
University of Szeged

Szegedi Tudományegyetem

Természettudományi és Informatikai Kar

SZTE Informatika Doktori Iskola

Doctoral Dissertation

The k-Clique Problem

Usage, Modeling Expressivity,
Serial and Massively Parallel

Algorithms

Zaválnij, Bogdán

Szeged, 2020.

Advisors:
Dr. Krész, Miklós
Dr. Szabó, Sándor

Contents

1 Introduction – graphs and cliques 1
1.1 Definition of the problems . 3

1.1.1 Other related problems 4
1.2 Motivation and background 5

2 Modeling expressivity 6
2.1 Puzzles, games, codes and other combinatorial problems . . . 7

2.1.1 Latin squares . 7
2.1.2 Non-attacking queens 10
2.1.3 Monotonic matrices . 10
2.1.4 Costas arrays . 11
2.1.5 Communication and coding theory 13

2.2 Subgraph isomorphism . 14
2.2.1 Chemistry . 14
2.2.2 Pattern matching and Artificial Intelligence 15

2.3 Job shop scheduling . 15
2.3.1 The clique reformulation of the problem 16
2.3.2 A small example . 17
2.3.3 Numerical experiments 18

2.4 Network analysis . 20

3 Modeling graph and hypergraph coloring with cliques 22
3.1 Legal coloring of the nodes of a graph 22

3.1.1 Classical formulation 23
3.1.2 The k-clique approach 23

3.2 3-clique free coloring . 25
3.3 Reducing hypergraph coloring to clique search 30

3.3.1 Reducing hypergraph problems to ordinary graph
problems . 32

3.3.2 The auxiliary hypergraph 34
3.3.3 Examples . 36

i

3.3.4 An application . 44

4 Maximum clique solvers, kernelization, auxiliary algorithms 48
4.1 Sequential algorithms . 48
4.2 Auxiliary algorithms . 49

4.2.1 Coloring . 49
4.2.2 Fractional and b-fold coloring 50
4.2.3 s-clique free coloring 51
4.2.4 Edge coloring . 53
4.2.5 Lovász number . 54
4.2.6 The partial MaxSAT bound 54
4.2.7 Numerical experiments 55

4.3 Kernelization . 56
4.3.1 Structions . 56
4.3.2 Color indices . 59
4.3.3 Dominance . 59

5 New method for k-clique search and its extension to a max-
imum clique solver 60
5.1 Background . 61
5.2 Nuts and Bolts for k-clique search 61

5.2.1 Branching and Bounding 62
5.2.2 Efficient coloring . 63
5.2.3 Recoloring the nodes 63
5.2.4 Rearranging branching nodes 64

5.3 Numerical results for maximum clique 64
5.3.1 Test graphs . 66
5.3.2 Results . 67
5.3.3 Evaluation . 67

5.4 PACE competition . 70

6 Concepts on parallelization 72
6.1 The problem of even distribution 72
6.2 Effects on speedup . 74

6.2.1 Problem of decomposition 75
6.2.2 Possible decomposition methods 76
6.2.3 Division by the branching tree 77
6.2.4 Fixed and dynamic distribution 77

6.3 Evaluation of scalability . 78
6.3.1 Problematic case . 78

6.4 Framework for parallel implementations 79

ii

6.4.1 Parallel architectures 79
6.4.2 Scheduling . 80
6.4.3 Problems arising of parallelization 81
6.4.4 Amdahl’s law and Gustavson’s law 82
6.4.5 Superlinear speed-up 83

7 Parallelization by disturbing structures 84
7.1 Disturbing structures . 84

7.1.1 k-clique covering node set 85
7.1.2 k-clique covering s-clique set 86

7.2 Partitioning the k-clique problem for parallel architectures . . 88
7.2.1 k-clique covering node set partitioning 89
7.2.2 Partitioning using the Lovász number 89
7.2.3 Partitioning by k-clique covering edge set 90
7.2.4 Parallelization by s-free quasi coloring 90
7.2.5 Parallelization by quasi coloring 91

7.3 Increasing and modifying the subproblems 92
7.3.1 Refinement by usage of edge weights 93

8 The Las Vegas method for parallelization 94
8.1 Implementation of a massively parallel algorithm 95

8.1.1 Parallel Las Vegas algorithms 95
8.1.2 Other possible usage 98
8.1.3 Tests . 98
8.1.4 Evaluation . 99

8.2 Further possible usage . 102
8.2.1 Anything goes . 102
8.2.2 Combined with disturbing structures 103
8.2.3 Las Vegas search for disturbing structures 103

9 Summary and conclusions 105
9.1 Theses . 105

9.1.1 1st thesis . 105
9.1.2 2nd thesis . 106
9.1.3 3rd thesis . 106
9.1.4 4th thesis . 106
9.1.5 5th thesis . 106
9.1.6 6th thesis . 107

