
University of Szeged

Szegedi Tudományegyetem

Természettudományi és Informatikai Kar

SZTE Informatika Doktori Iskola

Doctoral Theses

The k-Clique Problem

Usage, Modeling Expressivity,

Serial and Massively Parallel

Algorithms

Zaválnij, Bogdán

Szeged, 2020.

Advisors:

Dr. Krész, Miklós

Dr. Szabó, Sándor

Our thesis work is focused on discrete optimization problems, and specif-
ically on problems represented by graphs. These problems emerge in various
applications, and form an interesting subclass of Mathematical Program-
ming. Our thesis concentrates on a special problem of this class, the k-clique
problem. We shall in some cases also mention the maximum clique problem
as well. As the problems in question belong to NP-complete and NP-hard
problem class, these problems are considered to be hard even for medium
sized problems. Thus in order to solve them we may want to use more
e�cient algorithms and more computational power, for example supercom-
puters. This will lead us to other problems, as dividing the problem to
subproblems, scheduling these subproblems, and gathering the results.

There are numerous ways of modeling, and these usually can be freely
interchanged. So the decision of choosing the model is rather backed up by
the software tool at hand. The most widely used approach is to use a Lin-
ear Programming (LP) toolkit, or its variants according the specialty of the
problem like Mixed Integer Linear Programming (MILP) or Integer Linear
Programming (ILP), or Zero-One Linear Programming (0�1 LP). For combi-
natorial optimization or decision problems ILP or 0�1 LP is used, but there
are other methods, such as Satis�ability (SAT or MaxSAT) or Constraint
Programming (CP). While most times any of them can be used there are ef-
�ciency di�erences. These di�erences caused by two phenomena. First, some
problems are more suitable for one model then the other, and so the software
solving the problem may be more e�cient. Second, some software is simply
more advanced then the other, as more developers work on its perfection.
Consequently, for any combinatorial optimization problem the �rst choice is
an ILP formulation, given its versatility and easy to model feature and the
very developed software. Note though, that this is not necessarily the most
e�cient approach, and in the case of a harder problem may lead to failure.
And there is another problem, which invovles the reliability of the compu-
tations. ILP solvers use LP as an auxiliary algorithm, so rounding errors
may a�ect the result [Aki2016]. If one needs reliable computation she or he
needs to choose another solver, which is free of such defects, and of course
the clique solvers are such using exclusively integer and bit computations.
The present work aim to widen the possibility of modeling by showing that
modeling by graphs and �nding a maximum clique or k-clique of given size
is a good approach for solving several problems.

We shall also in detail show that the graph formulation is more suitable
for developing a massively parallel algorithm, and so using supercomputers to
aid in solution of some hard problems. This task, of e�cient parallelization,
is usually considered very problematic in combinatorial optimization.

1

De�nition of the problem

Let G = (V,E) be a �nite simple graph. Here V is the set of nodes of the
graph, and E is a subset of the Cartesian product V ×V . The set V is �nite
and consequently the set E is also �nite. The graph does not contain any
double edges and the graph does not contain any loops. Of course the graph
cannot contain any triple or quadruple edges. The edges are undirected and
there are no weights assigned to the nodes nor to the edges.

Consider a subgraph ∆ = (U, F) of G. We say that ∆ is a clique in G if
F = U × U . In other words ∆ is a clique in G if each two distinct nodes of
∆ are adjacent in G. The number of nodes of ∆, that is, the size of the set
U is called the size of the clique ∆. Instead of saying that ∆ is a clique of
size k we sometimes say that ∆ is a k-clique in the graph G.

Problem 1. Given a �nite simple graph G and given a positive integer k.
The task is to decide if G contains a k-clique.

The k-clique problem is a well known NP-complete problem, and appears
3rd among Karp's original 21 NP-complete problems [Karp1972].

Theses

1
st

thesis

In our work we showed that several problems can be modeled by graphs
and solved using a k-clique solver. These problems arise from various �elds.
First, we showed reformulation for Latin square, Sudoku game, the problem
of non attacking queens, Costas Arrays and combinatorial problems arising
from coding theory. Second, we detailed a group of real life problems that
connected to subgraph isomorphism, like protein docking, molecule search,
�ngerprint and image recognition. Third, we detailed the reformulation for
scheduling problems, namely open shop, �ow shop and job shop problems.
Finally, we described how clique search can be of use in network analysis
using market graphs or brain graphs.

