that had the size of 1 x 1
pixel (see Figure 3.5(c)). This result offers hope that the method should always
provide perfect noiseless reconstruction results if enough input data is available.
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(a) 4 projections, average (b) 8 projections,
RME = 53.2846. RME = 20.6325.

average

(c) 14 projections, average (d) 16 projections,
RME = 8.8816. RME = 0.0328.

average

Figure 3.4: Average reconstruction results of circle-shaped phantom using different num-
bers of projections by the pixel-based DT method (¢ = 0 noise, 400 measurements/projec-
tion).

3.3.3 The N,.; and N, parameters

An examination of the termination criterion was unavoidable as an improper choice
of values could have adversely affected the termination of optimizer (i.e. premature
termination), while the result might not be optimal. Therefore 13 tests were carried
out using the circle-shaped phantom. N,; was set to 15000 and N,.; took the
values listed in the first column of Table 3.4. The third column gives the efficiency
criterion, the ratio of rejected configurations (Eq. 2.22) in the last 15 000 iterations.

The results in figures 3.6 and 3.7(a) indicate that the method provided good
results when N,.; = 13000; that is, the optimizer terminated immediately when over
86.667% of the configurations were rejected. The timing data was also promising
because the average run-time was always below 400 seconds. In addition, it clearly
demonstrates that a better efficiency entails a longer reconstruction time.

It seems N,.; can be chosen from a relatively wide range such that N,.;/Ny; is
greater than about 85%, and less than or equal to 100%. Nevertheless, the result of
this wide interval can be quite misleading, if we ignore a possible correlation among
the reconstruction parameters. The fact that even an efficiency of 99.993% was in-
sufficiently low for a good reconstruction from 4 projections (see Figure 3.4(a))
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(a) 2 projections, average (b) 4 projections,
RME = 27.3461. RME = 1.7921.

average

(c) 6 projections, average (d) 8 projections,
RME = 0.1471. RME = 0.0244.

average

Figure 3.5: Average reconstruction results of the square-shaped phantom (using different
numbers of projections) got by using the pixel-based DT method (¢ = 0 noise, 400 mea-
surements/projection).

Nyej N,  Termination criterion
(%< - 100%)

500 15000 3.333
1000 15000 6.667
2500 15000 16.667
5000 15000 33.333
7500 15000 50.000
10000 15000 66.667
13000 15000 86.667
14000 15000 03.333
14500 15000 96.667
14900 15000 97.333
14990 15000 99.933
14995 15000 99.967
14999 15000 99.993

Table 3.4: Termination criteria investigated in simulation tests.



3.3 Simulation studies 33

leads one to conclude that the smaller number of projections requires a higher
efficiency, and the N,.;/N,, ratio should be set as high as practically possible. Em-
pirically, N,.; = 14999 appeared to be a good value assuming that N, = 15000.

(@ Nye; = 500, average (b) N,; = 1000,
RME = 13.3809. RME = 11.1922.

average

(6 Nye; = 5000, average (d) N,,; = 13000, average
RME = 5.5738. RME = 0.001791.

(&) Nyej = 14990, average B Nye; = 14999,
RME = 0.1677. RME = 0.1331.

average

Figure 3.6: Average reconstruction results of a circle-shaped object in the case of differ-
ent values of N,.; for a fixed value of N,y = 15000. (0 = 0 noise, 16 projections, 400
measurements/projection).



34 Simulations
15 400
350
12
300
10 ~ 2504
g 8
w 8 ~7 200
s g
o 1501
N
100+
2]
-
: : : : : . i 0 : : : : : : :
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
Nrej Nrgj
(a) Average RME as a function of N,.;. (b) Average run-time as a function of N,;.

Figure 3.7: The average RME and run-time as a function of N,.; using the circle-shaped
phantom.

3.3.4 Initial temperature

In the tests, values of 0.000001, 0.001, 0.5, 1.0, 2.0, 3.0, 4.0, 10.0, 20.0, 50.0,
100.0 and 1000.0 degrees centigrade were applied as the initial temperature. Our
early consideration was the following. If the initial temperature is high, the method
runs for a long of time. However, if 7 is too low, the optimizer gets stuck in a
local minimum and this yields a bad result. The danger of the latter is more ap-
parent when the phantom is a multi-level image. To verify the above-mentioned
intuitions, we plotted the average RME and the reconstruction time as the function
of the initial temperature on a log-scaled horizontal axis in Figure 3.8. In addi-
tion, the average reconstructions for 7°) = 0.000001, 0.001, 0.5, 1.0 are displayed in
Figure 3.9.
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Figure 3.8: The average RME and run-time as a function of the initial temperature.

From (a) and (b) in Figure 3.8, the conclusion can be drawn that a temperature
of less than one centigrade leads to unsuccessful reconstructions because the op-
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timizer gets stuck in a local minimum, and the temperature was not high enough
for the optimizer to get out of it. However, it was unusual that the run-time did
not go up dramatically when the initial temperature was increased in steps to 1000
centigrade. This can be attributed to the fact that the equilibrium state is attained
relatively quickly at a higher temperature than at a lower one, and 7' falls rapidly
at the beginning.

The sudden rise in the reconstruction time between 7 = 0.001 and 7(® = 1.0
(Figure 3.8(b)) shows that there is a critical level for the initial temperature where
the technique can perform a worthwhile optimization. At the same time, if the
optimizer gets stuck in deep local minima, it may take many iterations to get out of
them due to the relatively low initial temperature.

Overall, it can be said that the minimum initial temperature is about 1-10 de-
grees centigrade for binary images, but it is still alright if a higher initial tempera-
ture value is chosen.

(@ T7© = 0.000001, average (b) 7 = 0.001, average
RME = 19.0067. RME = 18.8843.

(©) T© = 0.5, average RME = (d) 7 = 1.0, average RME =
7.6389. 0.0426.

Figure 3.9: Average reconstruction results of a circle-shaped object using different initial
temperatures (o = 0 noise, 16 projections, 400 measurements/projection).
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3.3.5 Cooling factor

Another essential parameter that affects the optimizer’s performance is the cooling
factor h. When h is small, the temperature falls too quickly, and the optimizer can
easily find itself stuck in a local minimum, providing a solution that is different
from the global optimum (i.e. the solution is a sub-optimal). In contrast, if & is big,
the temperature falls slowly, and it leads to a long-running reconstruction process.
Since h € (0, 1), a small/big h means a value near to 0/1, respectively. It is not hard
to see that h = 1.0 leaves T unchanged, while » = 0 quickly turns the technique
into a deterministic optimization, hence it was reasonable to exclude these values
from the investigations. Nonetheless, for the sake of curiosity and completeness,
the RME and timing results also include the h = 1.0 case.
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(a) Average RME as a function of the cooling fac- (b) Average run-time as a function of the cooling
tor. factor.

Figure 3.10: The average RME and run-time as a function of the cooling factor (k).

15 tests were performed where h took the values 0.001,0.01, 0.1,0.25, 0.5,0.6,
0.7,0.8, 0.9,0.925, 0.95,0.975, 0.99, 0.999 and 1.0, respectively. With Figure 3.10(a)
a monotonous decrease can be observed in the RME while 4 is increasing. This is
probably due to the fact that the higher the h value, the better the chance that the
optimizer can get out of local minima and not get stuck in one. The RME noticeably
approaches zero only when h rises above 0.9, and a visually acceptable result (see
Figure 3.11) could be achieved when h = 0.925.

The timing aspect of the reconstruction displays a definite increase until i reaches
0.9, when it turns into a slow fall between 0.9 and 0.99. The RME values and the de-
crease in the run-time near » = 0.9 allow one to conclude that a reasonable choice
of h should be in the interval [0.95, 1.0).

3.3.6 Effect of noise

Real tomographic measurements always contain a certain amount of noise. The
goal, of course, is for the reconstruction method to be applicable in real circum-
stances, so testing with noise present is indispensable in phantom experiments.
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(a) h =0.001, average RME = (b) h = 0.25, average RME =
18.9356. 17.1116.

(¢) h = 0.6, average RME = (d) h =0.925, average RME =
10.3826. 1.4861.

(e) h = 0.975, average RME =
0.0354.

Figure 3.11: Average reconstruction results of a circle-shaped object using different cooling
factor values (¢ = 0 noise, 16 projections, 400 measurements/projection).
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The noise generator used for the simulations was introduced in Section 3.1.1. Ac-
cordingly, different amounts of Gaussian noise that had a mean of 0.0 were added
to the exact projections. In the test cases the standard deviation took the values
o =0.5,1.0,2.0,5.0, 10.0, 15.0, 20.0, 30.0, 40.0 and 100.0, respectively. For the sake
of illustration, some noisy projections are displayed in Figure 3.12.

(a) Noiseless. (b) o =1.

() o =5. (d) o =10.

(e) o =40. ) o =100.

Figure 3.12: 0° projections of the square-shaped object corrupted by applying different
amounts of additive Gaussian noise.

Typical average reconstruction results from the noisy projections are seen in Fig-
ure 3.13. As expected, the increasing amount of noise degrades the quality of the
resultant images, which is readily reflected in the RME values in Figure 3.14(a).
The RMEs show that even a small (o = 0.5) additive noise component introduces
a 10% increase in the RME, and that an exponential-like relation can be observed
between the amount of noise and the RME. In spite of this relation, the RME re-
mained below 50% even in the case when o was 100.0. Evidence for the robustness
of the reconstruction method is provided by the fact that the original object is rec-
ognizable even in the case where o = 100.0. The efforts made and results obtained
for noise reduction are presented in Section 3.4.

Though Eq. 2.16 has a theoretical minimum of zero, here we cannot expect the
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(@ o = 1.0, Verage RME = (b) ¢ = 10.0, average RME =
15.9656. 22.9545.

(c) o = 40.0, average RME = (d) o =100
32.5555. 46.7418.

average RME =

Figure 3.13: Average reconstruction results for circles with noisy projections (16 projec-
tions, 400 measurements/projection).

objective functional to attain it. Noisy projections are usually inconsistent, hence
only a ‘nearly perfect’ reconstruction can be obtained; that is ®(f) > 0, where ® is
the objective functional and f is the reconstruction outcome.

As regards the timing statistics summarized in Figure 3.14(b), it can be said
that there is no significant run-time increase or decrease when the amount of noise
added is varied. However, as the reconstruction technique is sensitive to a number
of factors (e.g. geometrical properties and number of projections used), it should

be mentioned that the method can produce different plots for a different phantom.

3.4 Reduction of the noise effects

In the previous section it was described how an additive noise source influences the
reconstruction result. Now a feasible solution is given for overcoming this distorting
effect. Since, especially in the case of industrial objects, it may often be assumed
that the cross-section to be reconstructed contains contiguous regions of the same
intensity, the smoothness property was the most obvious a priori to be exploited.
The regularized reconstructions from noisy projections [42] were carried out using
the following mathematical description of smoothness:
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This function penalizes the resultant images containing non-homogeneous regions,
and prefers image functions that consist of large contiguous ones. In other words,
Eq. 3.6 computes a bigger ¢ value for noisy/detail-rich image parts and a smaller
one for smooth/homogeneous regions. The size of the smoothing kernel used in the
tests was 5 x 5 and contained the discrete approximation of a Gaussian function
characterized by 0, = 0, = 1.5 and 1, = i, = 0.0. As smoothness is a local property
of the image, the construction of bigger kernels is not worthwhile and it would lead
to an increased amount of needless computations.

Here it should be noted that this regularization term is not universally applica-
ble, especially when small details are important. The technique (due to the smooth-
ing nature of Eq. 3.6) cannot distinguish between small details and noise, and an-
nihilates them. In addition, the more noise the projections are corrupted by, the
bigger the regularization coefficient should be used. However, a bigger coefficient
can cause the removal of larger details as well. In spite of these considerations, the
smoothing operator is a widely utilized technique in experimental tomography, and
it is also applied in the ART reconstructions presented in Chapter 4.

The application of a regularization term raises some interesting issues. It is not
hard to see that there is no v value that would be appropriate under every circum-
stance. However, is there an analytic way of determining the trade-off between the
two terms in Eq. 2.16? Is there a way of normalizing the first term in Eq. 2.16?
This is a hard problem, because the effect of v is dependent on the maximum value
of the first term, which is a function of the reconstruction parameters (e.g. the
number of projections and the number of projection lines). Furthermore, v is also
dependent on the object to be reconstructed. Since this latter is unknown, only a
rough upper bound can be given.
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3.4.1 Noise reduction results

In order to investigate how Eq. 3.6 diminishes the effect of noise, the behaviour
of the method was tested with different combinations of noise amounts (¢) and
regularization coefficient values (). Therefore 121 (11 x 11) test cases were per-
formed by reconstructing the phantom in Figure 3.1(a) using the parameters listed
in Table 3.5.

Parameter Values
o 0.1,0.5,1.0, 2.0, 5.0, 10.015.0, 20.0, 30.0, 40.0, 100.0
~ 0.5,1.0,2.0,4.0,6.0,8.0,10.0, 15.0, 20.0, 50.0, 100.0

Table 3.5: Parameter values for noise reduction tests.

Figure 3.15 shows the computed average RMEs as a 3-dimensional plot. It
tells us that if the regularization coefficient is greater than 30, the RME rapidly
approaches 100%. (Recall Section 3.1.3, where it was pointed out that the RME
can be greater than 100%.) This means that all the pixels in the reconstruction
that should have been white were reconstructed incorrectly. The reason is that the
penalty term suppressed the projection data, and the result became a homogeneous
image containing the intensity value occurring the most frequently (black in this
case) in the original image. It also should be added that v = 30 is not a general up-
per bound, because the effect of a fixed value of v depends on the input parameters.
Nevertheless, the existence of such a v value can be taken for granted.

It is also evident in Figure 3.15 that the bigger the noise component in the pro-
jections (which corrupts them), the bigger the ~ value needed to get reconstruction
results with a small RME. Still, v should not be increased too much due to the
arguments mentioned above. There is a price to be paid for having a high ~ value.
That is, combinations of regularization coefficients and noise amounts are preferred
where the RMEs remain close to 0, and ~ is as low as possible. For instance, the
RME value is almost constant when o = 0.5 and ~ is taken from the interval [1, 10],
but v = 1 is the preferred value.

