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1 Introduction
This dissertation seeks to study some classes of subfield subcodes of Hermitian codes.
These papers [EKN19; EKN20] present the results of our research that aims at revealing
the properties and the structure of the underlying classes of codes. Furthermore, we
intend to examine the potential of this class of codes to improve the practicality of
the McEliece cryptosystem. The problems we treat belong to coding theory and their
applications to cryptography. They have a common aspect, which is security that refers
to code-based cryptography. Here, we briefly introduce the preliminaries and the topics
with a short history that describes the main results.

The result of the paper [EKN19] is discussed in chapter 3 which is about the proof of
the true dimension of Hermitian subfield subcodes for specific parameters. Finding the
true dimension of the subfield subcodes of linear codes was studied by many researchers
who tried to improve the general bound of the dimension to obtain a code with a large
dimension and minimum distance. We only present this problem for the class of Goppa
codes in chapter 2. The solution to this problem allows us to find out more facts about
the class of codes and which can later lead to further research.
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In chapter 4, we rely on the paper [EKN20] which deals with the problem of ap-
proximating the true dimension of subfield subcodes of Hermitian codes by an explicit
formula. We describe the statistical set up to tackle the experimental study to analyze
the datasets of the true dimension of different subfield subcodes of Hermitian codes. The
datasets were computed using our GAP package HERmitian [NEK19]. Based on adjust-
ing the distribution to the underlying datasets using the method fitmethis of MATLAB
[TM19; Cas20], we found that the extreme value distribution is the most suitable one.

Chapter 5 is dedicated to applying subfield subcodes of Hermitian codes in cryptogra-
phy in which we precisely suggest the mentioned class of codes for McEliece cryptosystem.
Mainly, we give a formula of the public key size in terms of the code rate using the result
of the paper [EKN20], see also chapter 4. We describe an overview of post-quantum
cryptography in which code-based cryptography is part of, representing the central area
of applications concerning coding theory. This overview shows the importance of design-
ing cryptographic schemes that can resist post-quantum attacks since the presence of
quantum computer threatens the so-called classical cryptography. All cryptosystems are
based on a computationally hard problem such as integer factorization (RSA), or discrete
logarithm problem (ECC, El Gamal).
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2 Preliminaries
In the last decades, there has been a huge need for reliable digital data transmission
and storage systems. This need has grown thanks to the appearance of high-speed data
networks for the interchange, the treatment and the storage of digital information in

1Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP
funding scheme.
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both the public and private sectors. It is necessary to incorporate communications and
computer technology to design such systems. Obtaining a reliable data reproduction can
be done by controlling the occurred errors which is the major aims of a designer.

In 1948, Shannon introduced a mathematical framework to describe communication
channels with or without errors. In his famous paper [LC01], Shannon demonstrated the
existence of encoding and decoding schemes. This work was to some extent inspired by
Ludwig Boltzmann’s work in statistical physics. Hamming gave the idea of detecting
and correcting errors. It was a consequence of resolving the problem when his computer
came to turn off every time it detected an error. Shannon’s Second Theorem concerns
channel coding. In other words, it adds extra information to a message that is intended
to be sent in a noisy channel which protects it against transmission errors. Moreover, this
extra information permits us to detect or even correct some transmission errors which
gave birth to error-correcting codes theory.

2.1 Subfield subcodes of linear codes
Definition 2.1. Let C be a [n, k] linear code over Fq, where q = rm is a prime power.
The Fq/Fr subfield subcode C|Fr of C is by definition the set

C|Fr = C ∩ Fnr

of all codewords in C with components in Fr.

The Fq/Fr subfield subcode is a linear (n, k0, d0) code with d ≤ d0 ≤ n and n− k ≤
n− k0 ≤ m(n− k). A parity check matrix of C over Fq yields at most m(n− k) linearly
independent parity equations over Fr for the subfield subcodes C|Fr .

In general, the minimum distance of the subfield subcode is bigger than the minimum
distance of the original one.

Let TFq/Fr be the trace polynomial in the field Fq with respect to Fr, that is

TFq/Fr(x) = x+ xr + ...+ xr
m−1

.