In a few cases we did also some numerical experiments. The goal in that
was not to beat other methods, but to show that these reformulations can
solve non trivial problems of these kind in comparable manner then other
methods and solvers.

We picked one problem to show our results, the Costas array problem.
The proposed representation � to our knowledge � is not known in the lit-
erature. We propose a graph representation to the Costas array problem

2

[Cost1965]. This problem derives from radar and sonar technology, namely
phased array radar engineering. The solution helps generating radar and
sonar signals with ideal ambiguity functions. The formalization of the prob-
lem as follows. Given an n× n array one needs to �ll it in with n dots. The
constrain is that no two dots may lay on the same row or column, and the
displacement vectors of any two pairs of dots must be distinct from all the
other such displacement vectors.

As the constrain of di�erent displacement vectors instruct us about pairs
of dots (4 coordinates altogether in one pair), the nodes of the auxiliary
graph G(V,E) shall be denoted by quadruples (x1, y1, x2, y2), where the co-
ordinates of the represented dot-pair are (x1, y1) and (x2, y2). One could list
all possibilities, but clearly only pairs of agreeable nodes needed to be listed,
thus the rows and columns of the two dots must be di�erent. That means
that we omit for example the quadruple (1, 1, 1, 3), because the two dots lie
in the same column. The size of this graph is n2(n − 1)2/2. The edges of
the graph represent the agreement between two dot-pairs. We need to take
special care of the case when one of the dots of a pair coincides with a dot
from the other dot-pair. In this case we have 3 instead of 4 distinct dots.

Formally there should be no edge between two nodes (x1, y1, x2, y2) and
(a1, b1, a2, b2), i�:

1. If two pairs of dots have same row or column;

2. If one pair of dots have same row or column and there are 4 distinct
nodes;

3. If one pair of dots have same row or column and there are 3 distinct
nodes, and some of the displacement vectors of these three are the
same;

4. If no pair of dots have same row or column and there are 4 distinct
nodes, and some of the displacement vectors of these four are the same.

In other cases there will be an edge between these two nodes. A k-clique
of size k = n(n−1)/2 represents all pairs from n dots, and thus it is a solution
to the problem in question.

With the help of this simple formulation � even without using any ker-
nelization techniques � one can �nd one solution of the non trivial 14 × 14
array in few seconds and calculate all possible solutions in half an hour.

3

2
nd

thesis

We choose one problem class for extended demonstration of modeling power
of graphs and k-cliques, namely various graph coloring problems. We detailed
reformulation for the problem of k coloring of the nodes of a graph, 3-clique
free coloring and coloring of hypergraphs. With the aid of the last one we
could solve some hard hypergraph coloring problem and aid an open question
by Voloshin. The question asks about colorability of hypergraph having C
edges � nodes cannot receive all di�erent colors �, and D edges � nodes
cannot receive all the same color. The construction is interesting, because
there are hypergraphs that cannot be colored at all. We performed a series
of calculation from witch one can conclude about probability of edge C and
D where this transition from colorable to uncolorable happens.

As an example we picked the reformulation of 3-clique free coloring
[Szab2012] to k-clique. The de�nition of this coloring as follows:

1. Each node of G receives exactly one color.

2. The three nodes of a 3-clique in G cannot receive the same color.

This problem can be reduced to Problem 1. Starting with the the graph
G = (V,E) and the positive integer k we construct an auxiliary graph Γ =
(W,F). The nodes of Γ are the triples

({u, v}, a, b), where {u, v} ∈ E, 1 ≤ a, b,≤ k.

Let m be the number of edges of G, that is, let m = |E|. The number of the
triples is equal to mk2.

The triple ({u, v}, a, b) intends to code the information that the end points
u, v of the edge {u, v} are colored with the colors a, b respectively. In this
section we assume that each node of the graph G is end point of some edge
of G. In other words we assume that the graph G does not contain isolated
nodes.

Let us consider two distinct nodes

w1 = ({u1, v1}, a1, b1) and w2 = ({u2, v2}, a2, b2)

of Γ. Set
X = {u1, v1} ∪ {u2, v2} = {u1, v1, u2, v2}.