From a run-time point of view (Figure 3.16), the utilization of the regulariza-
tion term is an expensive tool. The reconstruction could cost up to 5000 seconds
for cases when the smallest RME values were obtained (y = 20.0), and a 2-8 fold
increase could be the result in the average run-times for the values given in Fig-
ure 3.14(b).

Next, the average reconstruction times display a sharp fall when ~ exceeds 30.
Taking a look at the graph in Figure 3.16, we recognize that the quick reconstruction
can be accounted for by the overweighted (y > 30.0) regularization term. It is the
case when no effective reconstruction is performed, and the result is a homogeneous
black image.

In order to get a graphical picture of robustness of the method under noisy
conditions, the average reconstruction results for the different combinations of ~s
and os are displayed in figures 3.17, A.1, A.2 and A.3. Here ¢ took the values
1.0,10.0,40.0 and 100.0, while ~ was investigated when v = 1.0,4.0, 10.0 and 20.0.
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Figure 3.15: Average RMEs as a function of different ¢ and ~ values.
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Figure 3.16: Average run-times in the case of different noise and ~ values.
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The conclusion can again be drawn that a big amount of noise can be offset by
choosing a bigger v. However, it must be added that a bigger ~ is inclined to merge
close objects that are distinct in the average reconstruction in Figure A.3(d).

Even though the projections are affected by big amounts of noise (¢ = 20,40
say), it is quite apparent that the technique provides improved results with the as-
sumption of smoothness, whose property can also be exploited for the reconstruc-
tion of physical projections.

(@) v = 1.0, average RME = (b) v = 4.0, average RME =
4.0558. 0.9683.

(c¢) v = 10.0, average RME = (d) v = 20.0, average RME =
0.5479. 0.6829.

Figure 3.17: Average reconstruction results for circles having o = 1 noisy projections with
the pixel-based method (16 projections, 400 measurements/projection).

3.5 Multi-level reconstruction

After discussing the binary phantom results, let us turn to the results obtained for
multi-level images [17, 43]. To enable the method to reconstruct objects containing
three or more (3-5 say) materials, it was necessary to

e extend the reconstruction technique to the case of multi-level images,
e create a 3-level phantom,

e supply a new formula to characterize the goodness of 3-level results.
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For the 3-level extension, the first perturbation strategy described in Section 2.3.2
was applied, where the modification rule was the random choice of a value from
the set of possible intensity levels. In this way, the fully stochastic nature of the
technique could be retained. The second strategy, where the intensity levels were
always replaced with the neighbouring intensity values, quite often got stuck in lo-
cal minima and usually underperformed the fully stochastic version in comparative
tests.

In the simulation tests the 3-level phantom image depicted in Figure 3.18(a)
was applied, which was constructed by replacing a white disk in Figure 3.1(a) with
its grey version. The new disk had an intensity of 0.5, so the discrete set of intensity
levels was {0, 0.5, 1}. Its 270° projection is shown in Figure 3.18(b) for the sake of
comparison with the matching binary projection in Figure 2.7(b).

Lastly, the formula used to measure the goodness of multi-level reconstructions
was defined in Eq. 3.4. This indicator was also used in the 3-level simulations.

(b) A 270° projec-
tion of the object in
(a) A 3-level phantom image used (a).

for simulation studies.

(¢) A reconstruction result from 12 (d) A reconstruction result from 12
noiseless projections, 400 measure- noiseless projections, 400 measure-
ments/projection having v = 0. ments/projection having v = 1.0.

Figure 3.18: The 3-level phantom image with one of its projections used for multi-level
simulations and also two noiseless reconstructions.
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3.5.1 Noiseless simulation results

3-level reconstructions from noiseless projections gave remarkably worse results
(see Figure 3.18(c)) than the binary noiseless simulations using the same number of
projections. The reason for the poor quality might be the presence of an enhanced
number of switching components in the case of multi-level images. However, a
visually bad reconstruction cannot necessarily be regarded as a bad result if the
objective value approaches zero. In this case an irrelevant bad result is one of
the possible solutions, whose number also grew due to the increased number of
switching components. The usual way to reduce the number of possible results is
by incorporating some a priori into the objective functional to allow the technique
to select the best one, i.e. the one with the desired properties.

Another obvious way to improve the image reconstructions would have been
to use more projections. However, as the basic idea was to keep the number of
projections low, regularization was applied. Figures 3.18(d) and 3.19(a)-(e) show
how the results improve when the penalty term is turned on (i.e. setting v > 0)
in the objective. As seen, the cylinder and disks became almost homogeneous, but
grey rings appeared along the borders of black and white regions. This feature of
the technique is more evident for bigger values of ~, where the smoothing term
eventually overrides the first term of the objective and produces reconstructions
containing grey objects only.

3.5.2 Noisy simulation results

3-level noisy tests were performed with the same parameter values as those pre-
sented in Section 3.4.1. The results have been plotted in figures B.1 and B.2 with
o = 5 and o = 30. Here the regularization term had to handle both the noise effect
and the large number of switching components. Accordingly, the multi-level noisy
tests gave even worse reconstructions than the noiseless multi-level ones, which is
also seen in the plot in Figure 3.20. It tells us that the average RME™, as a function
of v and noise, had a minimum around ~ = 2 over the range investigated, and any
changes in the coefficient entails greater average relative mean errors. An overly
small v cannot remove all the noise from the image and introduces noisy recon-
structions, while a bigger one eliminates the image details and results in spurious
extensive homogeneous regions, but both issues commonly increase the difference
between the original and reconstructed images. As regards the noise components
in the projections, only a moderate increase can be observed in the average RME™,
where more noise was added to the input data. That is, most of the pixels in the
reconstructed images were properly determined, and just a few pixels were mis-
placed.

Next, looking at Figure 3.21, the average run-times display an outstanding sta-
bility against the various parameter configurations, apart from the fact that the
technique became CPU costly at the same time. Even the shortest reconstructions
took about 1000 seconds, but the best results required up to 2200 seconds. Al-
though there is no information on the exact shape of the objective, the latter two
plots suggests a deep multi-dimensional V-shaped objective around v = 2.
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(@) 7 = 0.0, average RME™ — (b) ~ = 2.0, average RME™ =
55.4379. 8.6620.

(c) v = 4.0, average RME™ = (d) v = 6.0, average RME™ =
15.1434. 28.6172.

(e) v = 20.0, average RME™ =
86.0685.

Figure 3.19: Average reconstruction results of circles with noiseless projections got by using
the pixel-based method (16 projections, 400 measurements/projection).



3.5 Multi-level reconstruction 47

RME (%)

120 ~
100 ~
80 A
60 -

Figure 3.20: Depiction of average RME™s against different noise and ~ values using log-
scaled v and noise axes.

Time (sec.)

5000 -

Figure 3.21: Depiction of average run-times against different noise and ~ values using
log-scaled v and noise axes.
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3.6 Summary

In this chapter, the simulation system and its three components developed to test
the reconstruction technique in a simulation environment was introduced. The au-
thor also outlined the initial range of the annealing parameters, a suitable annealing
schedule, and presented the simulation environment as well as the software phan-
toms used for the simulation tests.

After the preparatory steps, the behaviour of the method by simulating the ideal
and simplest conditions was investigated, where the projections were noiseless and
the object to be reconstructed was a binary image. Here the author examined how
the pixel-based technique performed when its parameters were changed within
some reasonable range. In addition, it was also tested whether the method dis-
played any sensitivity to the geometrical structure of the object to be reconstructed.
It was clearly shown that the method was quite sensitive to the geometrical prop-
erties of the objects and that the most important parameter was the cooling factor
from a reconstruction quality point of view.

In order to mimic real-life physical conditions, a statistical noise model was pre-
sented, which was developed and incorporated into the simulation environment to
distort the projections by additive Gaussian noise. To improve the corrupted re-
constructions, the objective functional was supplemented by a regularization term,
which incorporated a priori information, preferring the homogeneous regions to
non-homogeneous areas. The benefits of regularization was examined by studying
the binary reconstruction results.

Next, the results produced by the reconstructions of a 3-level software phantom
were presented, where it was observed that the regularization term can also be
applied to improve the results of a multi-level pixel-based task.



Chapter 4

Physical background and
pre-processing

This chapter outlines the projection acquisition apparatus and how the real projec-
tions were obtained. We also describe the distorting effects arising from the physical
properties of the imaging system. As these distortions can cause serious degrada-
tion in the reconstruction results, it is necessary to correct them as best one can.
Hence a feasible sequence of correction steps was developed, whose benefits are
demonstrated via classical FBP reconstructions at the end of the chapter.

The results of this chapter were published in [11, 52].

4.1 Projection acquisition

In order to image an object, several kinds of radiation sources (gamma-ray, neutron,
X-ray, etc.) can be used, but the set-up of the apparatus of radiography presented
in Figure 4.1 is quite common and is widely used nowadays. The object to be in-
vestigated is placed on a rotating table. The table can be rotated by a PC-controlled
stepper motor, thus letting the beams pass through the object in different direc-
tions. The beams attenuated by the object strike a scintillator, which transforms the
detected radiation into visible light detected by a CCD camera. Since the camera
can be damaged by direct exposure to radiation, an optical mirror system conveys
the light from the scintillator to the CCD camera. The images taken by the camera
are stored temporarily by the camera controller, and then a dedicated PC reads out
the raw image data from this storage. In older systems the CCD camera is often
substituted by a removable and reusable detector plane that stores the image until
it is inserted in a special device, which retrieves the information and then erases
the content. A more detailed description of the imaging apparatus can be found in
[11].

As mentioned in Section 2.2.2, it will be assumed that the radiation source emits
parallel beams. This assumption is not unrealistic since when the object being inves-
tigated is far enough from the source, the transmitted beams will be almost parallel,
and no significant geometric distortion will be introduced into the projections.

49
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Figure 4.1: Imaging apparatus for collecting projections.

4.2 Radiation sources

Now we will discuss three kinds of radiation sources that are widely used in phys-
ical non-destructive examinations, namely X-ray, neutron, and gamma radiation.
They mainly differ in the installation of radiation source, absorption attributes of
the various materials, scattering, and the CCD camera or detector plane (so-called
converter) used. Their differences are reflected by the projections of the three ref-
erence cylinders shown in Figure 4.2. The cylinders were constructed from various
materials, but had the same geometry. Due to the different distances between the
radiation source, object, and detector, even the sizes of the projected objects ap-
peared to be different.

4.2.1 X-ray radiation

X-ray radiation was discovered by the German physicist Wilhelm Conrad Rontgen
in 1895, and this achievement earned him the first Nobel prize in Physics in 1901.

The basic way of producing X-rays is by accelerating electrons in order to hit a
target and knock out electrons from the inner shell of atoms. However, this electron
vacancy will be filled up by an electron from a higher shell and an X-ray photon is
emitted at the same time.

In the last few decades a range of applications for X-rays have appeared, such
as in medicine, material examinations, crystallography and astronomy. Thanks to
technological improvements, an X-ray generator is now of portable size, even if
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(usually lead) shielding is included. More literature on the topic of X-ray imaging
can be found in [39].

From a tomographic aspect, some important properties of X-rays should be em-
phasized. Materials of low density (air, water, etc.) transmit the X-ray photons
without attenuation, but the higher the density of the material (e.g. lead), the
more radiation is absorbed. The scattering can be collimated, the noise level can
be controlled, but mono-energy radiation is difficult and expensive to produce. An
image taken using an X-ray source is shown in Figure 4.2(a).

(a) A projection of a Plexiglas (b) A projection of an alu- (¢) A projection of an iron
cylinder taken using X-ray radi- minum cylinder taken using cylinder taken using gamma-
ation. neutron radiation. ray radiation.

Figure 4.2: Projections of cylinders with bores taken using different radiation sources.

4.2.2 Neutron radiation

Neutron radiation is an ionizing radiation consisting of free neutrons, which are
emitted during nuclear reactions. Since atomic fission (and fusion) can only be
produced by an atomic reactor, the radiation source is immobile, and neither the
radiation outlet can be moved or redirected. Therefore, the installation of the acqui-
sition systems must be adapted to the reactor facility. Next, the robust shielding (a
set of thick concrete wall modules) provides restricted opportunities from an object
size and a rotation point of view. Despite the severe conditions, collimation (e.g.
with gadolinium) is possible, but it is quite expensive; moreover, the device can be
up to several metres long.

Neutron and X-ray radiation differ in many respects. The most important one is
that neutron radiation is absorbed by light nuclei (e.g. hydrogen-rich materials like
water, paraffin wax, or concrete, where a considerable amount of water molecules
is chemically bound to the cement), but transmitted in an environment of heavier
nuclei like metals (iron, say).

Since the human body is mostly made up water, neutron radiation can seriously
damage the cells and DNA, hence this prohibits its application in medical treatment.



52 Physical background and pre-processing

However, it can be used for industrial objects containing materials of high as well
as low density, like water, acetone, and metal, as shown in Figure 4.2(b).

4.2.3 Gamma-ray radiation

Gamma-ray radiation is a light emission of high frequency (very short wavelengths)
emitted during electron-positron annihilation or radioactive decay. Since it is not
stopped by the skin, but penetrates the body and interacts with the living cells, it can
cause serious deformations in the genetic DNA. This fact gives rise to the necessity
of shielding in gamma-ray radiation experiments, which has to be constructed from
a large amount of high density materials. Thus its mobility is not feasible.

Since this radiation is modestly attenuated by materials of high density;, it is of
primary importance in non-destructive metal examinations. However, due to the
complex equipment, its employment is quite expensive. A gamma projection image
is shown in Figure 4.2(c).

4.3 The acquired projection

In non-destructive testing (NDT) the objects are imaged by rays radiated by external
radiation sources. The rays passing through the object are then partially absorbed,
while the unabsorbed particles strike the detector bins. The numbers of impacting
particles (counted by the detector bins) give the intensity values in the projection
images.

The connection between the initial and transmitted (unabsorbed) intensities, /g
and Ip, respectively, can be expressed as a function that depends on the absorption
(or attenuation) coefficient . of the object. Namely,

D
Ip=In(s,0)=Is-e +"" (4.1)
where S and D denote the source and the detector. This equation is a basic relation
in transmission tomography, and it is also known as Beer’s law. (See Figure 4.3.)