9.2 Future work . 107
9.3 Author’s own results . 107

iii

A Összefoglaló 109
A.1. Tézisek . 109

A.1.1. Első tézis . 109
A.1.2. Második tézis . 109
A.1.3. Harmadik tézis . 110
A.1.4. Negyedik tézis . 110
A.1.5. Ötödik tézis . 110
A.1.6. Hatodik tézis . 110

A.2. A szerző saját eredményei . 110

B Publications related to this thesis 112

Bibliography 115

iv

List of Figures

2.1 Example of a 9× 9 Latin square 7
2.2 Example of a 3× 3 Latin square 9
2.3 Example of a sudoku puzzle and it’s solution 9
2.4 Example of a Five Queens problem solution 10
2.5 Example of an n = 8 size Monotonic Matrix 11
2.6 Example of an n = 8 size Costas array 12
2.7 Depiction of constraints 1, 2, 3 and 4. 13
2.8 Possible time slots (triplets) for the given problem in Table

2.1 with makespan of 6 hours. 17

3.1 A graphical representation of the graph G in Example 3.1. . . 28
3.2 On the left is the conflict graph G in Example 3.2. Each

distinct two among the elements of {5, 6, 7, 8} are adjacent.
the same holds for the sets {9, 10, 11, 12}, {13, 14, 15, 16},
{17, 18, 19, 20}, {1, 2}, {3, 4}. In order to avoid an overly clut-
tered picture these edges are not drawn. On the right is a
condensed form of the conflict graph. The nodes inside each
ovals are pair-wise adjacent. An edge between ovals represents
several edges. The number of the edges are given near to the
ovals and near to the edges. 37

3.3 The condensed form of the conflict graph G in Example 3.3.
The nodes inside an oval are pair-wise connected by edges.
Edges between ovals represent many edges. The number of
edges are written near to the ovals and near to the edges. . . . 41

3.4 Results of the A series, where an adge can be a C edge or a
D edge but not both . 46

3.5 Results of the B series, where an edge can be C edge and D
edge at the same time . 47

4.1 The Γ auxiliary graph for C5 and its node coloring with 5 colors. 52

v

5.1 PACE 2019, Exact Vertex Cover track. Number of solved
instances in given time limit – the medalists compared to others. 71

7.1 A 5-clique covering node set – {d2, c3, a5}. 86
7.2 A 5-clique covering edge set –

{{d3, d2}, {c3, b3}, {b3, a5}, {a4, a5}}. 87

8.1 The sorted running times of the monoton-9 subproblems. . . . 101
8.2 The time sequence of running times of the monoton-9 sub-

problems. 102

vi

List of Tables

2.1 Processing times on the machines in the small example 17
2.2 Nodes of the graph G in the small example 18
2.3 The adjacency matrix of the graph G in the small example . . 19

3.1 The adjacency matrix of the auxiliary graph Γ in Example 3.1. 29
3.2 The adjacency matrix of the graph G in Example 3.1 29
3.3 The nodes of the auxiliary graph Γ in Example 3.1. 29
3.4 The tiles assigned to the hyperedges in Example 3.2. The

hyperedges are cut into two tiles. 32
3.5 The incidence matrix of the hypergraph H in Example 3.2. . . 36
3.6 The adjacency matrix of the conflict graph in Example 3.2. . . 38
3.7 The edges of the conflict graph in Example 3.2. The 9-th row

of the table codes the information that the unordered pairs
{9, 19} and {9, 20} are edges of the conflict graph G. 39

3.8 The tiles coincide with the hyperedges in Example 3.3. The
hyperedges are cut into one tile. 41

3.9 The colored tiles assigned to the hyperedges in Example 3.3.
The first rows of the matrices contain the tiles and the second
rows contain the colors. 42

3.10 The edges of the conflict graph in Example 3.3. The 7-th row
of the table holds the information that the unordered pairs
{7, 14}, {7, 16}, {7, 17}, {7, 18} are edges of the conflict graph
G. 43

4.1 The summary for the upper limit of ω(G) by different methods.
The sign * indicates that the bound cannot be computed due
to time or memory limit. 57

5.1 DIMACS, coding theory and random instances. Running time
results in seconds. The “>12h” sign indicates that the running
times are exceeding the 12 hour limit. 68

vii

5.2 BHOSLIB and EVIL instances. Running time results in sec-
onds. The “>12h” sign indicates that the running times are
exceeding the 12 hour limit. 69

8.1 Test runs . 99
8.2 Test runs for monoton-9 . 99

viii

ix

Notations

G graph In this work we consider G = (V,E) finite, undirected
and unweighted graphs. It consists of the V set of nodes,
and the E set of edges, where an u, v ∈ V, {u, v} ∈ E
edge is an unordered pair of two nodes.