It is clear that |X| ≤ 4 and since u1 6= v1 we get that |X| ≥ 2. Thus
2 ≤ |X| ≤ 4. Let HX be the subgraph of G induced by X. The nodes u1,
v1, u2, v2 receive the colors a1, b1, a2, b2, respectively in the graph HX .

4

When |X| ≤ 3, then these nodes are not pair-wise distinct and it may
happen that two distinct colors are assigned to a node in HX . In this case
we call the graph HX a non-qualifying graph.

It also may happen that there is a 3-clique inHX and all the three nodes of
this 3-clique receive the same color. In this situation again we call the graph
HX a non-qualifying graph. In all the other cases HX is called a qualifying
graph.

When we construct the graph Γ we connect the nodes w1, w2 by an edge
in Γ if HX is a qualifying graph.

Observation 1. If the nodes of G have a 3-clique free coloring with k colors,
then the graph Γ contains an m-clique.

Proof. Suppose that the nodes of the graph G have a 3-clique free coloring
using k colors. Let f : V → {1, . . . , k} be a function that codes this coloring.
Set

D = {({u, v}, f(u), f(v)) : {u, v} ∈ E}

and let ∆ be the subgraph of Γ induced by D. It is clear that |D| = m. We
claim that ∆ is a clique in Γ.

In order to verify the claim let us choose two distinct nodes w1, w2 from
D. Let us consider the subgraph HX associated with w1, w2. Since f is
a function, each node of HX receives exactly one color. As f describes a
3-clique free coloring of the nodes of G, it follows that the restriction of f to
the nodes of HX is a 3-clique free coloring of the nodes of HX . Thus HX is a
qualifying graph. Consequently, we connected w1, w2 by an edge in Γ when
we constructed Γ.

Observation 2. If the auxiliary graph Γ contains anm-clique, then the nodes
of the graph G have a 3-clique free coloring with k colors.

Proof. Suppose that Γ contains an m-clique ∆ and D is the set of nodes of
∆. Now |D| = m.

Set
I{u,v} = {({u, v}, a, b) : 1 ≤ a, b,≤ k}

for each {u, v} ∈ E. Obviously, |I{u,v}| = k2. Note that the sets I{u,v},
{u, v} ∈ E are pair-wise disjoint independent sets in Γ.

Indeed, if

w1 = ({u, v}, a1, b1) and w2 = ({u, v}, a2, b2)

are distinct elements of I{u,v}, then the graph HX associated with w1, w2 has
two nodes. From w1 6= w2 it follows that a1 = a2, b1 = b2 cannot hold. Thus

5

HX is not qualifying. This means when we constructed Γ we did not connect
w1, w2 by an edge in Γ.

The nodes of Γ have a legal coloring using m colors. The independent
sets I{u,v}, {u, v} ∈ E can play the roles of the color classes.

As ∆ is a clique in Γ each color class contains at most one element from
D. Using the cardinality of D we can conclude that D is a complete set of
representatives of the color classes.

Set
T = {{u, v} : ({u, v}, a, b) ∈ D}.

It follows that E = T . Consequently, each node of G which is an end point
of at least one edge of G receives at least one color. We claim that each node
receives exactly one color.

In order to prove the claim assume on the contrary that more than one
colors are assigned to a node of G. In this case there are distinct nodes w1,
w2 of ∆ such that a node receives more than one color in the subgraph HX

associated with w1, w2. This means that HX is not qualifying. On the other
hand when we constructed Γ we connected w1, w2 by an edge on the base
that the subgraph HX was qualifying.

We may summarize our consideration by saying that we can de�ne a
function f : V → {1, . . . , k} by setting f(u) = b whenever ({u, v}, a, b) is a
node of ∆. It remains to show that the coloring of the nodes of G described
by the function f is a 3-clique free coloring.

Suppose there is a 3-clique Ω in G whose nodes receive the same color.
There are distinct nodes w1, w2 of ∆ such that Ω is a 3-clique in the subgraph
HX associated with w1, w2. This means that HX is not qualifying. On the
other hand when we constructed Γ we connected w1, w2 by an edge in Γ
because the subgraph HX was qualifying.

Theorem 1. Given a graph G with m edges and an integer k and a auxiliary
graph Γ described above. There is a 3-free coloring of nodes of G with k colors
i� there is an m-clique in Γ.