It can be seen that the exponent contains the integral in Eq. 2.1 for a fixed s
and ¢. In practice, the task is to determine p by making the assumption that /g
and /p are measurable. The value of y is immediately implied by the logarithmic
transformation of Eq. 4.1, and it has the form

D

/u(u)du =1In(Is/Ip). (4.2)

S

Several inferences can be drawn from this equation. The left hand side of the equa-
tion is zero if and only if /s = Ip, meaning that there is no attenuation when the
beam is being transmitted. When the detected intensity is zero (/p = 0), then no
attenuation can be determined, since the fraction on the right hand side cannot be
interpreted. The best that can be done is to assume an infinitely large absorption
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Incident Transmitted
‘ intensity (/) / intensity (7)) >.
Radiation Detector
emitter ;
Object

Figure 4.3: Scheme used to illustrate Beer’s law and the phenomenon of radiation atten-
uation. Ig is the intensity emitted by the radiation source, I is the intensity measured by
the detector, and [ is the length of the line segment intersected by the projection beam and
the homogeneous object.

under such circumstances. In real circumstances, the zero measurements are usu-
ally caused by an overly short exposure time, which can be eliminated by choosing
longer acquisition periods for the projections.

Another problem arises when the object is made of materials that have relatively
big and small absorption coefficients. If a material has a small ;1 and the exposure
time is long, the measured value can be nearly equal to /g, meaning that u = 0.
In contrast, if a material has a big u, a short exposure time results in I, = 0,
giving an infinite absorption coefficient. In these situations physicists have to decide
whether the object components with the low or high absorption coefficient are more
important, and the exposure time should be set accordingly. However, the exposure
period must not be too short as it results in a low signal-to-noise ratio and yields
poor projections. Lastly, the object being projected may accumulate some of the
radiation, and return it after a short latency. It can produce false detected intensity
values, and even lead to the case of Ip > Ig.

Since neither subsampling nor oversampling of the projection images improves
the reconstruction result, it is expedient to assign a pixel to each detector bin (and
perform the reconstruction as it is). That is, each pixel value in the projection image
represents the value measured by the corresponding detector bin of the acquisition
apparatus.

4.4 Imaging artifacts

Physically measured projections are usually unsuitable for an immediate reconstruc-
tion due to the effects the images are distorted by. One of the problems might be
when the intensity of rays or the sensitivity of camera changes during the acquisition
period. (Cold or warm camera electronics can produce such effects, for instance.)
Then brighter or darker projections may be acquired. Such images can be recon-
structed just with artifacts.

Some of the distortions are due to the properties of the image acquisition system.
For example, if the detector system is not uniformly sensitive in the whole field of
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view of projections, certain areas may be brighter, while others may be darker. This
non-uniformity case may produce ring artifacts in the image reconstructions.

Another source of artifacts might be when the projections are taken not exactly
as they should be in their necessary positions. For example, when the projection of
the axis of rotation is not exactly in the centreline of the projection images. This
can occur when the object, due to its size, cannot be placed on a rotating table, but
is rotated manually, say. This centre of rotation problem may blur the contours in
the reconstructed images.

In practice, it is common for the projection images to randomly contain white
isolated points owing to some problems with the detector system. For example,
some pixels may be burnt out in the detector plane.

Since the reconstruction is a distortion amplifying procedure, these corrupting
effects should be corrected before, during, or after the reconstruction. This study
deals only with the corrections performed before a reconstruction. To this end, a
set of pre-processing steps were developed, which are presented in the following
sections.

Some distortions are beyond the scope of this thesis. For instance, serious distor-
tions can be caused by the so-called beam hardening attribution of polychromatic
radiation; that is, when the beams consist of particles with a broad energy spec-
trum. The name of this phenomenon comes from the fact that the beams passing
through an object become ‘harder’ (the mean energy increases) because the low-
energy particles are absorbed more rapidly, leaving behind the high-energy ones.
This effect was left uncorrected.

Another type of corruption is the partial volume effect, when a single pixel (or
voxel in 3-dimensional space) contains a mixture of materials. When the effect is
caused by the inhomogeneity of the constituent materials, the homogeneity condi-
tion of DT is violated and pure discrete tomographic techniques cannot be applied.
If the materials are homogeneous, this distortion can still appear on the region bor-
ders, and usually means that the border is replaced by an intermediary intensity of
neighbouring regions.

Lastly, there is the distortion of metallic artifacts, which is common problem in
medical X-ray imaging, but it could not be identified in any of the physical measure-
ments studied here.

4.5 Pre-processing steps

The corrupting effects in medical and industrial imaging are sometimes quite dif-
ferent, hence the correction methods used in medical image processing are not
universally applicable or not sufficient in industrial tomography. Now we present
the distortions encountered in the physically acquired images, the corresponding
correction methods worked out to eliminate (or at least diminish) the corruptions,
and the logarithmic transformation that was indispensable when DT methods were
applied on real measurement data.

1. Cropping. The projection of the object being investigated often covers just a
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small part of the whole acquired image, so the relevant part is selected and
cropped from all projections. These cropped projection images of a smaller
size are used in the later pre-processing steps and reconstruction. The recon-
struction from cropped projections requires less memory and computational
time; in addition, the smaller (probably distorted) the background area in-
volved in the reconstruction, the better the reconstruction quality can be ex-
pected.

In Figure 4.4, an original 768 x 572 X-ray projection of a VIDICON tube can
be seen. It is obvious that the shielding (black regions) on the left and right
hand sides harmed the reconstruction and had to be cut down; moreover,
most of the background was eliminated as well. After, a 241 x 572 portion was
selected, which contained the object for each projection. (This is the white
box in Figure 4.4.)

Figure 4.4: One of the X-ray projections of the VIDICON tube (height ~ 18 cm, width
~ 3 cm). The white lines denote the cropped area.

2. Motion correction. It can also happen that the settings of the projection im-

ages were not perfect and that some of the images were not taken from the
right position. A consequence might be that the images are the rotated or
translated versions of the correct ones. In general, such distortions cannot be
corrected, unless we know (or can estimate) the parameters of the motions
that occurred during the projection acquisition. To estimate these parameters
some information can be exploited like object symmetry, external or inter-
nal markers, opposite projections, and projections from an acquisition using a
phantom object of a known geometry.

Actually, two new pre-processing methods were employed in the system. Both
correction methods can be divided into two sub-steps:

(a) Estimating the parameter values needed for the correction transforma-
tion.
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(b) Carrying out the correction transformation to obtain a new, corrected
projection sequence that will be utilized in later steps.

The difference between the two correction methods lies in the choice of trans-
formation:

(a) The first method is suitable when opposite projections are available, and
the positioning errors can be modelled such that the projections of the
rotation axis are translated horizontally in the projection images (along
a sine curve, say). In this case the necessary transformation is the hori-
zontal translation of each projection image, whose parameter values can
be determined by overlapping the flipped image and its opposite version
(‘centre of rotation correction’ [52]).

(b) The second method presumes that the projections of the object are very
similar (e.g. the projections of a tube from the directions perpendicu-
lar to the tube’s axis). By applying a suitable rigid registration on all the
projections to a selected reference image, one can find the correct projec-
tion settings. The registration technique applied here was Tanacs’s rigid
method published in [69].

3. Homogeneity correction. Sometimes the detector plane is not uniformly sen-
sitive in the whole field of view. This problem can be lessened if an ‘empty’
image is available. The empty image is acquired by imaging a homogeneous
radiation flux. If the detector system is uniformly sensitive, then this image
is almost constant. Otherwise, the empty image reveals how much correction
(multiplication) is necessary, pixel by pixel in each projection, in order to ob-
tain more constant images. The correction can be described mathematically
in the following way. For each pixel i of all Py projections,

1
T9i = Do, ; (4.3)

pempty,i

where py; , Pemptyi» and 7y, denote the intensity of the ith pixel in the orig-
inal ¥ projection (Fy), in the empty image (F.;,,,), and in the corrected o
projection (Ry), respectively.

An example of this distortion can be seen in the empty image shown in Fig-
ure 4.5. Moreover, another typical effect can be observed here, when the cen-
tral part of the ROI is lighter while the periphery is darker. It was caused by
the flux growing weaker from the radiation centreline towards the periphery,
which was also corrected by the homogeneity correction.

4. Intensity correction. It might happen that the total intensities of the projection
images vary during the acquisition period. The reason could be variations in
the neutron flux or the electronic properties of the camera, as described in
Section 4.3. When this occurs each pixel j in each image Py, (i =1,...,m)
should be multiplied by a suitable positive real constant C; such that
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Figure 4.5: The equalized empty image for the projection in Figure 4.4.

d
Ci Zp‘l?i,j ~ K; (4-4)

j=1

where d is the number of pixels in a projection, and K is a positive real denot-
ing the desired total intensity. In other words, the total intensity values will be
roughly the same in the corrected projections. For instance, for an arbitrary

fixed i € {1,...,m} reference projection, K can be calculated as
d
K=Y p, (4.5)
j=1

and C; can be defined by

K
Ci=—— (4.6)
Zj:l p'ﬁzv]
foralli =1,...,m. The author applied this form of intensity correction in the

experiments.

After this step the flickering, which is often visible when playing the projection
sequence like a movie, diminishes. This correction step can be divided into
two sub-steps:

(a) The calculation of correction factors for each projection.

(b) Performing the correction method, which yields a new corrected projec-
tion sequence for the subsequent correction steps and reconstruction.
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5. Isolated specks. The tomographic projections often contain white pixels (as
shown in Figure 4.8(b)), which appear as isolated points having a very dif-
ferent intensity value compared with its neighbourhood, and can give rise to
strong white lines in the reconstructions. In order to eliminate this kind of
problem in the projections, we performed thresholded median filtering. For
each pixel i of each Py projection

b — ) Do if |py; — med(NRH(Py,i,n))| < thr,
%7 med(NRH(Py,i,n)) otherwise,

where ry; is the intensity of the ith pixel in the corrected image Ry, med(.)
is the median operator, thr is a suitable threshold constant, and NRH(Py, i, n)
is a set which contains the intensity values of the n-neighbourhood pixels of
¢ in the image Py. Such an n-neighbourhood for n = 8 is depicted below in
Figure 4.6.

Figure 4.6: The 8-neighbourhood of the black pixel is represented by grey pixels.

6. Logarithmic transformation. In order to get the approximate values of the
line integrals (i.e. instead of working with the number of impacting par-
ticles counted by the detectors), a logarithmic transformation needs to be
performed on the measured intensity values, as defined in Eq. 4.2. Since this
transformation is always performed on the input data, all projections after this
pre-processing step are always logarithmically transformed projection images,
even if not explicitly stated.

It should also be mentioned here that all the transformed images were mul-
tiplied by a suitable constant to scale up the projection vectors such that the
intensity levels in the reconstructions span the interval [0, 1] as much as possi-
ble. These constants were estimated analytically based on the object geometry
and the original projection image.

The pre-processing steps outlined above will be applied to a VIDICON tube
(video camera accessory) projections in the next section.

4.6 Pre-processing of VIDICON tube projections

To demonstrate the benefits of pre-processing, the classical FBP was performed after
each correction step using SNARK93 [7]. SNARK93 is a programming system for the
continuous reconstruction of 2-dimensional images from 1-dimensional projections.
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The framework includes an entire spectrum of functionalities (like the generation
of phantom objects and their projections and a quantitative comparison of recon-
struction results) to support the scientific evaluation of tomographic reconstruction
techniques. Although newer versions of SNARK (SNARKO5 and SNARKO09) were
also available, we were only supplied with the early SNARK93 version.

360 projections of a VIDICON tube were taken in 1° angular steps using an X-
ray radiation source, which included all the distortions described in the preceding
section. One of its projections is depicted in Figure 4.4. The first pre-processing
step involved cropping the relevant area from the original projections, because the
object to be reconstructed covered only a small portion of the projections. The
reconstruction gave a very poor result (Figure 4.8(d)) when no other corrections
were performed in the projections. As observed, strong streaks appeared in the
reconstruction, which were caused by projections of higher total intensity.

The projection sequence indicated that the rotation axis was translating horizon-
tally during the acquisition, so the second step of pre-processing was the correction
of these motions. Since an opposite image was provided for each projection, the
rigid registration (described in Section 4.5) of each ¥ projection could be carried
out against the horizontally flipped opposite (¢ + 180°) projection. As the result
of the analysis of registration parameters, we found that each projection had to be
translated along a sine curve having a phase of 90° and amplitude of 2 pixels. That
is, the rotation axis moved slightly during the acquisition.

The diagram in Figure 4.7 shows the total intensities in the first 180 projec-
tions. As seen, roughly a 13% difference was observed between the maximum and
minimum total intensities. The increasing tendency of the total values could be ac-
counted for by the fact that the camera grew warmer during the acquisition process.
To eliminate this problem, the intensity correction step multiplied the projections
by suitable coefficients, such that the total intensity values of the corrected projec-
tions were practically constant for each projection (grey line in Figure 4.7). In this
way, the intensity levels in the reconstruction may not represent the real attenua-
tion coefficients from this point on, but the streaks vanished from the reconstructed
cross-sections. One of the reconstruction results got after cropping, motion and
intensity corrections can be seen in Figure 4.8(e).

When an empty projection image is available (as in the case here), homogeneity
correction (Section 4.5) can be performed. Since the empty image in Figure 4.4
indicated a non-uniformly sensitive detector system, it was necessary to carry out
this correction step. In Figure 4.8(c) it is readily seen that the projection became
more homogeneous after the correction, and the vertical streaks, caused by the
non-uniform sensitivity of the detector plane, became less obtrusive than in Fig-
ure 4.8(b). Moreover, the reconstructed cross-section in Figure 4.8(f) appeared a
bit more homogeneous compared with Figure 4.8(e). This homogeneity feature is
especially noticeable in the interior of the dashed circle.

Lastly, the correction of isolated specks was applied to each projection, which
involved the application of a thresholded median filter (8-neighbourhood, thr = 20
assuming a maximum intensity level of 255). In Figure 4.8(c) it is quite apparent
that a major portion of the white specks were successfully eliminated from the
projections.
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Figure 4.7: Total intensity values in the first 180 projections before (grey line) and after
(black line) intensity correction.