G(V ′) Induced subgraph in G(V,E) over the node set V ′ ⊆ V .
The edges E ′ of G(V ′) are the same of G, that is V ′ ⊆
V,E ′ ⊆ E, and iff u, v ∈ V ′, {u, v} ∈ E then {u, v} ∈ E ′.

∆ clique ∆ = (V ′, E ′) is an all connected spanned subgraph of G.
That is ∆ = G(V ′) and if u, v ∈ V ′ then {u, v} ∈ E ′.
We call the size of the ∆ clique the size of the set of its
nodes |V ′|.

k-clique We call a clique k-clique, if its size is equal to k.

maximum
clique

A clique ∆ of G called a maximum clique of G, if no
other clique of G has a bigger size than ∆.

ω(G) The clique size of the G graph, which is the size of a
maximum clique ∆ of G.

N(u) Neighborhood of the node u, thus all the nodes of G
which are adjacent to u. That is the set of all v ∈ V if
{u, v} ∈ E. N(v) = {u ∈ V |{u, v} ∈ E}

N({u, v}) Common neighborhood of the node u and v, N(u) ∩
N(v). Usually these nodes connected, thus they form
an edge of the graph, {u, v} ∈ E.

N({u1, . . . , uk}) Common neighborhood of the nodes {u1, u2, . . . , uk},⋂k
i=1N(ui). Usually these nodes connected, thus they

form a k-clique in G.
x

Chapter 1

Introduction – graphs and cliques

Our thesis work is focused on discrete optimization problems, and specifically
on problems represented by graphs. These problems emerge in various appli-
cations, and form an interesting subclass of Mathematical Programming. Our
thesis concentrates on a special problem of this class, the k-clique problem.
We shall in some cases also mention the maximum clique problem as well.
The k-clique problem is well known problem from mathematics [Karp1972],
but our aim is to show its usage as a modeling and problem solving tool.

As the problems in question belong to NP-complete and NP-hard prob-
lem class, these problems are considered to be hard even for medium sized
problems. Thus in order to solve them we may want to use more efficient al-
gorithms and more computational power, for example supercomputers. This
will lead us to other problems, as dividing the problem to subproblems,
scheduling these subproblems, and gathering the results. For discrete opti-
mization problems especially problematic is the huge variation of the com-
plexity of subproblems, and this is known to be a challenging problem for
graphs [Madd2007]. If approached by a poor algorithm one may end with
a subproblems of which one (or more) will be no easier to solve then the
original problem. In this case no or little speedup will be achieved on any
supercomputer. The other problem is to deal with the massive core num-
bers of today’s supercomputers. Parallel algorithms developed and test for
few cores won’t scale up in arcitectures with thousands or even million of
cores that must be employed for effective work. In our thesis we will show
algorithms especially developed and tested in such environments.

The first chapter of the present work defines the problem class in question,
and notes some related problems – those lay outside the scope of our work.
We also detail the motivation background of our work.

In the second and third chapter we shall discuss the expressive power
of modeling by k-clique. We shall show how to solve problems from differ-

1

ent fields by graph modeling and clique search. In the second chapter we
try to summarize such problems. We list models for combinatorial games
and puzzles like Latin squares, Sudoku game, the problem of non attack-
ing queens, Costas Arrays and combinatorial problems arising from coding
theory. A problem class based on subgraph isomorphism including molecule
search, protein docking, fingerprint recognition is detailed. We show model-
ing for complex scheduling like open shop, flow shop and job shop problems.
Finally we show a few application in network analysis as market graph or
brain graph.

The third chapter shall focus on one problem class, the graph coloring
problems, extensively. With detailed examples we show graph based models
for legal node coloring, 3-free coloring of nodes and coloring nodes of hy-
pergraphs. We show an application of the last one to an open question by
Voloshin [Volo2002].

The fourth chapter tries to show the landscape of the clique search com-
munity, lists best practices and approaches. After a short historical review
we analyze and compare in details different upper bound procedures. Finally,
we speak about nowadays important kernelization techniques.

In the fifth chapter we introduce our own algorithm for k-clique search.
We detail the main advantages of our approach, and compare it to other
state-of-the-art solvers. The comparison is made by comparing our program
to maximum clique solvers, and for that aim we constructed a maximum
clique solver from our k-clique solver. It turned out, that our construction
even have advantages against other maximum clique algorithms. (Note, that
to our knowledge there is no other specialized k-clique solver but ours.)

The sixth chapter is about the theoretical concepts of parallelization, with
special focus on parallelization of combinatorial problems. We speak about
the hardware and software background, detail some problems of parallel al-
gorithms, and speak about their evaluation.