Proof. Follows from Observation 1 and 2.

3
rd

thesis

After listing di�erent sequential maximum clique solvers we look for the most
helpful auxiliary algorithms that can help us to solve these problems. First,
we compared algorithms that produce upper bounds on clique size, and as
such can be used inside a maximum or k-clique solver as a bounding or cutting
function. Our measurements help to see how good is the produced bound

6

and how long it takes to calculate it. Second, we showed some kernelization
steps that can help in reducing the size of the graph.

Following auxiliary algorithms were listed as upper bounds for clique size:

• Coloring the nodes of a graph. As the problem itself NP-hard
we used two heuristic approach, DSatur by Brélaz [Brél1979] and the
iterative coloring heuristic from Culberson [Culb1992]. The bound is
χ(G) ≥ ω(G).

• b-fold coloring. An assignment of a set of b colors to every one of
its vertices such that adjacent vertices receive disjoint sets. The bound
is ω(G) ≤ χb(G)

b
. We used a reformulation as a legal node coloring of

a graph by using an auxiliary graph Γ = (W,F) constructed from the
given G = (V,E) graph. The nodes of Γ are ordered pairs (vi, k) ∈
W, vi ∈ V, 1 ≤ k ≤ b. The edges are de�ned as follows.

F =

{
{(vi, k), (vi, l)} if k 6= l 1 ≤ k, l ≤ b

{(vi, k), (vj, l)} if {vi, vj} ∈ E 1 ≤ k, l ≤ b
(1)

• Edge coloring. An assignment of color numbers to the edges of G
[Szab2014c] such that:

1. Each edge of G receives exactly one color.

2. If x, y, z are distinct nodes of a 3-clique in G, then the edges
{x, y}, {y, z}, {x, z} must receive three distinct colors.

3. If x, y, u, v are distinct nodes of a 4-clique in G, then the edges
{x, y}, {x, u}, {x, v}, {y, u}, {y, v}, {u, v}must receive six distinct
colors.

Let ∆ be an l-clique in a graph G, and let G be edge-colorable with k
colors. Then l(l − 1)/2 ≤ k holds. The procedure to color the edges
of a graph G is to use an auxiliary graph Γ = (W,F). Each edge of
G is represented by a node in Γ. We connect the nodes of Γ according
the rules above, that is two nodes in Γ should be connected if the
corresponding edges in G forming a 3- or a 4-clique. It is easy to see
that any legal coloring of the nodes of Γ represents a legal edge coloring
of G.

• Lovász number. A real number that is an upper bound on the Shan-
non capacity of the graph [Lov1976].

• The partial MaxSAT bound, from [Li2010a].

7

We listed kernelization techniques, such as:

• Struction, from [Ebe1984].

• Color indices. When we can delete a node (or an edge), if the neigh-
borhood if that node (or edge) cannot be colored by (k−1) (or (k−2))
colors.

• Node dominance. Let G be a graph and let a, b be distinct nodes of
G. Node b dominates node a if a and b are not adjacent and N(a) ⊆
N(b), and the node a can be canceled from G when we are deciding if
G contains a k-clique.

• Edge dominance. Edge {u, v} dominates edge {x, y} if {u, x} or
{u, y} is not edge of G, and {v, x} or {v, y} is not edge of G, and
N(x) ∩ N(y) ⊆ N(u) ∩ N(v). As a consequence, the edge {x, y} can
be canceled from G when we are deciding if G contains a k-clique.

4
th

thesis

We designed and implemented a specialized k-clique search program, and
detailed its building blocks. Using this program we built a maximum clique
solver, which could be compared to other state-of-the art solvers. Our ap-
proach proved successful, and we could show that our program is among the
best ones. The main building blocks of our algorithm as follows.

Branching and Bounding

It is well known, that the coloring gives us an upper limit for the clique size.
Thus if given the value of k of the searched cliquek size and a coloring with c
colors (c ≥ k), then we can choose the smallest c−(k−1) color classes, and use
those nodes in them for branching � as a branching rule. As a terminology we
call these nodes the k-clique covering node set. The importance of this comes
from the nature of the Branch and Bound algorithms. These algorithms
sort out the nodes already examined, meaning that they are not taken into
account in the future search. Thus if all these nodes are eliminated, then
the remaining nodes can be colored with (k − 1) colors, so there cannot be
any k-clique present. Note, that without the value of k one cannot make this
branching rule, and need to branch on all nodes. The size of the k-clique
covering node set is the branching factor, and �nding the smallest possible
of such set can aid us in bounding the size of our search tree.