For a vector c ∈ Fnq , TFq/Fr(c) = (TFq/Fr(c1), · · · , TFq/Fr(n)). For a linear code C of
length n and dimension k over Fq, TFq/Fr(C) is a linear code with the same length of C
and dimension k1 over Fr.

Delsarte has come up with a very important result which relates the subfield subcode
to the trace code in the following theorem:

Theorem 2.1 ([Del75]). Let C be a [n, k] linear code over Fq. Then (C|Fr)⊥ = TFq/Fr(C⊥)
holds.

The class of subfield subcodes and trace codes held the attention of many researchers.
A lot of work was done on the class of subfield subcodes by Stichtenoth [Sti90], and it
was improved upon in [SMS97]. The study of trace codes was made by Van der Vlugt
[Vlu91; VDV91]. Roseiro stated the relation between trace codes and Goppa codes which
was established in [Ros+92] using the tool given by Delsarte (see [Del75]).
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Lemma 2.2. Let C be an [n,K] linear codes over the finite field Fq, where q = rm. The
subfield subcode of C satisfies:

dimFr(C ∩ Fnr ) = n−m(n−K) + dimFr(ker(TFq/Fr)). (1)

2.2 The true dimension of binary Goppa codes
By choosing the parameters of the binary Goppa code in an appropriate way, it is possible
to increase its dimension and minimum distance. In this section, we investigate the
problem of finding the true dimension of Goppa codes which is considered as subfield
subcodes of generalized Reed-Solomon codes. We summarize two strategies that are
used to get new bound for the dimension of Goppa codes which was the aim of many
researchers [Ros+92; BS95; Véro01; Vér05; Vér98].

The first strategy is about the link between the parity check matrix H̃ of Goppa
codes and the parity check matrix H of GRS codes. The parity check matrix defined
above does not generate the dual of Goppa codes because it is defined over Fq. We can
compute the parity check matrix H̃ over Fr from the parity check matrix H over Fq by
converting each column vector of H to a column vector over Fr. Therefore, computing
the dimension of Γ (L, g) is equivalent to computing the rank of H̃. H has deg g(z) rows,
then H̃ has m deg g(z) rows which are not necessarily independent. This strategy has
been stated in [Vér98], where the author explained (with an example [Vér05]) how to
improve the bound k ≥ n−m deg g(z), by looking for some polynomials and choosing a
special basis, when computing H̃ from H, in order to find linear dependent rows [Vér05].

The second strategy used Delsarte’s result [Del75] so as to define codes with large
dimension k. It is based on using the image of the dual code under the trace map with
a rank that is equal to redundancy [Ros+92]. The objective of the strategy is to find
polynomials g(z) such that the trace map has a large kernel. This strategy was the main
idea of [Ros+92], it was applied to the classes of primitive binary Goppa codes whose
polynomial satisfies G2s (X) ≡ G (X) ( mod X22s +X).

3 Algebraic geometry codes

3.1 Algebraic geometry codes (AG codes)
Let q be a prime power, and Fq be the finite field of order q. Let X be an algebraic curve,
i.e., an affine or projective variety of dimension one, which is absolutely irreducible and
nonsingular and whose defining equations are (homogeneous) polynomials with coeffi-
cients in Fq. Let g be the genus of X . In the following, P1, · · · , Pn are pairwise distinct
places on X and D is the divisor D = P1 + ... + Pn. Furthermore, G is another divisor
with support disjoint from D.
Definition 3.1. The algebraic geometry code CL (D,G) associated with the divisors D
and G is defined as

CL (D,G) = {(f(P1), f(P2), ..., f(Pn)) | f ∈ L (G)} ⊆ Fnq .
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Figure 1: Dimension and designed minimum distance of AG codes

deg(G)

dim dim = deg(G)− g + 1δΓ = n− deg(G)

n

0 2g−2 n n+2g−2

In other words, CL (D,G) is the image of L (G) under the evaluation map

L (G) 3 f 7→ (f(P1), ..., f(Pn)) ∈ Fnq .

Theorem 3.1 ([Sti09]). CL (D,G) is a [n, k, d] codes with parameters:

• k = `(G)− `(G−D) where `(G) = dim L (G)

• d ≥ n− degG

We illustrate the behavior of the dimension k of CL (D,G) depending on the degree of
the divisor G by Figure 1. In fact, Theorem 3.1 implies the exact value k = deg(G)−g+1
provided 2g− 2 < deg(G) < n. Furthermore, if deg(G) > n+ 2g− 2, then k = n. In the
intervals [0, 2g − 2], and [n, n+ 2g − 2], the dimension depends on the specific structure
of the divisor G.