In the seventh chapter we are introducing the concept of disturbing struc-
tures and propose methodology for algorithm parallelization. We will show
that dealing with the k-clique problem instead of the maximum clique prob-
lem has its major advantages in parallelization, as it opens up quite a lot
possibilities.

In the eight chapter, based on the ideas of the previous chapter, we present
an implementation of a parallel algorithm. This algorithm is capable of
massive parallelization, as we will show that it can scale up even on several
hundreds of cores. Driven from the experiment we are introducing the Las
Vegas method of dealing with combinatorial optimization subproblems.

The last chapter draws conclusions and aims for future work. In this
chapter we also point out which of the results in this work is my own result.

2

1.1 Definition of the problems
Let G = (V,E) be a finite simple graph. Here V is the set of nodes of the
graph, and E is a subset of the Cartesian product V ×V . The set V is finite
and consequently the set E is also finite. The graph does not contain any
double edges and the graph does not contain any loops. Of course the graph
cannot contain any triple or quadruple edges. The edges are undirected and
there are no weights assigned to the nodes nor to the edges.

Consider a subgraph ∆ = (U, F) of G. We say that ∆ is a clique in G if
F = U × U . In other words ∆ is a clique in G if each two distinct nodes of
∆ are adjacent in G. The number of nodes of ∆, that is, the size of the set
U is called the size of the clique ∆. Instead of saying that ∆ is a clique of
size k we sometimes say that ∆ is a k-clique in the graph G.

A clique ∆ in the graph G is called a maximal clique in G if for any clique
Ω in G for which ∆ ⊆ Ω holds it follows that ∆ = Ω. In other words ∆ is
a maximal clique in G if ∆ cannot be extended to a larger clique in G by
adding a node of G to ∆.

A clique ∆ is a maximum clique in G if G does not contain any clique
whose size is bigger then the size of ∆.

It is an empirical fact that finding cliques in a given graph has many appli-
cations inside and outside of computer science. We state the most commonly
occurring clique search problems in a formal matter.

Problem 1.1. We are given a finite simple graph G. Let us determine the
size of a maximum clique in G.

The size of all the maximum cliques in G is well defined common value
and it is called the clique number of G. The clique number of G is denoted
by ω(G). Problem 1.1 is referred as the maximum clique problem.

The following decision problem is commonly called the k-clique problem:

Problem 1.2. Given a finite simple graph G and given a positive integer k.
The task is to decide if G contains a k-clique.

The complexity theory of algorithms teaches us that the maximum clique
problem is an NP-hard problem. while the k-clique problem is a well
known NP-complete problem, and appears 3rd among Karp’s original 21 NP-
complete problems [Karp1972]. In our thesis we focus on this problem, the
k-clique problem, although sometimes we will refer to the first one as well.

The solutions for these problems are fall into two categories. Our thesis
will deal exclusively with exact methods, but we need to mention that heuris-
tic methods that won’t certainly lead to optimum solution are also widely

3

used. There are some smaller problems, which with the aid of modern exact
algorithms can be solved efficiently and fast. Other problems are too big for
these and heuristic methods applied for finding non exact solution. These so-
lutions may be of great use in some cases, but in others one certainly needs to
find an exact solution. In our thesis we would like to widen the abilities of the
exact methods by using massively parallel algorithms and supercomputers.

The two problems listed are obviously connected. A program that solves
one can be used to solve the other as well. A maximum clique search program
obviously also answers if there is a k-clique present in the graph for any k.
A program that solves the k-clique problem also can be used for finding
maximum clique by a sequence of several runs with different values of k.
This method will be described in details in Chapter 5.

1.1.1 Other related problems

There are several connected problems to the already described ones. Obvi-
ously the problem of independent sets – maximum independent set, indepen-
dent set of size k – are the same problems: one should apply a maximum
clique or k-clique algorithm on the complement graph. The k vertex cover –
and the minimum vertex cover problem – is also the same, its solution is the
complement set of the n−k independent set – or maximum independent set.

Some related problems are not just about if there is a k-clique present
in the graph, but the question is rater the number of these k-cliques. Thus
sometimes one needs to enumerate all k-cliques or all maximum cliques as
well [Ebl2012].

Another variations of these problems are connected to different types
of graphs. There can be weights assigned to nodes – or edges, or both –
in the graph. In this case one can search for a maximum (node or edge)
weight clique, or a k node clique with the biggest weight, or a clique with the
prescribed weight. Also, the graph can be a directed one, and we can search
for directed cliques, which in the literature called transitive tournament. One
can search for a maximum one or for one with a prescribed size [Kivi2016].