4.7 Summary

This chapter introduced the physical background of the imaging procedures em-
ployed in transmission tomography, and outlined the distortions caused by the phys-
ical properties of the imaging system. As these distortions caused serious degrada-
tions in the reconstructed images, they had to be reduced as much as possible. For
this purpose, the author provided a set of pre-processing steps that was able to cor-
rect the major problems identified. The benefits were demonstrated via the classical
FBP reconstructions of a VIDICON tube, where the author introduced two new pre-
processing steps. Intensity correction equalized the total intensities in the projec-
tions, thus correcting the varying flux rates that occurred during acquisitions, while
motion correction was applied when the projections were the translated and/or
rotated versions of the expected images.
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(e)

Figure 4.8: (a) One of the projections of a VIDICON tube after cropping, with size 241 x 572.
(The white line marks the cross-section shown below.) (b) The same projection after motion
and intensity corrections (the white circles mark isolated points to be corrected in the next
step). (c) The same projection as in (b) after homogeneity and isolated points corrections.
(d) Reconstruction of the cross-section (241 x 241) shown after cropping. (e) Reconstruction
of the cross-section produced after motion and intensity corrections. (f) Reconstruction of
the cross-section produced after homogeneity and isolated points corrections. The recon-
struction was performed by using the software package SNARK93 (filtered back projection,
cosine filter, cut-off frequency 0.5, Lagrange interpolation).






Chapter 5

Reconstructions of physical
phantoms

Here the reconstruction results of the pixel-based DT method based on the projec-
tions of different modalities are introduced by utilizing the simulation experiences
outlined in Chapter 3. The author presents the tests of three physical phantoms,
where the projections were acquired by applying X-ray, neutron and gamma radia-
tion sources. For each test he used so-called reference cylinders with the geometry
depicted in Figure 5.1, which were composed of different materials depending on
the type of radiation applied. All the cylinders contained three bores of various
diameters and depths in an asymmetric arrangement, and were filled up with dif-
ferent materials. That is, the projection beams pass through at least three materials;
namely air, the material the cylinder was composed of, and the materials the bores
were filled up with.
The author published these results in [43, 52].
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Figure 5.1: Diagram of the physical phantom object used in the experiments.

63



64 Reconstructions of physical phantoms

5.1 Reconstruction of a Plexiglas cylinder from X-ray
projections

The test object examined using an X-ray radiation source was a solid cylinder made

of Plexiglas, and the lower part of the deepest hole contained an aluminum screw.

One of the 72 equiangular 768 x 572 projections (2.5° angular spacing) and the
empty image are shown in figures 5.2(a)-(b).

| 1

(a) (b)

Figure 5.2: (a) One of the projections of original size. (b) The empty image just containing
the rotating table.

5.1.1 Pre-processing

After cropping the relevant area from the projections, 155 x 212 images were pro-
duced, which showed strong intensity fluctuations. First, the intensity problem was
taken care of. As seen in Figure 5.3, the total intensity values indicated a decreas-
ing flux measured by the detectors, where the discrepancy between the minimal and
maximal total values was over 12%. This problem could be identified as a darken-
ing image sequence while playing the projections as a movie, and the omission of
this step would have produced a similar effect as that shown in Figure 4.8(d).

In order to ascertain whether homogeneity correction needed to be performed,
a histogram equalization was performed against the projections and empty image
(figures 5.4(c)-(d)). The lighter bottom left and darker upper right corner con-
firmed some inhomogeneity in the images, which was eliminated by the homo-
geneity correction, as shown in Figure 5.4(e).

We found that the background of the projections contained a significant amount
of noise, which had a detrimental effect on the reconstruction result. This distor-
tion was reduced by subtracting the background to remove most of the noise at least
from background areas (see figures 5.4(f) and 5.5). In spite of this step, the corre-
sponding cross-sections still remained 3-level images: the subtracted background,
Plexiglas and aluminum.
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Figure 5.3: Total intensity values in the projections before (grey line) and after (black line)
intensity correction.
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Figure 5.4: (a) Cropping of the projection image in Figure 5.2(a). The deepest bore con-
tains an aluminum screw at its bottom. (b) The empty image. (c) Histogram equalized
version of (a). (d) Histogram equalized version of (b). (e) Histogram equalized version of
(a) after intensity and homogeneity corrections. (f) The projection displayed in (a) after
intensity correction, homogeneity correction and background subtraction.
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Figure 5.5: Sinogram of 18 projections of the cross-section represented in Figure 5.4(a).

5.1.2 Determination of intensity levels

The next problem was that the exact intensity levels of the image to be recon-
structed were unknown. Under ideal monochromatic (single-energy radiation) cir-
cumstances, the intensity values could be calculated from the linear attenuation
coefficients given in the literature. However, the production of monochromatic
beams requires expensive and complicated devices, hence they are usually not em-
ployed in real experiments. That is, the absorption coefficients calculated in any
way, can be viewed as approximate values only. This fact violated one of the basic
DT assumptions, namely that the exact attenuation coefficients of the few materials
comprising the object should be known in advance. So a technique had to be found
to estimate the correct absorption values.

In order to determine the intensity values, the idea [17] was to approximate
the discrete image [ (recall that f denotes the 3-level image sought) with the re-
construction of another image f having more intensity values than f, while the
smoothness term is kept turned on in the objective. An approximation of the inten-
sities can be obtained by determining the local maxima in the histogram of f.

Accordingly, a reconstruction was carried out using more intensity levels than
the number of materials in the object. The enlarged set of intensity levels were
produced by the equidistant division of the range of possible intensity levels. For
example, if 80 intensity levels are selected from the interval [0, 1], the enhanced set
of levels is {0,1/79,2/79,...,1}. The more intensity levels used, the more exact an
estimation can be achieved, but the number of intensities could not be increased
indefinitely as it brought about extremely long run-times.

A reconstruction result, which was obtained using 80 intensity levels got from
18 projections, can be seen in Figure 5.6. To get more homogeneous regions in the
reconstruction and, consequently, to get more accurate peaks in the histogram, the
smoothness penalty term was kept switched on (v = 2.0). As the objective was reg-
ularized, the projections were noisy (see figures 5.7(a) and (b)), and the technique
is a statistical one, thus the intensity levels obtained are only approximations.

The local maxima in the histogram of f seemed to yield good approximations
of the intensity levels to apply in the 3-level DT reconstruction. Since it may be
assumed that the intensities have a Gaussian distribution around the original lev-
els, the approximation can be more exact if the values are determined by fitting a
sum of the appropriate number (currently three) of Gaussian functions to the his-
togram. The mean values of these Gaussians can be regarded as approximations of
the original values in this case. The fitting operation can be performed by several
statistical software packages. The author used SPSS® 12 [8] and PeakFit® [6] for
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Figure 5.6: A reconstruction result (155 x 155) calculated via the pixel-based method based
on the sinogram shown in Figure 5.5 using 80 intensity levels.
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Figure 5.7: Two projections from the sinogram shown in Figure 5.5.

this purpose.

Figure 5.8 shows a histogram plot of the 80-level reconstruction depicted in Fig-
ure 5.6, where three accumulation points, 8, 120 and 252 are visible (see pointers).
In this way, intensity levels 8/255,120/255, and 252/255 were used in the 3-level
DT reconstructions. (Recall Section 3.2.2, where it was noted that the internal
representation of intensity values is normalized to the interval [0, 1], while the visu-
alizations are their natural grey-level depictions using 256 levels.)

5.1.3 Reconstruction results

With the three intensity values, which were quite suitable for DT, the multi-level
technique was applied. For the sake of comparison, we also performed FBP and
ART reconstructions via SNARK93. We chose ART besides FBP because it gave better
results than the other classical methods, even when there was a small number of
noisy projections available for the reconstructions.

The classical FBP results were calculated using a cosine filter, Lagrange interpo-
lation, and a cut-off frequency of 0.5, as shown by the SNARK93 command file in
Listing C.1. The ART technique performed 100 iterations with the relaxation pa-
rameter set to 0.1. It is also clear in the C.2 listing that the intermediate images
were smoothed in the first 30 iterations, but usually no worthwhile result could
be obtained when it was omitted. (A complete reference manual of the SNARK93
programming system can be found in [7].)

For the pixel-based reconstructions the author applied the parameter values
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Figure 5.8: Histogram of the reconstructed cross-section in Figure 5.6. Horizontal axis:
grey-level intensity value. Vertical axis: frequency of occurrences.

based on the experiences of noisy phantom results, as shown in Table 5.1. The

Parameter Value

7© 10.0
h 0.95
v 5000
N,y 15000
Nyej 14999

Table 5.1: Parameters of SA.

DT, FBP and ART reconstructions of the cross-section marked in Figure 5.4(a), got
from 18, 12 and 9 projections, can be seen in Figure 5.9. It may be observed that the
smaller the number of projections used, the more the sharper streaks degraded the
classical results. At the same time, the background was uniformly black in neither
the FBP nor the (smoothed) ART reconstructions as it should have been, since the
noisy background was subtracted before the reconstructions. Generally speaking, it
is obvious that the homogeneous materials do not constitute homogeneous regions
in the results of non-DT methods under such circumstances.

So, in this case, the DT technique reflects the real absorption values more realis-
tically than those for FBP and ART because it does not (cannot) show false intensity
levels. Instead it breaks up the larger homogeneous regions into smaller ones, and
a certain degree of inhomogeneity can be assumed in such cases.

After the reconstruction of all the cross-sections from 9 projections, the slices
from 130 to 160 were built up into a 3-dimensional model. For this purpose a
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| # of projs | DT | FBP | ART |

18

12

Figure 5.9: DT, FBP and ART reconstructions of the same cross-section got from 18, 12 and
9 projections. First column: the number of projections. Second column: DT reconstruction.
Third column: FBP reconstruction. Fourth column: ART reconstruction. The images have
been rotated by 20, 30 and 40 (360 / number of projections) degrees clockwise.

multi-platform medical data visualizer software package called 3D Slicer [1] was
employed, which is designed to process medical image formats, but it can be used
in industrial image processing as well. After some preparatory steps the model was
visualized via the volume renderer module of the program, and it produced the
3-dimensional object seen in Figure 5.10. Spatial visualization could not be carried
out for FBP and ART results, because the images were too inhomogeneous and the
streaks corrupted the model.

Exploiting the fact that the object geometry was known, it was possible to check
how the reconstruction preserved the original structure. For example, according
to Figure 5.1, the ratio of the diameters of the cylinder and the deepest hole was
30cm/5cm = 6, while the same ratio in the image got from 9 projections was
110 pixel /18 pixel ~ 6.11. In general, the DT results successfully reflected the geom-
etry well apart from a few small deviations.

5.2 Reconstruction of an aluminum cylinder from neu-
tron projections

The author was also supplied with the neutron projections of a reference cylinder
made of aluminum. The bores contained two kinds of fluids during the acquisi-
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Figure 5.10: Two 3-dimensional volume-rendered views of the Plexiglas cylinder recon-
structed from 9 projections by the DT method. The slices are visualized from 130 to 160.
Colours: black — air, grey — cylinder, red — screw.

tion in this case, where the bore of the biggest diameter was filled up with water,
and there was acetone in the others. That is, the object was composed of three
materials that had different neutron attenuation coefficients. As for the Plexiglas
cylinder, substitution of the materials was reasonable due to the similar attenua-
tion properties of Plexiglas and aluminum found when using the neutron radiation
source.

There were 180 projections taken with an angular spacing of 1°, and even an
empty image was projected. The dimensions of the original images were 365 x 400.
One of the projection images and the empty image are visible in figures 5.11(a)-(b).

5.2.1 Pre-processing

Although the appearance of the projections was good, the projections seemed to be
degraded by a number of imaging artifacts. They were obvious especially in the his-
togram equalized version of the projections and the empty image (figures 5.11(c)-
(d)). The darker border and lighter central region were caused by the burn-out
of the detector plane, which was fixed by the homogeneity correction. This pre-
processing step also eliminated the vast majority of white spots co-located in the
projections and the empty image. The results of the homogeneity correction are
shown in Figure 5.12. The remaining white specks were removed by the thresh-
olded (thr = 30) median filter.

Lastly, the varying total intensities of the projections (Figure 5.13) had to be
corrected. A difference of over 3% total intensity values could be identified between
the lightest and darkest images, thus an additional intensity correction was applied.
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Figure 5.11: (a) A neutron projection of the aluminum reference cylinder. The bores

contain fluids. (b) The empty image. (c) Histogram equalized version of (a). (d) Histogram
equalized version of (b).
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Figure 5.12: (a) Homogeneity corrected version of Figure 5.11(a). (b) Histogram equalized
version of the projection in (a).
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Figure 5.13: Total intensity values in the projections before (grey line) and after (black
line) intensity correction.

5.2.2 Determination of intensity levels

The intensity levels were determined using the same technique as that described
in Section 5.1.2. A reconstruction was performed from 10 projections using 256
intensity levels, while having the smoothness penalty term switched on in the ob-
jective (v = 1.0). The resultant image in Figure 5.14 clearly reflects the background
and the 2 materials comprising the reconstructed cross-section. From a DT re-

Figure 5.14: 256-level DT reconstruction of the second cross-section marked by the lower
line in 5.11(a) got from 10 projections.

construction point of view, the peaks in the histogram yielded the intensity levels
0,5/255 and 170/255 later used in the reconstruction. Since the histogram of Fig-
ure 5.14 contained a few high and a number of relatively small values, a logarithmic
histogram was plotted in Figure 5.15.

5.2.3 Reconstruction results

First, a continuous FBP reconstruction was carried out using all 180 projections,
where the resultant cross-sections (see Figure 5.16) displayed marked inhomogene-



5.2 Reconstruction of an aluminum cylinder from neutron projections 73

'

5

it

Logarithmic frequency

0 20 40 60 8 100 120 140 160 180 200 220 240
Intensity level

Figure 5.15: Logarithmic histogram of the cross-section in Figure 5.14. Horizontal axis:
grey-level intensity value. Vertical axis: base 10 logarithm of the frequency of occurrences.

ity. These shadow-like artifacts were probably caused by the hardening property of
neutron beams, and can also be observed in Figure 5.14. The DT technique has a
certain tolerance towards such artifacts when the smoothing term is switched on
in the objective; small local features and details are, however, expected to degrade
in this case. Since the slices containing four materials (Figure 5.16(a)) were too
inhomogeneous even for the DT reconstruction, the method was applied only for
the cross-sections that comprised fewer intensity levels. The inhomogeneity could
still be managed in these cases.