3.2 Hermitian codes
An important class of AG codes that have good properties is the class of Hermitian
codes. This class is constructed by employing Hermitian curves over a finite field. The
Hermitian curve Hq over Fq2 in affine coordinates has the form

Hq : Y q + Y = Xq+1.

Its rational points are points of the projective plane PG(2, q2), satisfying the homoge-
nous equation Y qZ + Y Zq = Xq+1. It is easy to verify that Hq is nonsingular, then its
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genus is g = q(q− 1)/2 by the genus formula. With respect to the line Z = 0 at infinity,
Hq has one infinite point P∞ = (0 : 1 : 0) and q3 affine rational points P1, . . . , Pq3 , which
make the class of Hermitian curves interesting since they attain the maximal number of
rational points for the famous Hasse-Weil bound [Men+13]. As usual, we also look at
the curve Hq as the smooth curve defined over the algebraic closure F̄q2 . Then, there
is a one-to-one correspondence between the points of Hq and the places of the function
field F̄q2(Hq).

With a Hermitian code we mean a functional AG code of the form CL (D,G), where
the divisor D is defined as the sum P1 + · · · + Pq3 of all affine rational points of Hq.
In our investigations, the divisor G can take two forms. In the 1-point case, we set
G = sP∞ with integer s. In the degree 3 case, we put G = sP , where P is a place of
degree 3. Let P1, P2, P3 be the extensions of P in the constant field extension of Fq2(Hq)
of degree 3. Then P1, P2, P3 are degree one places of Fq6(Hq) and, up to labeling the
indices, Pj+1 = Frob(Pj) where Frob is the q2-th Frobenius map and the indices are
taken modulo 3. Also, P may be identified with the Fq2-rational divisor P1 + P2 + P3 of
Fq6(Hq). Functional AG codes of the form CL (D, sP∞) and CL (D, sP ) will be called
1-point Hermitian codes, and Hermitian codes over a degree 3 place, respectively. In the
1-point case, the basis of the Riemann-Roch space L (sP∞) can be given explicitly by
[Ste12]:

M(s) :=
{
xiyj | 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1, qi+ (q + 1)j ≤ s

}
.

In the degree 3 case, the Riemann-Roch space

L (sP ) =
{

f

(`1`2`3)u | f ∈ Fq2 [X, Y ], deg f ≤ 3u, vPi
(f) ≥ v

}
∪ {0}.

can be computed, see [KN13]. In this formula, `i = 0 is the equation of the tangent line
of Hq at Pi, and s = u(q + 1)− v, 0 ≤ v ≤ q.

The group Aut(Hq) of all automorphisms of Hq is defined over Fq2 . It is a group of
projective linear transformations of PG(2, q2), isomorphic to the projective unitary group
PGU(3, q). Furthermore, Aut(Hq) acts doubly transitively on the set {P∞, P1, . . . , Pq3}
of Fq2-rational points. As it was pointed out in [KN13], the automorphism group of Hq

acts transitively on the set of degree 3 places of Fq2(Hq), as well. Hence, the geometry
of a degree 3 place is independent on the choice of P . However, the stabilizer GP of P
in Aut(Hq) is not transitive on the set of q3 + 1 rational points. In fact, GP is a cyclic
group of order q2 − q + 1 and the number of GP -orbits on the set of rational points is
q + 1. (See [CKT99; KN13], where [CKT99, Section 4.2] holds for any characteristic.)

3.3 On the true dimension of the subfield subcodes of 1–point
Hermitian codes

The 1–point Hermitian code H(q2, s) has length n = q3, if 2g − 2 < s < n then the
dimension is k = s− g + 1 and the minimum distance is d = q3 − s.
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Definition 3.2. Let H(q2, s) be a 1–point Hermitian code, the subfield subcode of H(q2, s)
is

Cq,r(s) = H(q2, s)|Fr .

In [PJ14], the authors present an algorithm to compute dimCq,r(s). Using this algo-
rithm, the dimension of C4,2(s) is determined for each s = 0, . . . , 71.