Next related problem is the problem of the quasi cliques [Patt2013b,
Abe1999]. Here we search for a big subgraph, but with eased constrain of the
subgraph being a complete graph only a dense one. There is no definition of
a quasi clique, but with a given definition one can search for a maxium one
or one of size k.

Finally, we would like to mention the problem of motif search. It asks
us to find some (usually small) subgraph, named motif, present in the given
graph [Milo2002, Schl2016]. Obviously, if the motif is a complete graph we
get the same problem as the k-clique.

4

1.2 Motivation and background
In management science or operations research the main task one faced is
to solve a real life problem. This is done by the means of mathematical
programming, which basically consists of two steps. First step is the modeling
of the problem in some well known approach, and the second one is to solve
this problem with the aid of specialized solver.

There are numerous ways of modeling, and these usually can be freely
interchanged. So the decision of choosing the model is rather backed up by
the software tool at hand. The most widely used approach is to use a Lin-
ear Programming (LP) toolkit, or its variants according the specialty of the
problem like Mixed Integer Linear Programming (MILP) or Integer Linear
Programming (ILP), or Zero-One Linear Programming (0–1 LP). For combi-
natorial optimization or decision problems ILP or 0–1 LP is used, but there
are other methods, such as Satisfiability (SAT or MaxSAT) or Constraint
Programming (CP). While most times any of them can be used there are ef-
ficiency differences. These differences caused by two phenomena. First, some
problems are more suitable for one model then the other, and so the software
solving the problem may be more efficient. Second, some software is simply
more advanced then the other, as more developers work on its perfection.
Consequently, for any combinatorial optimization problem the first choice is
an ILP formulation, given its versatility and easy to model feature and the
very developed software. Note though, that this is not necessarily the most
efficient approach, and in the case of a harder problem may lead to failure.
And there is another problem, which invovles the reliability of the compu-
tations. ILP solvers use LP as an auxiliary algorithm, so rounding errors
may affect the result [Aki2016]. If one needs reliable computation she or he
needs to choose another solver, which is free of such defects, and of course
the clique solvers are such using exclusively integer and bit computations.

The present work aim to widen the possibility of modeling by showing
that modeling by graphs and finding a maximum clique or k-clique of given
size is a good approach for solving several problems. In the present work we
shall show the versatility of this modeling. Also, it is important to express
that the current state-of-the-art clique solvers are as well developed as the
SAT solvers, CP solvers or perhaps close to ILP solvers as well. This means
that there can be some problems for which the clique formulation is more
natural, and so the solution using graph modeling is more efficient.

We shall also in detail show that the graph formulation is more suitable
for developing a massively parallel algorithm, and so using supercomputers to
aid in solution of some hard problems. This task, of efficient parallelization,
is usually considered very problematic in combinatorial optimization.

5

Chapter 2

Modeling expressivity

In this chapter we would like to list some problems related or solvable with k-
clique or maximum clique search. First, we enumerate some simple problems
and in details show a possible according graph model. Second, we list real
life problems connected to subgraph isomorhism, where the solution may be
obtained by clique search or some clique search algorithm may prove useful
as an auxiliary algorithm. Third, in detail we show how can some complex
sheduling problems modeled and solved by k-clique approach. Finally, we
point out some possible connections with network analysis.

We need to mention that the proposed methods are not the only pos-
sible mathematical models for these problems. Some of these are solved
with Integer Programming, SAT solvers, Constraint Programming, special-
ized backtracking, set cover or graph coloring algorithms. Out aim is solely to
demonstrate the possibility of graph modeling and solution using a k-clique
algorithm.

For some problems we will include numerical experiments and such re-
sults. We do not claim, that these graph models and our k-clique solver would
be the best possible solution to solve these problems. Our aim is simply to
demonstrate that some non trivial problems can be solved in this way, even if
some other methods would be better. But we do claim, that there is a great
potential of such models. First, with future extensions like kernelization or
symmetry breaking, we think that this approach can sometimes even be bet-
ter for some few problems. Second, in contrast to ILP formulation, which is
the most often used option, our method does not suffer from rounding errors.
Of course, ILP solvers can be modified to be also rounding error free – by
usage of rational numbers or interval arithmetic –, but then they will be a
magnitude slower, and our method would turn out faster.

6

2.1 Puzzles, games, codes and other combina-
torial problems

Modeling with graphs and searching for cliques in these can be utilized for
solving various combinatorial problems, puzzles and games. It is well known
that different puzzles can be solved in graph theoretical methods [Foul1992].
Here we would like to list some of those, particularly ones where the solution
could be obtained by searching for a k-clique in an auxiliary graph. For the
extended descriptions of these puzzles see [Krai1953]. For each problem we
construct an auxiliary graph G and show that the original question can be
answered by finding a maximum or k-clique of given size.