€)) (b)

Figure 5.16: Brightness and contrast adjusted filtered back projection results of the two
cross-sections marked in 5.11(a). The reconstruction was carried out using 180 projections.

As already indicated above and predicted by the classical results got from a
small number of projections, we expected a significant level of inhomogeneity to
be corrected by the smoothing regularization term. The DT results were generated
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by employing the reconstruction parameters given in Table 5.1 and the relatively
high v = 7.0. After performing the 3-level reconstruction from 10 projections, the
method produced the slice depicted in Figure 5.17.

| # of projs | DT | FBP | ART |

10

Figure 5.17: DT, FBP and ART reconstructions of the cross-section marked by the lower
line in 5.11(a) got from 10 projections. First column: the number of projections. Sec-
ond column: DT reconstruction. Third column: FBP reconstruction. Fourth column: ART
reconstruction.

Although some distortions (fuzzy region borders, geometrical deformations) are
visible in the pixel-based cross-section, the object is not fragmented in spite of the
strong beam hardening effect. The diameter of the reconstructed cylinder varied
between 190 and 200 pixels, while the bigger bore was around 31 pixels wide. That
is, the ratio of the diameters gives 195 pixel/31 pixel ~ 6.29 if the diameter of the
cylinder is assumed to be 195 pixels. It gives a deviation of about 5% compared
to the expected value of 6 (refer to Figure 5.1), which was probably caused by
the combined effect of the big v and the fact that the intensity levels are only the
discrete approximations of the real ones.

Comparing the pixel-based result with the FBP cross-section, it is readily seen
that the cylinder almost completely vanished from the FBP and ART images, and
it can be stated that the DT technique without a doubt outperformed the classical
methods on the same given tasks.

5.3 Reconstruction of an iron cylinder from gamma-
ray projections

Lastly, the third physical phantom was a cylinder made of iron, where the bottom
of the bores had lead membranes that were rolled up. There were 180 projections
taken using a 1° angular difference, and each projection image had the dimensions
157 x 217. Though the background intensity, seen in Figure 5.18, was constant, the
beams passing through the object provided an extremely low projection quality.

5.3.1 Pre-processing

The visible part of the background in Figure 5.18 reflected a uniformly sensitive
detector plane; thus, in contrast with the other reference objects, there was no
background image recorded here. The only two issues, which could be seen in the
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(a) (b)

Figure 5.18: (a) The 150° projection of the iron cylinder. (b) The projection vector marked
by the white line in (a) as a bar diagram. (The background was subtracted.)

projections, were the small amount of oscillations in the total intensity values and
the vertical streaks appearing in Figure 5.18. The oscillation problem was corrected
by intensity correction, but the latter could not be attributed to any of the well-
known distortions, hence it could not be diminished. This eventually led the author
to think that the projections were seriously inconsistent in some way.

5.3.2 Determination of intensity levels

The intensity levels (0, 14/255 and 24/255) were estimated by utilizing the same
technique as in the preceding examinations. It is clearly seen that the values covered
a relatively small portion of the interval [0, 1], which did not affect the optimizer,
but could cause some inaccuracy in the determination of intensity levels. Generally
speaking, the broader the interval the intensities span (within [0, 1]), the better the
estimates of levels can be.

5.3.3 Reconstruction results

The author performed DT reconstructions from 9 and 6 projections and applied the
optimization parameters summarized in Table 5.2. Choosing h = 0.975 meant a
fairly slow temperature reduction, which was reasonable due to the distorted and
uncorrected, hence possibly inconsistent projections.

Three cross-sections were reconstructed, depicted by the white and black lines
in Figure 5.18. The first slice (white line) crosses air and iron, while the other ones
(black lines) intersect air, iron and lead. The results from 9 projections are displayed
in Figure 5.19. The noise sensitivity of FBP yielded strong streaks in the reconstruc-
tions, and made the cylinder almost unidentifiable. ART gave better results, but a
fair degree of smoothing had to be applied along with the reconstruction, which
produced softer streaks but smoothed the edges. The DT method performed the
best for the 35th slice, but this cross-section was reconstructed as a 2-level image,
as this slice intersected air and iron only. In order to get homogeneous regions
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Parameter Value

7© 10.0

h 0.975
v 5000
N 15000
Nrej 14999

Table 5.2: Parameters of SA.

and compensate for the uncorrected distortion as well as the noise content of the
projections, the regularization coefficient v = 1.5 was applied in the penalty term.

| # of slice | DT | FBP | ART |

35

65

170

Figure 5.19: DT, FBP and ART reconstructions of three cross-sections marked in Fig-
ure 5.18(a) got from 9 projections. First column: number of the slice. Second column:
DT reconstruction. Third column: brightness, contrast and gamma adjusted FBP recon-
struction. Fourth column: brightness, contrast and gamma adjusted ART reconstruction.

The 65th and 170th slices crossed air, iron and the lead rolls as well, hence they
had to be treated as 3-level discrete image functions. The more difficult geome-
try, the three intensity levels, and the uncorrected distortion made it necessary to
increase the weight of the penalty term to v = 2.5. The increased coefficient re-
sulted in a spurious lead annulus on the region borders between air and iron, and
narrowed the bores compared with those seen in the classical results. This latter
outcome is reasonable, if it is taken into account that the lead rolls could not be re-
garded homogeneous, which probably contributed to the low reconstruction quality
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of the slices investigated.

| # of slice |

35

65

170

Figure 5.20: DT, FBP and ART reconstructions of three cross-sections Figure 5.18(a) got
from 6 projections. First column: number of the slice. Second column: DT reconstruc-
tion. Third column: brightness, contrast and gamma adjusted FBP reconstruction. Fourth
column: brightness, contrast and gamma adjusted ART reconstruction.

Reducing the number of projections to 6 (see Figure 5.20), the DT reconstruction
(v = 1.5) of the 35th cross section still reflected the geometrical properties better
than that for FBP, and ART, where the smallest bore almost vanished. In the 3-level
cases the lack of information caused by the relatively few number of projections
had to be compensated for by the a priori smoothness, otherwise the regions would
have fragmented. By contrast, the strong smoothing term almost made the bore
disappear in the 170th slice and also corrupted the 65th one.

As regards the ratios of diameters in the 35th slice got from 9 projections, the
ratio of the diameter of the reconstructed cylinder and the biggest bore was about
125 pixel/35 pixel ~ 3.57. Comparing this with the theoretical 30 cm/8 cm = 3.75,
a small inaccuracy (about 5%) could be observed. Since the bores could not be
restored satisfactorily in the other slices, this ratio could not be applied to the other
reconstructed cross-sections.

5.4 Summary

In this chapter, the author presented the first real applications performed on three
reference cylinders containing bores of different depths. The objects had the same
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and known geometry, but three different radiation sources were applied for imag-
ing the cylinders. The author analyzed the projection images and provided the
results of the pre-processing steps that were applied. Next, the pixel-based recon-
struction results were given, where the author performed the classical FBP and ART
reconstructions as well. Here it was clearly seen if the goal was a 3-dimensional
visualization of the object based on its reconstructed cross-sections, the pixel-based
reconstructions yielded more suitable slices than the classical techniques. Lastly, as
the attenuation coefficients of the materials constituting the object were unknown,
the author also introduced a technique to approximate the intensity values used for
the reconstructions.



Chapter 6

Reconstructions of physical objects

Here it was quite interesting to see how the method would perform when the dis-
crete set of intensity levels could not be determined. It may happen when the object
contains inhomogeneous materials, for instance. In this case an enhanced set of in-
tensity levels must be applied for the reconstruction, which can be achieved by the
proper equidistant discretization of the full range of possible intensity levels, as
was done in the determination of the intensity levels. In this way, the reconstructed
cross-section cannot really be regarded as a discrete image or a continuous one,
but it may lie somewhere between the two. Here the reconstruction results of the
method on the projections of a cardiac pacemaker battery and the control rod of an
atomic reactor are presented, where the homogeneity of the constituting materials
was not presumed.

The author published the results of this chapter in [13, 42].

6.1 Reconstruction of a cardiac pacemaker battery

The author was contacted by physicists from the Hahn-Meitner Institute, who wan-
ted to know whether the DT method was capable of reconstructing the battery of
a pacemaker using just a small number of projections [42]. The battery was com-
posed of two main components, namely the intrinsic part containing the electrically
charged material, and its housing (see the projection in Figure 6.1(a)). It was a
topic of interest because there is a strong connection between its lifetime and the
distribution of the charged material, hence the physicists wanted to have a spatial
model so as to inspect the intrinsic part.

There were 200 neutron projections! acquired equiangularly with a spacing of
0.9°, where each projection had a size of 447 x 512. Although the number of pro-
jections was large, it was intended to be reduced in the subsequent examinations
of other pacemaker batteries. As shown in Figure 6.1(a), but especially in Fig-
ure 6.1(b), the projections were almost noiseless and of good quality, thus there
was no need for pre-processing.

!The projections were provided by Prof. Wolfgang Treimer (Hahn-Meitner Institute, Berlin).

79
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(d)

Figure 6.1: (a) One of the neutron projections of a pacemaker battery. (b) The bar diagram
representing the projection marked in (a). (c) FBP and (d) ART reconstructions of the cross-
section shown in (a) using 200 projections.

6.1.1 Reconstruction results

First, the classical techniques were performed using the full set of 200 projec-
tions. One of the projections is shown in Figure 6.1(b), while the corresponding
reconstruction result based on 200 projections using the FBP and ART methods of
SNARK93 can be seen in figures 6.1(c)-(d), respectively. For the classical recon-
structions the same SNARK command files were employed, as given in listings C.1
and C.2. In both continuous reconstructions a certain degree of beam hardening can
be observed, which appear as dark shadows at the top and bottom of figures 6.1(c)-
(d). It predicted that this region would be reconstructed improperly as well in the
DT cross-sections.

In order to see how the DT technique behaves when only a small number of
projections but 256 intensity levels are provided, reconstructions were made from
20 and 10 projections using the parameters given in Table 6.1. Since the projec-
tions were perfect and no meaningful distorting effect could be identified, a quicker
temperature reduction (h = 0.9) was a reasonable decision. Recall that the lower a
h value is used for the reconstruction, the more CPU time one can expect to save,
especially in the case of large images. For the sake of comparison, FBP and ART
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were also performed with the same input data. In Figure 6.2 the DT and classi-
cal results from 20 and 10 projections are presented after brightness, contrast and
gamma adjustment. It is seen that the classical cross-sections became very streaky
due to the non-ideal conditions for a continuous reconstruction. Apart from the
background homogeneity, the DT method did not yield a remarkably better result
than the classical methods in the case when 20 projections were used. However,
when the number of projections fell to 10, the DT technique still performed well,
while the FBP method failed, and the ART results became blurred.

Parameter Value

7© 10.0
h 0.9
v 5000
Ny 15000
Nyej 14999

Table 6.1: Parameters of SA.

# of

projs FBP ART

20

10

Figure 6.2: Reconstructions of the slice marked in Figure 6.1(a) based on 20 and 10 pro-
jections. First column: the number of projections. Second column: brightness, contrast and
gamma adjusted DT reconstruction. Third column: brightness, contrast and gamma ad-
justed FBP reconstruction. Fourth column: brightness, contrast and gamma adjusted ART
reconstruction.

After the reconstruction of 50 slices, the cross-sections were turned into a 3-
dimensional volume-rendered model (Figure 6.3). In spite of the severe conditions,
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the irregular distribution of charged material is quite visible in each DT recon-
struction in Figure 6.2, and even clearer via multiple cross-sections in the volume-
rendered spatial model in Figure 6.3.

Figure 6.3: Two different volume-rendered views of the pacemaker battery. (Slices from
200 to 249, 20 projections.)

From a run-time perspective, the technique cannot be said to be fast in the case
of real measurements and an enlarged number of intensity levels. As already stated
in previous sections, the speed depends on the input data as well as the temperature
scheduling. A reconstruction from the pacemaker projections using hundreds of
intensities can cost a couple of hours. The average run-time using 10 projections
and 256 intensity levels was around 70 minutes. Thus, the reconstruction time of
cross-sections for the 50-slice spatial model was about 2.5 days.

6.2 Reconstruction of a boron-carbide control rod

Another live test [13] was performed on the projections of a control rod (Fig-
ure 6.4). Control rods are usually made of a tube filled with a neutron absorber,
where the absorber is a chemical element with a high neutron absorption capability
used to moderate the particle flux within the reactor core. However, any undesir-
able changes in the distribution of the absorber adversely affects its effectiveness,
so it was a vital examination from a nuclear reactor safety point of view.

There were 18 neutron images? taken from a single control rod having an alu-
minum wall (1 mm thickness) and containing a boron absorber. The goal of the
examinations was to find evidence and visualize the irregular absorber distribution,
especially at the bottom of the rod, where even the presence of bubble-like helium
accumulations were supposed (Figure 6.5).

2The projections were provided by Prof. Marton Balaské (Hungarian Academy of Sciences KFKI
Atomic Energy Research Institute, Budapest).
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Figure 6.4: Control rods are usually combined into assemblies. Source: Wikipedia.

6.2.1 Pre-processing

Even though the object was accurately rotated by a special device (as it could not be
placed on a rotating table), the position of the detector plane was imprecisely ad-
justed between the acquisitions of two neighbouring projections. It caused projec-
tions like these, which contained translated and/or rotated versions of the expected
images. Since the object could be treated as circularly symmetric, this distortion
was corrected by applying rigid registration on the projections. Two of the regis-
tered 611 x 3470 projections are displayed in Figure 6.5.

Figure 6.5: 10° and 70° projections of the control rod after a rigid registration and bright-
ness, contrast, gamma adjustment. The images have been rotated by 90° counterclockwise.
The darker lower section is boron-carbide with supposed helium inclusions.

Although strong flickering was visible while playing the 18 projections as a
movie, the effect could not be diminished by further pre-processing steps because
the problem was caused by neither homogeneity nor intensity distortions. In addi-
tion, Figure 6.6 makes it clear that the projection vectors were of a very low quality.
There were fewer than 20 dominating intensity levels in the histograms and the im-
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ages were quite noisy; moreover, the three detector planes used for the acquisitions
were also worn-out and damaged, causing the sharp black smears and streaks seen
in Figure 6.5. Such smears appeared in most of the projections and their widths
often exceeded 10 pixels.