In [Vlu91, Proposition 3.2], the author shows

dimTFq2/Fr(H(q2, q)) = 2m+ 1,

where q = 2m. In our notation, this means

dimCq,r(q3 + q2 − 2q − 2) = q3 − (2m+ 1).

In particular, dimC4,2(70) = 59, which is confirmed by [PJ14, Table 2]. In the same
table, we find dimC4,2(s) = 1 for s = 0, . . . , 31 and dimC4,2(32) = 5. In the next section,
we prove a formula which implies these dimensions. The following is the main result of
[EKN19]

Theorem 3.2. Let Cq,r(s) be a subfield subcode of the Hermitian code H(q2, s), q = rm

is a prime power. Then

dimCq,r(s) =
{

1 for s < q3

r

2m+ 1 for s = q3

r

4 Estimating the dimension of Hermitian subfield
subcodes

In this chapter, we study the possibility of the application of subfield subcodes of Hermi-
tian codes in the McEliece scheme. More precisely, we do the first step by investigating
the true dimension of these codes for a broad spectrum of parameters, for partial results,
see [EKN19; PJ14]. Our main observation is that the true dimension of subfield subcodes
of Hermitian codes can be estimated by the extreme value distribution function.

We established an approximating formula of the true dimension of the subfield sub-
codes of Hermitian codes. We conducted an experimental study to analyze the datasets
of the true dimension of different subfield subcodes of Hermitian codes. This analysis
helped us to derive new properties of their structure and led to an approach that might be
useful for further research and applications. Before we tackle our contribution, we need
to describe the set up of statistical formulas such as moment and expectation by mean
of the extended rate function of the underlying classes of subfield subcodes of Hermitian
codes.
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4.1 Moments of the extended rate of subfield subcodes
In order to make our notation consistent, we make the following conventions. Let X be
an algebraic curve over Fq and D,G divisors such that the AG code CL(D,G) is well
defined. Assume that the objects δ and γ determine the curve X and the divisors D,G
in a unique way. Let s be an integer and Fr be a subfield of Fq. Then,

Cγ
δ,r(s) = CL(D, sG)|Fr

denotes the Fq/Fr subfield subcode of the AG code CL(D, sG). The length of Cγ
δ,r(s) is

n = deg(D).
For the integer s, let

R(s) = Rγ
δ,r(s) =

dimFr C
γ
δ,r(s)

n

denote the rate of the subfield subcode Cγ
δ,r(s). We extend Rγ

δ,r to R in the usual way:
Rγ
δ,r(x) = Rγ

δ,r(bxc).
We can consider R(x) = Rγ

δ,r(x) as the distribution function of some random variable
ξ. In this way, Rγ

δ,r(s) has an expectation Eγδ,r, a variance Varγδ,r and a standard deviation
Dγ
δ,r. These constants can be computed from the true dimensions of the subfield subcodes.

4.2 Computed true dimensions of Hermitian subfield subcodes
Let q be a prime power. We say that the object δ = q determines the Hermitian curve
Hq over Fq2 , together with the divisor D which is the sum of affine rational points of
Hq. The objects γ = 1-pt or γ = deg-3 determine the divisor G to be equal either to the
rational infinite place P∞, or the degree 3 Hermitian place P , respectively. That being
said, for any integer s and subfield Fr of Fq2 , the Hermitian subfield subcodes

C1-pt
q,r (s) = CL(D, sP∞)|Fr , Cdeg-3

q,r (s) = CL(D, sP )|Fr

are well defined and consistent with the notation of section 4.1. In chapter 3, we denoted
Cq,r(s) by C1-pt

q,r (s). All these codes are Fr-linear codes of length n = q3.
Let R1-pt

q,r (s) and Rdeg-3
q,r (s) be the true rates of the codes C1-pt

q,r (s) and Cdeg-3
q,r (s). Using

the GAP [Gap] package HERmitian [NEK19], we have been able to compute the true
dimension values of the codes C1-pt

q,q (s), Cdeg-3
q,q (s) for

q ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13}

and the binary codes C1-pt
q,2 (s), Cdeg-3

q,2 (s) for

q ∈ {2, 4, 8, 16}.