8

E�cient coloring

It is well known from the literature, that coloring of the nodes can speed-up
the clique search. Using Dsatur at all levels reduces the size of the search tree,
but costs in time. An e�cient algorithm can use a costly DSatur [Brél1979]
coloring at the top of the search tree, and later it can switch to the cheaper
sequential greedy coloring. Although Dsatur gives us a good coloring it is
often quite far from the optimum. So we used in addition another technique,
the Iterated Coloring presented by Culberson [Culb1992]. This technique
uses reordering the color classes and using a sequential coloring several times.
The result cannot be worse than the previous coloring in terms of the number
of colors, but it can be better. Thus we started from a Dsatur coloring and
performed iterated coloring. Our stopping criteria was if the number of
colors did nod decreased after 1000 iterations, and we used it on the top of
the search tree.

Recoloring the nodes

So during the Branch and Bound procedure, when there are less and less
nodes as we go down on the search tree, we can use the coloring of the previous
level, and use the repacking feature of the sequential greedy coloring. We
sort the color classes by their size, and start a greedy sequential coloring from
the biggest color class. As the k-clique covering node set is actually the set of
smallest color classes, the nodes from them moved ahead to the bigger color
classes. So this procedure directly reduces the size of the k-clique covering
node set and so the branching factor. As this coloring is performed on each
node of the search tree, we needed a fast implementation of the sequential
greedy coloring. Our original version was of O(c|V |) for c colors, and proved
quite fast. Later we implemented this coloring using bitsets.

Rearranging branching nodes

From previous results [Zav2014a, Zav2014b, Zav2015] on parallel clique
search algorithms we concluded, that the branching is even more important
than it was thought before. It seems that the sequence of the nodes by which
we proceed in the branch has a big e�ect on the search tree size if pruning
is present. We use a very basic reordering rule. We proceed with the nodes
with the smallest degree in the remaining subgraph. That is we ordered the
nodes by node degree in increasing order. By doing this we solve �rst the
more easy problems and reduce the size of the later ones. Although simple
and �cheap� this approach had quite a good e�ect on the size of the search
tree.

9

5
th

thesis

We introduced the concept of disturbing structures, which helped us to build
a k-clique search algorithm, and helps on parallelizing such algorithms.

Let G = (V,E) be a �nite simple graph and let k be a positive integer.
Let W ⊆ V . If each k-clique in G has at least one node in W , then we call
W a k-clique covering node set of G. LetW = {w1, w2, . . . , wn} be a k-clique
covering node set in G. Consider the subgraph Hi of G denote the graph
induced by the neighbor set N(wi) in G for each i, 1 ≤ i ≤ n. Let ∆ be a
k-clique in G. The de�nition of W states that wi must be a node of ∆ for
some i, 1 ≤ i ≤ n. Consequently, the subgraph Hi contains exactly k − 1
nodes of the clique ∆. This observation has a clear intuitive meaning: the
problem of determining the existence of a k-clique in G can be reduced to
a list of smaller problems of determining the existence of a (k − 1)-clique in
the subgraphs Hi for each i, 1 ≤ i ≤ n.

We can extend this result. Let G = (V,E) be a �nite simple graph and
let k be a positive integer. Let F be a subset of all s-cliques in G. If each
k-clique in G has at least one s-clique in F , then we call F a k-clique covering
s-clique set of G. In particular, when s = 2, then F is an k-clique covering
edge set. Let F be an s-clique cover of all the k-cliques in G, and let

ci = {ui,1, ui,2, . . . , ui,s}, 1 ≤ i ≤ |F |

be all s-cliques in F . Let Hi be the subgraphs spanned by the sets of nodes

Hi =
⋂
j

N(ui,j) 1 ≤ j ≤ s, (2)

and let ∆ be a k-clique in G. According to the de�nition of F , there must
be a ci that is an s-clique of ∆ for some i, 1 ≤ i ≤ |F |. Consequently, the
subgraph Hi contains exactly k− s nodes of ∆. This observation has a clear
intuitive meaning: the problem of determining the existence of a k-clique in
G can be reduced to determining the existence of a (k − s)-clique in a series
of graphs spanned by each of the subgraphs Hi, 1 ≤ i ≤ |F |.