2.1.1 Latin squares

Given an array of n×n we need to fill it with numbers (or symbols) 1 . . . n (or
A . . . Z), such that each symbol must appear once on each row and column,
see Figure 2.1.

D B F E G A C I H
H E G B I C A D F
A C I D F H B G E
I G A C H E F B D
E D C G B F H A I
F H B A D I G E C
G I D F C B E H A
B F E H A D I C G
C A H I E G D F B

Figure 2.1: Example of a 9× 9 Latin square

We will show how to solve this problem with the aid of constructing an
auxiliary graph and deciding if there is a k-clique present, with a given k.

The auxiliary graph G = (V,E) constructed as follows. The nodes V of
graph noted by (x, y, z) triples, x, y, z ∈ {1 . . . n}, where x and y represent
the coordinate, while z represents the symbol written on that coordinate. V
is the list of all possible triplets, that is all possible way to write a symbol at
any cell in the array. The edges of the graph will represent agreeable pairs
of triples that is when two actions represented by two triples can occur in

7

the same solution. For example triples (2, 4, D) and (2, 9, D) are in conflict,
as the symbol D cannot appear in the same row, thus there will be no edge
between them. But triples (2, 4, D) and (2, 9, F) are agreeable, thus there
will be an edge between them. Also, one cannot write two symbols in the
same cell, so triples where x1 = x2, y1 = y2 are not connected.

Formally, two triples (x1, y1, z1) and (x2, y2, z2) connected iff:

1. x1 6= x2, y1 6= y2 or,

2. x1 = x2, y1 6= y2, z1 6= z2 or,

3. x1 6= x2, y1 = y2, z1 6= z2.

We shall call this type of graph an agreement graph1.
A solution means n2 number of agreeable triples as one needs to fill in n2

number of cells. That is if we search for a k = n2 k-clique, then finding one
we obtain a solution for our problem.

Let us see a small example of board size 3× 3. The tripples are:

• (1, 1, A), (1, 2, A), (1, 3, A), (2, 1, A), (2, 2, A), (2, 3, A),
(3, 1, A), (3, 2, A), (3, 3, A)

• (1, 1, B), (1, 2, B), (1, 3, B), (2, 1, B), (2, 2, B), (2, 3, B),
(3, 1, B), (3, 2, B), (3, 3, B)

• (1, 1, C), (1, 2, C), (1, 3, C), (2, 1, C), (2, 2, C), (2, 3, C),
(3, 1, C), (3, 2, C), (3, 3, C)

For the sake of the example let us see to which nodes the node (1, 1, A) is
connected. We list the connecting nodes according the previous enumeration
of the rules:

1. (2, 2, A), (2, 3, A), (3, 2, A), (3, 3, A), (2, 2, B), (2, 3, B), (3, 2, B), (3, 3, B),
(2, 2, C), (2, 3, C), (3, 2, C), (3, 3, C)

2. (1, 2, B), (1, 3, B), (1, 2, C), (1, 3, C)

3. (2, 1, B), (3, 1, B), (2, 1, C), (3, 1, C)

We do can find a (32 = 9) 9-clique in this graph, for example the node
set {(1, 1, A), (1, 2, B), (1, 3, C), (2, 1, B), (2, 2, C), (2, 3, A), (3, 1, C), (3, 2, A),
(3, 3, B)}, which solution is depicted on Figure 2.2.

1On the other hand, the graph type, where the edges represent conflicts between the
nodes usually called the conflict graph in the literature. Note, that they are complement
graphs.

8

A B C
B C A
C A B

Figure 2.2: Example of a 3× 3 Latin square

There are several possible modifications to the original Latin square prob-
lem. One can add constrains as for example the diagonals are also forbidden
to have same symbols. The famous game of sudoku is also a variation. The
the constrain of nine 3× 3 boxes is added, where no two symbols can appear
at the same time. All these problems can be solved by the same method with
modified rules on the edge connections.2

Most usually if one encounters a puzzle of this sort, the sudoku puzzle is
of different appearance. It is set up the following way. Some of the symbols
are already placed and one needs to fill in the missing cells, see 2.3.

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

2 5 1 9
8 2 3 6

3 6 7
1 6

5 4 1 9
2 7

9 3 8
2 8 4 7

1 9 7 6

4 6 7 3 8
5 7 9 1 4

1 9 4 8 2 5
9 7 3 8 5 2 4

3 7 2 6 8
6 8 1 4 9 5 3
7 4 6 2 5 1

6 5 1 9 3
3 8 5 4 2

Figure 2.3: Example of a sudoku puzzle and it’s solution

Thus, the original proposed method must be altered to meet this demand.
For finding the solution using the auxiliary graph we need first to find the
common neighborhood of the triples representing the filled in places. Then
one simply needs to find a k-clique in the reduced graph where k is the
number of empty places.