We computed the expectations E1-pt
q,q , E1-pt

q,2 , Edeg-3
q,q , Edeg-3

q,2 , the variances Var1-pt
q,q , Var1-pt

q,2 ,
Vardeg-3

q,q , Vardeg-3
q,2 , and the standard deviations D1-pt

q,r , D1-pt
q,2 , Ddeg-3

q,q , Ddeg-3
q,2 for these true

rates. In Figure 2, we present the ratios Eγq,r deg(G)/n and Dγ
q,r deg(G)/n, where γ ∈

{1-pt, deg-3}. While our data sets are small, these figures motivate the following open
problem.
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Figure 2: The ratios of expectations and standard deviations to n/ deg(G)
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Problem 4.1. Are there constants c1, c2 > 0 such that

E1-pt
q,q ≈ Edeg-3

q,q ≈ c1q
3/ deg(G), D1-pt

q,q ≈ Ddeg-3
q,q ≈ c2q

3/ deg(G),

where a ≈ b means a/b→ 1 with q →∞.

Our data suggests that for small q, the choice c1 = 0.75 and c2 = 0.2 is sound.

4.3 Distribution fitting
In general, no explicit formula is known for the true dimension of subfield subcodes of
AG codes. We study the behavior of the subfield subcodes of Hermitian codes using
distribution fitting methods. With fixed q, r and γ ∈ {1-pt, deg-3} the dimensions of the
subfield subcodes are given by the extended rate functions

R1-pt
q,q (x), R1-pt

q,2 (x), Rdeg-3
q,q (x), Rdeg-3

q,2 (x).

Our goal is to consider these functions as distribution functions and fit some well known
probability distribution functions to our experimental rate function R(x).

We obtain numerical results by using the distribution fitting methods offered by
MATLAB’s Statistics and Machine Learning Toolbox [TM19]. To compare different
distributions for a given data set, one can use the log-likelihood values for a ranking.
This is implemented MATLAB’s fitmethis function [Cas20]. We restricted ourselves
to parametric distributions having at most two parameters, that is, we used fitmethis
to compare the log-likelihood values of the following distributions: normal, exponen-
tial, gamma, logistic, uniform, extreme value, Rayleigh, beta, Nakagami, Rician, inverse
Gaussian, Birnbaum-Saunders, log-logistic, log-normal and Weibull. We can summarize
the results as follows:

Proposition 4.1. 1. The best fitting distribution was the extreme value distribution
for R1-pt

q,q (x), q ∈ {4, 5, 7, 8, 9, 11, 13}, for Rdeg-3
q,q (x), q ∈ {7, 8, 9, 11, 13}, and for

R1-pt
8,2 (x), R1-pt

16,2(x), Rdeg-3
4,2 (x), Rdeg-3

8,2 (x), and Rdeg-3
16,2 (x).
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2. For the missing cases R1-pt
2,2 (x), R1-pt

3,3 (x), Rdeg-3
2,2 (x), Rdeg-3

3,3 (x), Rdeg-3
4,4 (x), and Rdeg-3

5,5 (x),
the best fitting distribution was the gamma distribution.

3. The second best fitting distribution was the extreme value distribution for R1-pt
3,3 (x),

Rdeg-3
3,3 (x), Rdeg-3

4,4 (x), Rdeg-3
5,5 (x).

Our results show that for q ≥ 3, among the two-parameter distributions, the extreme
value distribution function is a reasonable estimation of the rate function of subfield
subcodes of Hermitian codes.

The extreme value distribution is also referred to as Gumbel or type 1 Fisher-Tippet
distribution. In probability theory, these are the limiting distributions of the minimum
of a large number of unbounded identically distributed random variables. The extreme
value distribution function is

F (x;α, β) = 1− exp
(
− exp

(
x− α
β

))
,

with location parameter α ∈ R and a scale parameter β > 0. In figures 3 and 4,
we visualized the fitting of the extreme value distribution function to our experimental
results on the true dimension of subfield subcodes of Hermitian codes.

The occurrence of the extreme value distribution in the context of subfield subcodes
of AG codes may be somewhat surprising, and we cannot give an understandable math-
ematical explanation for this. However, the rank of random matrices over finite fields is
known to be related to the class of Gumbel type distributions; see Cooper’s result [Coo00,
Theorem 2] for the theoretical background. This theory has been applied to parameter
estimates of random erasure codes by Studholme and Blake [SB10].