6
th

thesis

We implemented a massively parallel program for k-clique search. We ex-
amined the importance of the deletion sequence, that is the ordering of sub-
problems. Driven by this we constructed the so called Las Vegas method of
parallelization, which helps us �nd such ordering that can reduce the search
place. We also could show that the running times for di�erent subproblems

10

may di�er in 4 magnitudes, and this is exactly where the Las Vegas method
and solver instance restarting helps. We compared three methods:

1. The a priory deletion sequence, where we list edges in a �xed way, and
delete the edges representing an earlier (in the sequence) subproblem
from a later (in the sequence) problem.

2. The Las Vegas method, where we do not delete any edge from the sub-
problems. We start the solvers in parallel manner, and if a subproblem
�nished we delete the edge representing this subproblem from all sub-
problems � either waiting for starting to be solved either if a solver
presently working on it.

3. The Las Vegas method with restarting is at �rst the same as the pre-
vious one. The di�erence comes into play at the very end, when we
solved most of the subproblems, and the remaining (running) subprob-
lems are less then the number of processing elements. In this case we
restart a subproblem � keeping the same subproblem being solved at
the same time �, so there will be two instances of solvers solving the
same subproblem. One have the advantage of being half through solv-
ing it, the other have the advantage of being restarted, and so having
a better preconditioning.

We examined closely one problem, the monoton-9. On Figure 1 we re-
ordered the problems by the magnitude of the solving times. The time scale
is logarithmic, so the actual di�erences are of several magnitudes. In this
graph one can see, that all three algorithms are dominated by the longest
subproblem, although the restarting Las Vegas can smooth out this problem
the best, reducing the variance of running times by more then 2 magnitudes.

0 100 200 300 400 500 600 700 800 900

100

101

102

103

104

105

Problems sorted by running times

ti
m
e
(s
)

edges deleted a priory in a given sequence
Las Vegas method for edge deletion

Las Vegas method for edge deletion with restarting

Figure 1: The sorted running times of the monoton-9 subproblems.

11

Author's own results

1. The formulation of the Costas Array problem by graphs in 1st thesis
and in Section 2.1.4 is my own result. It is not yet published.

2. The formulation of the �ow shop, open shop and job shop problems in
1st thesis and in Section 2.3 is the joint work with Sandor Szabo. It is
not yet published.

3. The k-clique approach of the 3-free coloring in 2nd thesis and in Section
3.2 is my own result. It was published in [Szab2016b].

4. The k-clique approach to hypergraph coloring including its application
to Voloshin's problem in 2nd thesis and in Section 3.3 is my own result.
It was published in [Szab2019b].

5. Measurements and comparison of di�erent upper bounds in 3rd thesis
and in Section 4.2, including sequential and parallel implementation
of DSatur and Iterated Coloring algorithms, and also its application to
edge and b-fold coloring is my own result. It was published in [Szab2017,
Marg2019].

6. The sequential k-clique program in 4th thesis and in Chapter 5 was
�rst developed by Sandor Szabo and later extendedly developed by
myself including addition of Culberson's Iterative Coloring, node rear-
rangement, parallelization by bitsets and transformation to a maximum
clique search algorithm. It was published in [Szab2018a].

7. The theoretical background of parallelization which we call �disturbing
structures� in 5th thesis and in Chapter 7 is mostly my own result. It
was published in [Szab2018b].

8. The parallel algorithm and program detailed in 6th thesis and in Chap-
ter 8 is based on the idea from Sandor Szabo, while the Las Vegas
approach and the measurements proving its e�ectiveness was done by
myself. It was published in [Zav2014a, Zav2014b, Zav2015].

12

References

[Aki2016] Akiba, T. and Iwata, Y. �Branch-and-reduce exponential/fpt
algorithms in practice: A case study of vertex cover.� Theoret-
ical Computer Science. 609:211�225, 2016.

[Brél1979] Brélaz, D. �New Methods to Color the Vertices of a Graph.�
Communications of the ACM. 1979. 22. 4. pp. 251�257.