2There is another method to solve sudoku, which is done by constructing a specific
conflict graph as an auxiliary graph and performing a coloring of this graph. The reader
can notice that the two methods are connected through the modeling described in the
Chapter 3.

9

2.1.2 Non-attacking queens

A somehow similar problem arises from the game chess. The question is
if one can place eight queens on the chessboard such that none of them
threaten each other. The problem also can be rephrased for placing n queens
on an n × n chessboard. On Figure 2.4 n = 5. Again a similar n3 graph
can be constructed, where the nodes will consist of triples (x, y, z), x and
y representing the coordinate and z representing the number of the queen.
An agreement graph can be constructed the same way as in the previous
example. The nodes should be connected if they represent different queens
not in threatening each other. A k = n k-clique will represent a solution.

5 Z0j0Z
4 0Z0Zk
3 ZkZ0Z
2 0Z0j0
1 j0Z0Z

a b c d e

Figure 2.4: Example of a Five Queens problem solution

This previous example uses too many nodes and thus be easily reduced.
As there always should be one queen per row we can omit the number of
the queen. The nodes so will be pairs (x, y), representing a queen standing
at this coordinate. A k-clique will represent k queens on the chessboard not
threatening each other.

2.1.3 Monotonic matrices

As an example of modeling a more complex problem we would like to detail
the so called Monotonic Matrices problem. From Wolfram Web [Weisst] “A
monotonic matrix of order n is an n×nmatrix in which every element is either
0 or contains a number from the set {1, . . . , n} subject to the conditions:

10

1. The filled-in elements in each row are strictly increasing,

2. The filled-in elements in each column are strictly decreasing, and

3. Positive slope condition: for two filled-in cells with same element, the
one further right is in an earlier row.”

An example depicted on Figure 2.5, where the possibly maximum 23 cells
are filled in.

2 4 7 8
1 7 8

7 8
2 4 6
1 3 6

4 6
2 3 5
1 3 5

Figure 2.5: Example of an n = 8 size Monotonic Matrix

The graph reformulation of the problem in question again similar to the
previous ones. The nodes of the auxiliary graph are the triples (x, y, z), x
and y representing the coordinate and z representing the positive number
written in the cell. The edges will consist of agreeable nodes, where the
above mentioned properties hold. For details see [Szab2013, Öst2019].

2.1.4 Costas arrays

Finally, we would like to show the expressing power of the graph representa-
tion with a special problem. The proposed representation – to our knowledge
– is not known in the literature. We propose a graph representation to the
Costas array problem [Cost1965, Cost1984]. This problem derives from radar
and sonar technology, namely phased array radar engineering. The solution
helps generating radar and sonar signals with ideal ambiguity functions. The
formalization of the problem as follows. Given an n × n array one needs to
fill it in with n dots. The constrain is that no two dots may lay on the same
row or column, and the displacement vectors of any two pairs of dots must
be distinct from all the other such displacement vectors. A possible solution
for n = 8 demonstrated on Figure 2.6.

11

•
•

•
•

•
•

•
•

Figure 2.6: Example of an n = 8 size Costas array

The graph representation of this problem is more complex then the pre-
vious examples. As the constrain of different displacement vectors instruct
us about pairs of dots (4 coordinates altogether in one pair), the nodes of the
auxiliary graph G(V,E) shall be denoted by quadruples (x1, y1, x2, y2), where
the coordinates of the represented dot-pair are (x1, y1) and (x2, y2). One could
list all possibilities, but clearly only pairs of agreeable nodes needed to be
listed, thus the rows and columns of the two dots must be different. That
means that we omit for example the quadruple (1, 1, 1, 3), because the two
dots lie in the same column. The size of this graph is n2(n − 1)2/2. The
edges of the graph represent the agreement between two dot-pairs. We need
to take special care of the case when one of the dots of a pair coincides with
a dot from the other dot-pair. In this case we have 3 instead of 4 distinct
dots.

Formally there should be no edge between two nodes (x1, y1, x2, y2) and
(a1, b1, a2, b2), iff:

1. If two pairs of dots have same row or column;

2. If one pair of dots have same row or column and there are 4 distinct
nodes;

3. If one pair of dots have same row or column and there are 3 distinct
nodes, and some of the displacement vectors of these three are the
same;

4. If no pair of dots have same row or column and there are 4 distinct
nodes, and some of the displacement vectors of these four are the same.

12

•
•
•

•

•
•
•

•
•
•
•

•
•
•

•
Figure 2.7: Depiction of constraints 1, 2, 3 and 4.

In other cases there will be an edge between these two nodes. A k-clique
of size k = n(n−1)/2 represents all pairs from n dots, and thus it is a solution
to the problem in question.