5 McEliece cryptosystem: attacks and applications
The last chapter provides the first step of our future work toward security analysis of
McEliece cryptosystem based on Hermitian subfield subcodes. In the long term, we aim
to make a comprehensive study in which we measure the McEliece cryptosystem security.
Our attempt intends to improve the practicality of the underlying cryptosystem.

To assess the security of McEliece cryptosystem, we present some well-known attacks,
for the reason that one of the security measurements of a cryptographic scheme is its
resistance to standard cryptanalysis. The structure of this chapter is the following: we
start with an overview of post-quantum cryptography [Nis; Aru+19]. We present an
application of the subfield subcodes of Hermitian codes to cryptography. Mainly, we give
a formula of the public key size in terms of the code rate using the result of section 4.

5.1 Post-quantum cryptography
In 1994 Shor [Sho94] introduced a quantum algorithm that is efficient in breaking cryp-
tosystems which are believed to be secure for classical computers. Recently, the most
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Figure 3: Estimating the extended rate function by extreme value distribution for subfield
subcodes of 1-point Hermitian codes
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Figure 4: Estimating the extended rate function by extreme value distribution for subfield
subcodes of degree 3 Hermitian codes by extreme value distribution
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frequent question is what sort of cryptosystems we can use in the presence of quantum
computers. Once these latest will be available, we must have systems that are part
of post-quantum techniques and which are known as post-quantum cryptography. It
consists of different classes.

Replacing these alternative systems will take time. Moreover, quantum-resistant cryp-
tosystems should be in today’s use to protect sensitive data. The construction of a secure
cryptographic scheme must rely on a computationally hard problem. In classical cryp-
tography, there are many schemes in which security is based on a difficult problem that
a classical computer cannot solve, but a quantum computer can.

5.2 Code-based cryptography
Code-based cryptography is a set of cryptosystems in which the underlying trapdoor
function is based on error-correcting codes. The first code-based cryptosystem was in-
troduced by Robert J. McEliece in 1978. One must randomly select an error-correcting
code to generate the private key that is the structure of the chosen code and the public
key whose generator matrix has been randomly permuted. The plaintext is a codeword
to which we add some errors in order to get ciphertext. Only the private key’s possessor
can decode the ciphertext to remove errors and recover the plaintext. It is required to
adjust some parameters that concern its efficiency. Until now, there is no serious attack
that threatens the security of the McEliece scheme even on quantum computers.

5.3 Attacks against code-based cryptography
In the literature, several attacks have been proposed against McEliece cryptosystem
in general, and against McEliece systems that are based on AG codes in specific, see
[BBC13]. Attacks can be divided into two classes: structural or key recovery attacks
which aimed at recovering the secret code, and decoding, or message recovery attacks
that seek to decrypt the transmitted ciphertext. The generic decoding attack against
the McEliece scheme is the information set decoding (ISD) algorithm. The most recent
and most effective structural attack against AG code-based McEliece systems is the
Schur product distinguisher, which is given in [CMCP17], where the authors show that
subfield subcodes of AG codes still resist. We focus on attacks based on Information Set
Decoding (ISD) since they are useful for our case, and also, it is assumed to have the
lowest complexity [Nie+12].

5.4 Selecting parameters to secure McEliece cryptosystem
We apply the result concerning the estimation of the true dimension of the subfield
subcodes of Hermitian codes to estimate the key size of the McEliece cryptosystem. The
largest (but not the only) part of the public key of the McEliece cryptosystem is the
matrix G. G is either the n× k generator matrix, or the n× (n− k) parity check matrix.
In either case, G may be assumed to be in a systematic form, which means that the
public key is given by k(n− k) elements of Fr. Hence, the key size is

14



log2(r)k(n− k).
In particular, for a fixed field Fr and length n, the key size is proportional to R(1−R),

see [Nie+12]. The true values of Rγ
q,r(s)(1−Rγ

q,r(s)) can be estimated by F (x)(1−F (x)),
where F (x) is the extreme value distribution function [EKN20], see Figure 5.

Figure 5: Estimating the key size n2R(1−R)
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