[Cost1965] Costas, J.P. Medium constraints on sonar design and perfor-
mance. Class 1 Report R65EMH33, G.E. Corporation. 1965.

[Culb1992] Culberson, J.C. Iterated Greedy Graph Coloring and the Dif-
�culty Landscape. Technical Rep. University of Alberta. 1992.

[Ebe1984] Ebenegger, Ch. Hammer, P.L. and de Werra, D. �Pseudo-
boolean functions and stability of graphs.� North-Holland
mathematics studies. volume 95, pp. 83�97. 1984.

[Karp1972] Karp, R.M. Reducibility Among Combinatorial Problems. In:
Complexity of Computer Computations. Eds: R. E. Miller and
J. W. Thatcher. New York. Plenum. pp. 85�103.

[Li2010a] Li, C.-M. and Quan, Z. An E�cient Branch-and-Bound Al-
gorithm Based on MaxSAT for the Maximum Clique Problem.
In: Proceedings of the Twenty-Fourth AAAI Conference on
Arti�cial Intelligence. (AAAI-10), pp. 128�133.

[Lov1976] Lovasz L. �On the Shannon Capacity of a Graph,� IEEE
Transactions on Information Theory. 25, 1, 1979. pp. 1�7.

[Marg2019] Margenov, S. et al. Applications for ultrascale systems. In:
Ultrascale Computing Systems. Institution of Engineering and
Technology (IET), London, (2019) pp. 189�244.

[Szab2012] Szabó S. and Zaválnij B. �Greedy Algorithms for Triangle
Free Coloring.� AKCE Int. J. Graphs Comb., 9, No. 2 (2012),
pp. 169�186.

[Szab2014a] Szabó S. and Zaválnij B. �Coloring the edges of a directed
graph.� Indian Journal of Pure and Applied Mathematics.
April 2014, Volume 45, Issue 2, pp 239�260.

13

[Szab2014b] Szabó S. and Zaválnij B. �Coloring the nodes of a directed
graph.� Acta Univ. Sapientiae, Informatica. 6, 1 (2014) 117�
131.

[Szab2014c] Szabó S. and Zaválnij B. �Estimating clique size via coloring
edges in graphs.� AKCE Int. J. Graphs Comb. (submitted.)

[Szab2016b] Szabó S. and Zaválnij B. �Reducing Graph Coloring to
Clique Search,� Asia Paci�c Journal of Mathematics, 3 (2016),
pp. 64�85.

[Szab2017] San Segundo, P., Szabó S. and Zaválnij B. �Parallelization
of the clique search problem using sub-chromatic bounds.� NE-
SUS. Technical Report. January 17, 2017.

[Szab2018a] Szabo S. and Zavalnij B. A di�erent approach to max-
imum clique search. In: 20th International Symposium on
Symbolic and Numeric Algorithms for Scienti�c Computing.
(SYNASC2018) IEEE Proceedings, (2018) pp. 310�316.

[Szab2018b] Szabo S. and Zavalnij B. �Decomposing clique search prob-
lems into smaller instances based on node and edge colorings.�
Discrete Applied Mathematics. 242 (2018) pp. 118�129.

[Szab2019a] Szabo S. and Zavalnij B. �Benchmark Problems for Exhaus-
tive Exact Maximum Clique Search Algorithms.� Informatica
(Ljubljana). 43 : 2 (2019) pp. 177�186.

[Szab2019b] Szabo S. and Zavalnij B. �Reducing hypergraph coloring to
clique search.� Discrete Applied Mathematics. 264. (2019) pp.
196�207.

[Zav2014a] Zaválnij B. �Three Versions of Clique Search Parallelization.�
Journal of Computer Science and Information Technology. Vol.
2:(No. 2) pp. 9�20. (2014)

[Zav2014b] Zavalnij, B. The Las Vegas method of parallelization. In: In-
formation Society 2014 � IS 2014: Volume A; Intelligent Sys-
tems. pp. 105�108. 2014.

[Zav2015] Zavalnij, B. Speeding up Parallel Combinatorial Optimization
Algorithms with Las Vegas Method. In: 10th International Con-
ference on Large-Scale Scienti�c Computations. Lecture Notes
in Computer Science (LNCS) 2015.

14