Figure 6.6: Two different (60° and 150°) projection vectors of the 2585th slice marked by
the line in Figure 6.5.

6.2.2 Reconstruction results

Although it was assumed that the distribution of absorber material was inhomoge-
neous, the control rod was also reconstructed as a 3-level object from 9 projections.
The application of the pixel-based technique under such circumstances means one
expects the bad reconstruction of the absorber part, which was confirmed by the
3-dimensional model of the reconstructed slices in Figure 6.7. It is quite apparent
that the DT technique still performed well at the bottom of the rod (right hand side
of Figure 6.7(b)) where no absorber was present in the cross-sections, but the im-
ages became seriously corrupted as soon as the boron-carbide part appeared in the
slices.

Since the goal was also to establish the presence of helium bubbles within the
absorber, and better results could be expected when 256 intensity levels were ap-
plied during the reconstructions with the smoothing penalty term turned on, 100
cross-sections (from 2451 to 2550) of size 611 x 611 were reconstructed from 6
and 9 projections. The reconstruction parameters and values listed in Table 6.2
reveal that the cooling factor was kept at a relatively high level (h = 0.985) due to
the noisy and presumably inconsistent projections. It is also noticeable that even
the termination criterion giving the efficiency had to be lowered. It resulted in
longer reconstructions (20-30 minutes per cross-section), but a premature termi-
nation could not be avoided using the earlier set-ups. In spite of these adjustments
we still experienced noisy results, which were caused by the fact that the variances
(01 and o,) were calculated from a small sample, and the equilibrium states de-
tected by the optimizer were not true equilibria. Therefore, an augmented v was
employed during the optimization. That is, the experience gained with fine-tuning
the reconstruction parameters presented in Section 3.3 was cleverly exploited here.

The suspected inhomogeneity could be clearly seen as two spots in the lower
half region of both DT and ART reconstructions (Figure 6.8), while the poor FBP
results did not display the artifacts satisfactorily. With the DT results, further inho-
mogeneity appeared in the upper intrinsic area along the wall of the rod, but it was
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Figure 6.7: (a)-(b) Volume-rendered 3-dimensional visualizations of the control rod with a
transparent wall. (c) Volume-rendered 3-dimensional visualizations of the control rod with
a non-transparent wall. The intensity values used for the reconstructions were estimated by
applying the same technique as before.

Parameter Value

7O 10.0
h 0.985
v 15000
Nuw 20000
Nye; 19999

Table 6.2: Parameters of SA.
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not unequivocally attributable to the material distribution. The most convincing ev-
idence of helium bubbles can be observed in the spatial visualization in Figure 6.9,
where a large cavity was present via multiple slices.

# of
projs

Figure 6.8: Reconstructions of the 2585th slice using DT, FBP and ART techniques. First
column: the number of projections. Second column: brightness, contrast and gamma ad-
justed DT reconstructions. Third column: brightness, contrast and gamma adjusted FBP
reconstruction. Fourth column: brightness, contrast and gamma adjusted ART reconstruc-
tion.

6.3 Summary

In this chapter the author introduced two real (non-reference) objects, where the
homogeneity of the materials could not be assumed. As the original version of
the pixel-based method cannot be applied under such circumstances, the author
performed the reconstruction by employing an increased number of intensity levels
along with the smoothness regularization term.

First, the pixel-based reconstruction results of a cardiac pacemaker battery using
just a few projections were presented, which were turned into a 3-dimensional
visualization. With this model, the author could satisfactorily visualize the intrinsic
electrically charged part, which was the goal of the examination.

Next, the author presented the reconstruction of a boron-carbide control rod
of an atomic reactor. The task was to identify possible helium accumulations in
the lower section of the rod, which became clearly visible in the volume-rendered
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Figure 6.9: Two different volume-rendered views of cross-sections from 2451 to 2550. The
slices were reconstructed by the DT technique from 9 projections using 256 intensity levels.

model of the object. This provided persuasive proof for the physicists and justified
their original suspicions.






Chapter 7

The DIRECT framework

DIRECT is the abbreviation for DIscrete REConstruction Techniques, which was first
published in [53]. It is a programming system designed to provide a consistent
framework for implementing, comparing, and evaluating reconstruction algorithms
used in discrete tomography. A number of reconstructions, as well as the pixel-
based DT technique, were incorporated and the users can integrate additional meth-
ods into the system. The aim is not only to give a set of reconstruction algorithms,
but also to provide a tool for

e phantom generation,

e projection generation,
e image reconstruction,
e evaluation,

e and visualization.

All these components use a common file format for parameter specification as well
as data representation. Each component can be applied separately, but the frame-
work allows the user to carry out complex experiments. Such experiments make
it possible to run different reconstruction methods on the same projection data or
to apply the same method with different parameters. With this, the user can cre-
ate instruction files containing control commands for the system, which execute the
specified components with the given parameters. The input data and the results are
located in so-called data files.

Figure 7.1 shows how the DIRECT files and the components are related to each
other. Each component is controlled by the DIRECT core program, which drives the
components by virtue of the instruction file and passes the DIRECT data file to the
various components. The components are responsible for interpreting the input
data file and extending it with a phase output, as shown in Table 7.1.

The intention was to design a simple, easy-to-adapt, and loosely coupled set
of pluggable components, where the system provides a built-in implementation
of each module, but allows the replacement of any of them. The pixel-based DT
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| |
. testimage | . projection set |
| | |
AN I AN
Ger;e(;iion Projection Reconstruction
of data
/ :
|
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instruction file | results
| |
Y - ¥
Evaluation Visualization
| |
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............. | SO Y
diagrams, tables images

Figure 7.1: The scheme of the DIRECT framework. Solid boxes — components, dashed boxes
— data files, dotted boxes — other data artifacts. Solid lines represent the control flow, while
dashed lines denote the data flow. Source: [53].

Component Component input Component output
phantom generation phantom parameters generated phantom image
projection proj. parameters, orig. image generated projections
image reconstruction projections reconstructed image
visualization reconstructed image displayable image
evaluation reconstructed and orig. images statistics

Table 7.1: The input and output data of DIRECT the components.

method used custom implementations for the parallel projection generator, evalua-
tion, and reconstruction components, but it extensively utilized the DIRECT data file
format for inter-component communication.

7.1 DIRECT data files

The DIRECT data file provides a common file interface between the components
described in Figure 7.1 and has the XML (Extensible Markup Language) [4] format
with a prescribed structure. It can contain three kinds of nodes, namely discrete
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images, projection sets, and some additional information. With this format one
can store images and projections flexibly in different data type representations like
integer, float, word, byte, 3-representation [16], or in an external file of an arbitrary
user defined format. In the latter case, the user has the freedom to implement and
join custom file readers and writers. Besides numerical data, the DIRECT format
allows one to add meta information or comments referring to, for example, the
conditions of data acquisition and the name of the object the projections are made
from.

Three snippets of a sample DIRECT file are given in listings 7.1, 7.2, and 7.3. The
first listing stores a 5 x 5 (ncols and nrows attributes) binary digital image, where
each pixel is represented by an integer (datatype attribute).

<phantom>

<comment>Binary phantom</comment>

<image ascii datatype="int" ncols="5" nrows="5">
000O0O

10

00

00

00
</image_ ascii>

</phantom>

Listing 7.1: A binary phantom image represented in the DIRECT format.

The XML code seen in Listing 7.2 contains the 0° and 90° (angle attributes) pro-
jections of the phantom found in Listing 7.1. The projections were produced using
10 projection lines (ncols attribute) represented as integers, where each value is
calculated as a line sum (type attribute). Here ddist and dwidth record the dis-
tance between two neighbouring detectors and the width of a single detector. These
attributes play an important role, especially when the projections are real physical
measurements.

<projections ddist="1.0" dwidth="1.0" type="line">
<comment>Parallel beam projections </comment>
<projection angle="0.0" ncols="10" datatype="int">
<proj_ascii>
01410
</proj_ascii>
</projection>
<projection angle="90.0" ncols="10" datatype="int">
<proj_ascii>
11130
</proj_ascii>
</projection>
</projections>

Listing 7.2: DIRECT representation of two natural projections of the phantom image repre-
sented in Listing 7.1.
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Finally, Listing 7.3 is one of the possible reconstruction results produced after 150 000
iterations (niter attribute) by the pixel-based reconstruction technique. In order to
allow the comparison of results based on different parameter set-ups, <method> al-
lows one to link the input parameters of the reconstruction to the <reconstruction>
node.

<reconstruction >

<comment>A possible result </comment>

<method name="Pixel—based reconstruction technique">
<parameter name="natt" value="15000" />
<parameter name="nrej" value="14999" />
<parameter name="gamma" value="0.0" />
<parameter name="cooling factor" value="0.95" />
<parameter name="init temp" value="4.0" />
<parameter name="boltzmann" value="1.0" />

</method>

<image niter="150000" type="result">
<comment>A possible result </comment>
<image ascii datatype="int" ncols="5" nrows="5">
000O0O

01110
00100
00100
00100
</image_ ascii>
</image>

</reconstruction >

Listing 7.3: DIRECT representation of a reconstruction got from the projections presented
in Listing 7.2.

Since the DIRECT file must conform with a strict structure determined by the
format description, before processing the file users should check whether the XML is
a valid and well-formatted DIRECT file. This check can be accomplished by applying
another tool of the XML technology. The format is specified by an XSD (XML Schema
Definition) [9] file defining the grammar of DIRECT files.

A DIRECT file can become very large, hence the manual extraction of the infor-
mation contained may be quite problematic. To make things easier, an XSL/XSLT
(Extensible Stylesheet Language/Transformation) [5] was implemented, which fa-
cilitates the conversion of an XML to any other XML-based format. The basic vari-
ant of DIRECT XLS/XSLT is prepared to turn the DIRECT data representation into
an HTML file, and to furnish a visual representation in a Web browser, as shown
in Figure 7.2. However, this kind of visualization cannot display image objects of
arbitrary representations stored in the data files. To overcome this problem, the
author implemented a PGM [64] writer to display 2-dimensional image matrices in
a lossless displayable format. Hence all reconstructions depicted in this thesis are
256-level PGM P5 images.
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7.2 DIRECT instruction files

As mentioned previously, DIRECT comprises several components, which were imple-
mented in separate programs. In order to standardize how the user specifies the
data and parameters for any of the programs managed by the DIRECT system, some
control commands were introduced. These commands can be placed in an instruc-
tion file [53] having the XML format, which is executed by the DIRECT framework.

During the execution of an instruction sequence, several data files can be created
by the different applications. However, when a component seeks to extend a file,
which was already created by another component, the principle of file handling is
that the data files can only be appended and no modification is allowed. This rule
helps to preserve the consistency between data objects.

7.3 The Web interface

As well as the discrete tomographic techniques being developed at the Department
of Image Processing and Computer Graphics at the University of Szeged, the pixel-
based method was also integrated within the DIRECT framework and published via
the uniform Web interface available at [3]. The Web interface allows the visitor
to generate projections, execute reconstructions, visualize the results, and display
statistics. The following reconstruction techniques were made available and can be
tested online:

e The reconstruction of hv-convex connected discrete sets [15].
e The reconstruction of hv-convex discrete sets with absorption [49].
e The parametric reconstruction of binary circular objects [55].

e The pixel-based reconstruction of binary images [55].

For more details on the DIRECT framework, see [3] and [53].

7.4 Summary

This chapter gave a general overview of the DIRECT system, which provides a pro-
gramming environment for DT techniques. It described the data file format that
was utilized by the author as well, and the instruction files designed to perform
complex experiments.



94 The DIRECT framework

¥JDIRECT Information extraction - Mozilla Firefox - 101 x|

File Edit Wiew History Bookmarks Tools  Help

2 dimensional direct file

version 3.0

ASCII phantom:

Comarvent: Bitary phartorm
Dadatype: vt

Rous: 5

Coburims: 5

Projections:

Comanvent: Paralle]l bean projections
Detertor widdh: 1.0

Detector distance: 1.0

Type of projecticns: line
FProjedtion Yst:

atatype |Loc

=l
=
=3

il
=[]

TR
it

Reconstruction:

Comanend: & possible resalt
Mamne of The genverating mafhwed: Pizel-baced reconstmaction method
Pararnabers:

[ e

S00

—
=

= =
o|E
=]
=]

fl :

—
=1

T

Fage Bist:

E“ |Enlm'rms |1'laiaiype Location |Fm:mat | Cornonent

. 4 pozsible
it |15EIEIEIEI | |mt ‘Inmml | ot

ﬂj

| Daone I@ &
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Chapter 8

General summary

DT is a relatively new field of image processing and it does not yet have many real
applications. Hence, the goal of the research work described in this thesis was to
devise a new pixel-based DT technique that is suitable for the reconstruction of ob-
jects comprising a small number of homogeneous materials, and where just a few
projections are available. The new pixel-based DT technique introduced in Sec-
tion 2.3 produces the reconstruction result by minimizing an objective functional,
where the stochastic simulated annealing was applied as an optimizer.

First, in Chapter 3, the author tested the capabilities of the technique on binary
and multi-level software phantoms using noisy and noiseless projection images. As
the reconstruction of multi-level images and the reconstruction using noisy projec-
tions both result in similarly degraded images, a smoothness a priori was incorpo-
rated into the reconstruction model. Although the regularized results sometimes
merged adjacent object parts, it did yield an improved reconstruction quality.

The experience gained from varying parameters within reasonable changes in
the simulation tests made it possible to effectively apply the technique to real phys-
ical measurements. However, the projection images were corrupted by some distort-
ing effects, which needed to be handled before performing a reconstruction. Hence,
the author supplied a possible set of pre-processing steps and demonstrated their
benefits on the projections and reconstructions of a VIDICON tube in Chapter 4.

In Chapter 5 the author tested the pixel-based technique on three physical phan-
toms. Overall, it can be said that, after the execution of the necessary pre-processing
steps, the pixel-based DT method can produce acceptable reconstruction results,
even if the classical ones fail when there is a small number (< 10) of projections.
Under such circumstances, the DT technique reflects the real absorption values bet-
ter than FBP and ART do, because it cannot show false intensity levels. This fact
gives the pixel-based technique an advantage, especially for 3-dimensional visual-
izations, when ART and FBP do not perform well.

It was also of interest to learn how the pixel-based method would perform when
the object was made of a few materials, but their perfect homogeneity could not be
assured. For this purpose, the author was supplied with the projections of two real
(non-reference) objects. The first object was a cardiac pacemaker battery, where the
aim was to see whether the intrinsic part, containing the electrically charged ma-
terial, had a highly irregular distribution. The second object was a boron-carbide
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control rod of an atomic reactor. Here the task was to identify possible helium
accumulations in the lower section of the rod. In both cases, the author success-
fully applied the extended version of the pixel-based method (using 256 intensity
levels), and the 3-dimensional models constructed from the reconstructed images
and presented in Chapter 6 clearly confirm one’s suspicions even when only 10-
20 projections were available for the reconstructions. Lastly, Chapter 7 described
the DIRECT programming environment that the pixel-based method was integrated
into, and within which the above examinations were performed.

There are still a number of open questions to be addressed concerning how
the method might be further improved. A general approach should be found to
determine a good regularization coefficient based on the input data and parameters.
The method should be extended by an edge preserving technique so as to avoid the
replacement of borders of neighbouring regions by intermediary intensities. Yet
another issue is how the problem of inconsistency to improve the reconstruction
quality should best be handled. Lastly, as there is an apparent connection between
DT and image segmentation, it would be interesting to see whether some techniques
in segmentation could be adapted and applied in DT procedures.



Appendix A

Noisy binary reconstructions

(@ v = 1.0, avege RME = (b) v = 4.0, avrage RME =
14.1766. 6.8144.

(c) v = 10.0, average RME = (d) v = 20.0, average RME =
3.4694. 3.0058.

Figure A.1: Average reconstruction results of circles from o = 10 noisy projections obtained
using the pixel-based method (16 projections, 400 measurements/projection).
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(@ v = 1.0, average RME (b) v = 4.0, average RME =

25.2875. 12.9536.

(©) v = 10.0, average RME = (d) v = 20.0, average RME =
6.8582. 5.8013.

Figure A.2: Average reconstruction results of circles from o = 40 noisy projections obtained
using the pixel-based method (16 projections, 400 measurements/projection).
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(@~ = age RME = (b) v = 4.0, rage RME =
36.0315. 18.4101.

, average RME = (d) v = 20.0, average RME =
10.4659. 10.5076.

© 7 = 10.0

Figure A.3: Average reconstruction results of circles from o = 100 noisy projections ob-
tained using the pixel-based method (16 projections, 400 measurements/projection).






Appendix B

Noisy multi-level reconstructions

(a) v = 0.0, average RME™ = (b) v = 2.0, average RME™
63.5219. 14.4316.

(¢) v = 4.0, average RME™ =
22.6173.

Figure B.1: Average reconstruction results of circles from o = 5 noisy projections obtained
using the pixel-based method (16 projections, 400 measurements/projection).
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(a) v = 6.0, average RME™ = (b) v = 20.0, average RME™
22.6173. 84.7240.

Figure B.1: (Cont.) Average reconstruction results of circles from ¢ = 5 noisy projections
obtained using the pixel-based method (16 projections, 400 measurements/projection).
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(a) v = 0.0, average RME™ = (b) v = 2.0, average RME™ =
66.2146. 18.5684.

(c) v = 4.0, average RME™ = (d) v = 6.0, average RME™ =
25.3682. 44.3227.

(e) v = 20.0, average RME™ =
86.4631.

Figure B.2: Average reconstruction results of circles from o = 30 noisy projections obtained
using the pixel-based method (16 projections, 400 measurements/projection).






Appendix C

SNARK command files

PICTURE RECONSTRUCTION 155 1.0
PROJECTION REAL

EXECUTE CONVOLUTION
Experimental reference cylinder
COSINE 0.5 3

END

Listing C.1: SNARK93 command file used for the FBP reconstructions of the Plexiglas
reference cylinder.

PICTURE RECONSTRUCTION 155 1.0

PROJECTION REAL

STOP ITER 100

EXECUTE ART SMOOTH

Experimental reference cylinder

smoothing threshold is 100 weights are 7 2 1
1111111111111111111111111111111

ART3 RELAX CONST 1.0

CONSTRAINT ART2

END

Listing C.2: SNARK93 command file used for the ART reconstructions of the Plexiglas
reference cylinder.
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Summary in English

Discrete tomography is a relatively new area of image processing, and does not yet
have many physical applications. So the goal of the study was to develop a new
pixel-based DT reconstruction method designed for the reconstruction of industrial
objects (usually made of a few materials) from a small number of projections.

Simulation studies

After the elaboration of the theoretical background and the reconstruction tech-
nique, the author investigated the behaviour of the method by simulating the ideal
and simplest conditions, where the projections were noiseless and the object to be
reconstructed was a binary image. The most important task was to gain some expe-
rience with the parameterization of the SA optimizer, estimate the initial range of
the annealing parameters, and elaborate a suitable annealing schedule. Otherwise,
the improper choice of any of the parameters could allow the method to needlessly
run for a very long time or get stuck in a local minimum and terminate prematurely.
However, a careful choice of parameter values almost always led to good results.

In order to mimic the real-life physical conditions, a statistical noise model was
developed and incorporated into the simulation environment to distort the projec-
tions by additive Gaussian noise. Under noisy conditions, the projections usually
become inconsistent and perfect results (where the objective takes 0) cannot be
expected. To improve the corrupted reconstructions, the objective functional was
supplemented by a regularization term, which incorporated a priori information,
preferring the homogeneous regions to non-homogeneous areas. This is the usual
case for industrial objects just made of a few materials. Furthermore, the author
introduced a possible extension to enable the reconstruction of images containing
more than two intensity levels.

The author published his results in [17, 42, 43].

Pre-processing

The author had the opportunity to test the reconstruction technique on real mea-
surements. However, the acquired physical projections were affected by a number
of distortions caused by the physical properties of the imaging system. To lessen
the degradations, a series of pre-processing steps were carried out that could cor-
rect the major problems identified. The benefits of the pre-processing steps were
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proven via the classical FBP reconstructions of a VIDICON tube, where the author
introduced two new pre-processing steps. The intensity correction equalized the
total intensities in the projections that corrected the varying flux occurred during
the acquisition, while the motion correction could be applied when the projections
were the translated and/or rotated versions of the expected images.

The results were published in [11, 52] by the author.

Applications

After the projections were prepared for reconstruction, the author often encoun-
tered the problem that the attenuation coefficients of the materials constituting the
object were unknown, but the literature attenuation values could not be used due
to the polychromaticity of the projections beams. Since having a known set of in-
tensity levels is one of the basic DT assumptions, a technique had to be devised
to estimate the levels for the image reconstructions. The intention was to get es-
timates for them from the accumulation points in the histogram generated by the
pixel-based reconstruction, employing the smoothing term and using an enlarged
number of intensity levels.

The first real applications were performed on three reference cylinders contain-
ing bores of different depths. The objects had the same and known geometry, but
three different radiation sources (X-ray, gamma-ray and neutron) were applied for
imaging the cylinders. All the projection sequences were affected by several dis-
tortions, but most of them could be reduced by using an adequate pre-processing
step. In order to compare the DT results with the classical ones, both FBP and
ART reconstructions were generated using the widely applied and accepted SNARK
reconstruction framework. In general, we found that the DT reconstruction outper-
formed the classical methods in cases where there were too few projections avail-
able. Additionally, if the goal of the reconstruction was to carry out a 3-dimensional
model from the results, DT yielded more suitable slices than FBP or ART did. The
latter two produced streaky slices that could be softened by smoothing techniques,
but the smoothing operator destroyed the region borders and sharp edges became
almost unidentifiable.

The author was also supplied with a real (non-reference) object, which was a
boron-carbide control rod of an atomic reactor. The task was to identify possible he-
lium accumulations in the lower section of the rod. Although the object contained
few materials, their homogeneous distribution could not be guaranteed, so attenu-
ation coefficients and the corresponding discrete set of intensity levels could not be
determined. Instead, the author applied 256 intensities along with the smoothness
penalty, and then built a 3-dimensional model from the reconstruction results. In
this way, the helium bubbles became clearly visible, which was persuasive proof for
the physicists and justified their original suppositions.

The author also reconstructed a cardiac pacemaker battery composed of two
materials, but the homogeneity of materials could again not be presumed. The aim
was to confirm the assumption that the intrinsic part, containing the electrically
charged material, had a highly irregular distribution. The DT method managed to
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prove this suspicion via a volume-rendered model, even when only 10-20 projec-
tions were provided for the reconstruction.

The author also participated in the development of the DIRECT framework, which
is a programming environment to evaluate discrete tomographic techniques. He
developed an XSD-based tool to perform grammatic and semantic checks on the
DIRECT data files and an XSL/XSLT data converter to enable the data files be visu-
alized in Web browsers. Then the pixel-based method was incorporated into the
DIRECT system and published via the DIRECT Web interface.

The author published his results in [13, 17, 42, 43, 52, 53].

Conclusions

A new pixel-based DT technique was developed that is suitable for reconstructing
objects comprising a small number of homogeneous materials from a few projec-
tions. The author inspected the capabilities of the technique on software as well
as physical phantoms, and also tested it using real physical measurements. In
conclusion one can say that the pixel-based DT method can produce acceptable
reconstruction results, even if the classical ones fail when there is a small num-
ber of projections. Under such circumstances, the DT technique reflects the real
absorption values more properly than FBP and ART, because it cannot show false
intensity levels. This fact gives the pixel-based technique an advantage especially
for 3-dimensional visualization, when ART and FBP do not perform well.

Key points of the dissertation

The reconstruction method and simulations

The results were published in [42, 43] and in a book chapter [17].

I/1. The author devised and developed a new pixel-based DT reconstruction tech-
nique that is suitable for reconstructing discrete images containing a few in-
tensity levels from a limited number of parallel projections. In order to eval-
uate the technique on simulated data, he also implemented a parallel beam
projection system to generate tomographic projections for arbitrary grey-level
images. [17, 42] (sections 2.3 and 3.1)

I/2. The author analyzed the input parameters, and determined a possible set-up
of initial reconstruction arguments. In a simulation environment, the author
tested the pixel-based reconstruction technique to see how it performed when
its parameters were changed within some reasonable range. The subjects of
the investigation were the number of projections used for a reconstruction, the
initial temperature, the cooling factor, the termination criterion, the variance
needed to determine the equilibrium state, and the amount of noise added
to the projections. In addition, he also tested whether the method displayed
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1/3.

/4.

any sensitivity to the geometrical structure of the object to be reconstructed.
[17, 42] (sections 3.2.3 and 3.3)

For the simulation of the greatest distorting effect of real measurements, the
author developed a noise generator, which was designed to corrupt the perfect
projections by additive Gaussian noise. Since the results reflected a strong sen-
sitivity to statistical noise, he proposed, developed, and tested a smoothness
prior as a regularization term in the objective functional. [43] (Section 3.4)

The author constructed two possible extensions to enable the technique to
reconstruct multi-level discrete images, and tested the extension on 3-level
phantoms under ideal noiseless as well as noisy conditions. [43] (Section 3.5)

Pre-processing

The results were published in [11, 52].

1/1.

I/2.

As the tomographic projections are usually corrupted by a number of differ-
ent effects, the author devised a possible sequence of pre-processing steps
for the common distortions encountered in the physical measurements. He
also introduced two new pre-processing steps, namely intensity and motion
corrections. [52] (Section 4.5)

The author examined the benefits of utilizing the pre-processing steps on the
classical FBP reconstructions of VIDICON tube cross-sections. [11, 52] (Sec-
tion 4.6)

Applications

The results were published in [13, 42, 43, 52, 53] and in a book chapter [17].

I1/1.

II1/2.

I11/3.

The author provided and applied a technique that is capable of determining
the approximate values of the intensity levels, which are usually unknown in
the case of physical examinations. [17] (Section 5.1.2)

The author performed the pre-processing steps and reconstructed the X-ray,
neutron and gamma-ray projections of a Plexiglas, an iron, and an aluminum
reference cylinder, respectively. In order to compare the pixel-based method
with the classical ones, FBP and ART reconstructions were also constructed
using the SNARK93 programming system. [43, 52] (Chapter 5)

Within the cooperation of the Hahn-Meitner Institute (Berlin), the author re-
constructed a cardiac pacemaker battery from a limited number of X-ray pro-
jections, where the homogeneity of the materials could not be assumed. Based
on the reconstructed cross-sections, the author constructed a spatial model,
which clearly revealed the presumed irregular distribution of the electrically
charged intrinsic material. [42] (Section 6.1)
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111/4.

I1/5.

The author performed reconstructions from a small number of neutron pro-
jections of a boron-carbide control rod provided by the Hungarian Academy
of Sciences KFKI Atomic Energy Research Institute (Budapest). He also con-
structed a 3-dimensional visualization of the reconstructed cross-sections and
confirmed the irregular absorber distribution as well as the helium accumula-
tions in the lower section of the rod. [13] (Section 6.2)

The author participated in the development of the DIRECT system, integrated
the reconstruction method with the DIRECT framework, and published the
pixel-based technique via the DIRECT Web interface. [53] (Chapter 7)






Osszefoglalé magyar nyelven

A diszkrét tomografia a képfeldolgozas egy viszonylag 4j teriilete, és mint ilyen, még
nem bévelkedik a valds alkalmazasokban. A jelen tézisben targyalt kutatas célja egy
4j diszkrét tomografiai rekonstrukcios technika kifejlesztése volt, altalaban kevés
anyagfajtat tartalmazé ipari targyak néhany vetiiletbdl torténo rekonstrualasara.

Szimulaciok

Az elméleti alapok, valamint a rekonstrukcidés mddszer kidolgozdsa utdn a szerzé
els6ként az idedlis és legegyszeriibb bindris eset szimulacids vizsgalatat végezte el
zajtalan vetiiletekb6l. Ennek célja a szimulalt hiités paraméterezésével kapcsolatos
tapasztalatok gytjtése, illetve a kezdeti rekonstrukcids paraméterek és egy hiitési
litemezés meghatarozasa volt. Ezen ismeretek hidnyaban, a paraméterek helyte-
len megvalasztasaval, a rekonstrukciok szélséségesen hosszu ideig futhatnak, vagy
a korai termindldssal megrekedhetnek egy lokdlis minimumban. Mindazonaltal a
paraméterek koriiltekint6 beallitasaval majdnem mindig jo rekonstrukciés eredmé-
nyek érhetok el.

A valés fizikai koriilmények kozelitésére egy statisztikai alapu zajgenerator ke-
riilt beépitésre a szimuldcios rendszerbe, amely additiv normalis eloszlasu zajjal
terheli a generalt vetiileteket. Zajos kortilmények kozott a vetiiletek altaldban nem
tekinthet6k konzisztenseknek, igy tokéletes rekonstrukcids eredmény (amikor a cél-
fliggvény felveszi a 0 értéket) sem 4llithaté el mint zajtalan esetben. Ahhoz, hogy
a zaj altal torzitott rekonstrukcids képek mindsége javuljon, a szerzé kiterjesztette
a célfiiggvényt egy simasagi regularizacids taggal, amely elényben részesiti a ho-
mogén régidkat tartalmazo képrekonstrukcidkat az inhomogénekkel szemben. Ez
sokszor helytalld feltételezésnek tekinthet6 az ipari objektumok estében. A bonyo-
lultabb, tobb anyagfajtat tartalmazoé objektumok rekonstruéldsara a szerz6 ugyanitt
megadja a rekonstrukcidos modszer egy lehetséges kiterjesztését, amellyel a bindris-
nal tobb intenzitdsszintet tartalmazd diszkrét képek rekonstrualdsa is lehetségessé
valik.

A szerz6 az eredményeket a [42, 43] cikkekben és a [17] konyvfejezetben pub-
likalta.
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El6feldolgozas

A szerzonek lehet6sége nyilt arra, hogy a rekonstrukciés modszert valds vetiileti
képeken is tesztelje. A fizikai projekcidokat azonban gyakran éri szamos, a képalkotd
rendszer fizikai sajatossagaival magyardzhatd torzité hatas, mely hatasok csokken-
tésére elbfeldolgozasi 1épések egy lehetséges sorozatat dolgozta ki és valdsitotta
meg a szerzd. A korrekciok rekonstrukciés képekre gyakorolt jotékony hatdsai egy
VIDOCON cs6 klasszikus szlrt visszavetitéssel (FBP) kapott eredményein keresz-
tll keriiltek bemutatdsra. A szerzé itt két 4j eléfeldolgozasi 1épést is megadott.
Az intenzitas korrekcid a felvételek készitése soran fellépo fluxusingadozas hatasat
javitotta, mig a mozgaskorrekcié akkor volt haszndlhatd, amikor a projekcidk az
elvart vetiiletek helyett azok eltolt és/vagy elfogatott valtozatat tartalmaztak.
A szerz6 az eredményeket a [11, 52] kozleményekben publikalta.

Alkalmazasok

A vetiiletek el6készitése utan gyakran adddott a probléma, hogy a rekonstrukcié so-
ran hasznalandoé intenzitds értékek ismeretlenek voltak, meghatdrozasukra viszont
az irodalmi elnyel6dési egyiitthatok nem voltak alkalmasak az akvizicié soran al-
kalmazott sugarzas polikromatikus tulajdonsdga miatt. Mivel azonban a DT egyik
alapfeltétele ezen intenzitasszintek pontos ismerete, sziikség volt egy mddszer ki-
dolgozasara az alkalmazandé sziirkeségi szintek becslésére. Erre a célra a szerz6
megvaldsitott egy technikat, amely a rendelkezésre all6 vetiiletekbdl, az indokolt-
ndl nagyobb szamu (példaul 256) intenzitdsszint hasznalatdval, valamint a simasagi
biinteté tag bekapcsoldsaval végez rekonstrukciét. Az igy kapott rekonstrualt kép
hisztogramjanak torlédasi pontjaibél meghatarozhatdk az intenzitasszintek kozelitd
értékei.

A pixel-alapu technikat els6ként harom, kiilonb6z6 mélységli furatokat tartal-
mazd referencia hengerre alkalmazta a szerz6. A hengerek ismert, azonos geomet-
ridju targyak voltak, melyeket gamma, rontgen és neutron sugarzdssal vilagitottak
at. A kiilonb6z6 modalitasoknak tulajdonithatéan minden vetiileti sorozaton sza-
mos torzitds volt beazonosithatd, de legtobbjiik jol korrigalhaté volt a megfeleld
el6feldolgozasi 1épéssel.

A klasszikus modszerek eredményeivel vald Osszehasonlitas kedvéért, a szerzo
FBP és ART rekonstrukcidkat is végzet a SNARK93 rekonstrukcios keretrendszer
segitségével. A DT rekonstrukcidk elvégzése és az eredmények elemzése utan al-
talanossagban elmondhatd, hogy a pixel-alapu technika kevés rendelkezésre allo
vetiilet esetén jobb eredményt szolgdltat a klasszikus rekonstrukcidknal. Tovabba,
amikor az ilyen koriilmények kozott végzett rekonstrukcid végsé célja egy térbeli
modell megalkotdsa volt, akkor kizdrélag a DT mddszer eredményezett erre alkal-
mas keresztmetszeti szeleteket. Ugyanezekben ez esetekben az FBP és ART ered-
ményeket a felhasznalt vetiiletek kis szamabdl eredd, rekonstrukciékban megjelen6
savok rontottdk le. Ezek simitdsi technikdkkal gyengithet6k lettek volna, viszont a
simitds a régidk hatdrait is elmosta és beazonosithatatlanna tette.
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A szerz6 rendelkezésére allt egy atomreaktorokban hasznalt bor-karbid mode-
rator rudrdl késziilt vetiileti sorozat is. A feladat a rid alsé szekcidéjaban feltéte-
lezett hélium felhalmozddas kimutatdsa volt. Bar a targy csak néhany anyagfajtat
tartalmazott, ezek homogenitdsa nem volt garantalhatd, igy a diszkrét elnyel6dési
egylitthatok meghatarozasa sem volt lehetséges. Ezért a szerz6 a rekonstrukciét
256 intenzitdsszinttel és bekapcsolt simasdgi regularizdcios taggal végezte el. A ka-
pott keresztmetszeti szeletekbdl felépitett hAromdimenzids modellben meggy6zden,
tisztan lathatova valtak a hélium buborékok, igazolva ezzel a fizikusok eredeti sej-
tését.

Ugyanezen technikdval végzett a szerz6 sikeres rekonstrukcidt egy két anyagfaj-
tat tartalmazd pészméker akkumuldtoron, mely esetében ugyancsak az objektumot
felépit6 anyagok inhomogenitéasa volt feltételezhet6. A vizsgalat konkrét célja az
akkumulator bels6 részében elhelyezked6 toltéshordozé anyag irregularis eloszlasa-
nak kimutatasa volt, mely a pixel-alapi mddszer kimenetéb6l megkonstrualt térbeli
modell segitségével azonnal igazolhatd volt.

A szerz6 részt vett a DIRECT keretrendszer fejlesztésében, ami egy diszkrét to-
mografiai rekonstrukcidés modszerek kiértékelésére kifejlesztett program kornyezet.
Ugyanitt elkészitett egy XSD alapu grammatikai és szemantika ellenérz6 eszkozt,
valamint egy XSL/XSLT konvertdlot, amely lehet6vé teszi a DIRECT adat fajlok Web
bongészoben torténé megjelenitését. Végezetiil a pixel-alapu technika beépitésre
keriilt a DIRECT rendszerbe, és jelenleg is elérheté a DIRECT Web interfészén keresz-
tul.

A szerz6 az elért eredményeket a [13, 42, 43, 52, 53] cikkekben és a [17] konyv-
fejezetben tette kozzé.

Konkluziok

Egy 4j pixel-alapu DT technika keriilt megvaldsitasra, amely kevés vetiiletbdl tud re-
konstrualni néhany homogén anyagfajtat tartalmazé objektumokat. A szerzo vizs-
galta a pixel-alaptu technika képességeit szoftveres és fizikai fantomokon egyarant,
tovabba tesztelte a modszert valds vetiileti képeken is. A dolgozatban targyalt ered-
mények alapjan elmondhatd, hogy a rekonstrukciés technika akkor is elfogadha-
téan jé eredményt ad, amikor a klasszikus mddszerek mar nem alkalmazhatdk a
tul kevés rendelkezésre 4ll6 vetiilet miatt. Ilyen koriilmények kozott a pixel-alapu
technika jobban tiikrozi a valédi elnyel6dési egyiitthatékat mint a klasszikus méd-
szerek, mivel a DT rekonstrukciok nem tudnak hamis intenzitasszinteket eredmé-
nyezni. Tovabba az igy rekonstrudlt keresztmetszeti szeletekbdl olyan esetekben is
térbeli modell készithet6, amikor az ART és FBP modszerek erre a célra mar nem
adnak alkalmas eredményt.
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A disszertacié eredményei

A rekonstrukcios modszer és szimulaciok

Az eredmények a [42, 43] cikkekben és a [17] konyvfejezetben keriiltek publika-
lasra.

I/1. A szerz6 kidolgozott és megvaldsitott egy 1j pixel-alapt rekonstrukcios tech-
nikat, amely néhdny intenzitasszintet tartalmazé diszkrét képek kevés vetiileti
képbdl valé rekonstrudlasara alkalmas. Tovabba a rekonstrukcios technika szi-
mulalt adatokon torténd tesztelése céljabol a szerzo kifejlesztett egy sziirkear-
nyalatos képek parhuzamos vetiileteinek generdlasara felkészitett tomografiai
vetitérendszert. [17, 42] (2.3., 3.1. fejezetek)

I/2. A szerz6 elemezte és analitikus iton meghatarozta a rekonstrukciés technika
paramétereinek egy lehetséges kezdeti értékét, amelyek a kés6bbi szimula-
ciés kisérletek alapjat is képezték. A szerz6 tanulmdanyozta, hogy az egyes
rekonstrukcids paraméterek hangoldsa hogyan hat a rekonstrukcids techni-
kara és hogyan befolyasolja a rekonstrukcié mindségét. A vizsgalatok tar-
gyat a rekonstrukciohoz felhasznalt vetiiletek szdma, a kezdéhémérséklet, a
hiitési tényez0, a ledllasi feltétel és a vetiiletekhez hozzdaadott zaj paraméte-
rek képezték. A szerzé ugyanitt vizsgalta a rekonstrukcidés modszer rekonst-
rudlandd objektum geometriai struktirdja irdnt mutatott érzékenységét is.
[17, 42] (3.2.3., 3.3. fejezetek)

I/3. A valos felvételeken el6forduld legnagyobb tortzitast okozo hatds szimulala-
sara a szerzo6 kidolgozott és megvalositott egy zajgeneratort, amely a pontos
vetiileti adatokat additiv normalis eloszlasu zajjal terheli. Mivel a mddszer
érzékeny a statisztikai zajra, a szerz6 javasolta, megvaldsitotta és szimuldcids
adatokon teszelte a simasag a priori informdciéként regularizacids tagba tor-
téno beépitését. [43] (3.4. fejezet)

I/4. A szerz6 megkonstrualta a pixel-alapu technika két lehetséges kiterjesztését
azért, hogy az a tobb intenzitdsszintet tartalmazd képek rekonstrudldsdra is
alkalmazhato legyen. Tovabba ugyanitt rekonstrukcids teszteket végzett ha-
romértékl képeken zajtalan és zajos vetiiletekbdl egyarant. [43] (3.5. fejezet)

El6feldolgozas

Az eredmények a [11, 52] cikkekben kertiltek publikalasra.

II/1. A valds tomografiai vetiileteket éré fizikai hatdsok torzitdsanak csokkentésére
a szerz6 kidolgozta az el6feldolgozasi 1épések egy lehetséges sorozatat, me-
lyek koziil az intenzitds és a mozgas korrekcidt a szerz6 alkalmazta elséként.
[52] (4.5. fejezet)
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11/2

. A szerz6 az el6feldolgozasi 1épések rekonstrukciora gyakorolt pozitiv hatasat
egy VIDICON cs6 vetiiletein végzett klasszikus FBP rekonstrukciok kimenetein
mutatta be. [11, 52] (4.6. fejezet)

Alkalmazasok

Az eredmények a [13, 42, 43, 52, 53] cikkekben és a [17] konyvfejezetben keriiltek
publikdlasra.

/1

111/ 2.

I11/3.

I11/4.

II1/5.

. A szerz6 megalkotott és alkalmazott egy eljarast a valos alkalmazasok eseté-
ben ismeretlen intenzitasszintek becslésére. [17] (5.1.2. fejezet)

A szerz0 a sziikséges el6feldolgozasi 1épések elvégzése utan azonos geometri-
aju plexi, vas és aluminium hengerek rontgen, neutron és gamma vetiiletein
pixel-alapu DT rekonstrukcidkat végzett. Emellett az O0sszehasonlithatosag
érdekében elvégezte az FBP és ART rekonstrukciokat is a SNARK93 rekonst-
rukcids keretrendszer segitségével. [43, 52] (5. fejezet)

A Berlini Hahn-Meitner Intézettel k6z6sen végzett kisérletben a szerzo a pixel-
alapti modszerrel kevés szamu vetiiletbdl rekonstrudlt egy pacemaker akku-
muldtort, amely esetében a targyat alkoté anyagfajtak homogenitdsa nem
volt feltételezhetd. A szerz6 a rekonstrudlt keresztmetszeti szeletekbol egy
haromdimenziés modellt allitott eld, amely tobb keresztmetszeti szeleten ke-
resztiil mutatta a bels6 toltéshordozé anyag feltételezett irreguldris eloszlasat.
[42] (6.1. fejezet)

A szerz6 kevés szamu vetiiletbdl rekonstrudlt egy atomreaktorokban hasznalt
boér-karbid moderator rudat, mely projekcidkat a Magyar Tudomanyos Aka-
démia KFKI Atomenergia Kutatéintézete bocsatott a rendelkezésiinkre. A re-
konstrualt szeletekbdl a szerzo elballitott egy térbeli modellt, melyen keresz-
tlil kimutathato volt az abszorber anyag irregularis eloszlasa és a feltételezett
hélium buborékok als6 szekcidkban valo fokozott jelenléte. [13] (6.2. fejezet)

A szerz0 részt vett a DIRECT rendszer kifejlesztésében, tovabba integralta a
pixel-alapi mddszert a DIRECT rendszerbe és elérhetévé tette a DIRECT Web
interfészén keresztiil. [53] (7. fejezet)