With the help of this simple formulation – even without using any ker-
nelization techniques – one can find one solution of the non trivial 14 × 14
array in few seconds and calculate all possible solutions in half an hour.

2.1.5 Communication and coding theory

In theory of communication one important aspect is the construction of codes
that are resilient to deletion or flipping errors. We would like to detect or
reconstruct the digital information, and for this purpose special codes are
constructed. Because of the (always) limited bandwidth one would like such
construction be of less overhead, so we would like to find the maximum
number of code words under specific conditions. One approach to this task
is to list all possible code words – they will be the nodes of the graph – and
construct a conflict graph. The maximum independent set is the optimum
code. For more see [But2002, But2009, Sloan, Bogd2001, Öst2020]. Note
that some of the widely used maximum clique test problems are coming from
coding theory, such as the Hamming graphs of Johnson graphs.

There is a special question in coding theory, which asks for the maximum
amount of information that can be sent over a noisy channel using multiple
signal code words. The limit of this is the so called Shannon capacity. If
we represent the confusion between the code signals by a graph, then we can
speak about the Shannon capacity of a graph. It is uniquely hard to compute
this number for most cases, but we can still calculate some upper bound. One
way of doing such calculation is to calculate the size of the independent set
in a (finite) sequence of product graphs [Pol2019, Math2017].

13

2.2 Subgraph isomorphism
After pure mathematical puzzles let us demonstrate the usefulness of graph
representation and k-clique search for solving real life problems. First cat-
egory is the problem class, when the problems can be modeled with in-
duced subgraph isomorphism. Formally, given the graphs H = (W,F) and
G = (V,E), there is a subset V ′ ⊂ V , where the induced graph G(V ′) iso-
morphic to H. The problem called as isomorphic embedding problem as
H can be isomorphically injected into G. The problem is to decide if two
given graphs maintain this property or not. Many different computationally
challenging problems with important practical applications fall into this cat-
egory. For example in computer vision, biochemistry, and model checking.
Especially wide usage of this method is found in chemistry where similarities
between drug compounds checked and databases built up on that information
[Konc2007]. Also similar method can be used for checking protein docking
abilities of drugs.

The induced subgraph isomorphism problem modeled with graph by using
a modular product of the given two graphs. A k-clique of the size of the
smaller graph, k = |W | will give an answer if H is an isomorphic subgraph
of G.

2.2.1 Chemistry

The maximum common induced subgraph problem is used in chemistry as
a means of comparing shapes of molecules, either as 3D scans or molecular
graphs, which represent the structural formula directly [Konc2010, Konc2012,
Leš2020]. An example of such use is in prediction of protein function. The
characteristic of proteins, which allows them to function within an organism,
is their ability to bind other molecules. From the point of physics this can be
described as an energy function, where the bond between two atoms means
lower energy level. But as molecules have (partially) rigid structures, we
cannot place any atom to its best place, but all together needed to be placed
at once achieving the energy minimum. Thus proteins bind to other molecules
similarly as jigsaw puzzle fit together, by matching their shape to the shape of
target molecule. The function of unknown protein can therefore be estimated
by comparing its shape to shapes of known proteins with known functions.

One of the traditional ways of solving the maximum common subgraph
problem is by reduction to a maximum clique problem, using auxiliary prod-
uct graph. The two input graphs, in which the maximum common subgraph
is to be found, are multiplied to form a product graph, which is then in-
put to the maximum clique algorithm. The result of the latter are used to

14

identify the nodes of the input graphs that form the maximum common sub-
graph. Although the maximum clique problem can be solved by a modern
branch-and-bound based algorithm for general graphs, such approach is far
from optimal. Some special properties of the product graph can be exploited
to guide the maximum clique search. Namely, the modern state-of-the-art
clique search programs use coloring as auxiliary algorithm, but finding a good
coloring of a graph itself a hard task.

2.2.2 Pattern matching and Artificial Intelligence

Correspondence between atoms in the molecules gives us a straightforward
example of subgraph isomorphism. This method can be extended to be used
as pattern recognition. For example in images one can set up some points
of interests, and making pairs of such point as a correspondence, and using
distance similarity between such points a very similar auxiliary graph as in
the case of molecules can be built.

As the theory behind comparing fingerprints already works with such
point of interests it seems a natural way of using this method for fingerprint
matching [Seg2010].

2.3 Job shop scheduling
As we will discuss later in Chapter 3 the graph coloring problem can be
transformed into maximum clique or k-clique problem. So any real world
problem that can be represented by graph coloring, such as timetables, sim-
ple scheduling and assignment problems [Marx2004], can be solved by clique
search as well. But the k-clique modeling can be used to solve more com-
plex scheduling problems as well, such as open shop, flow shop or job shop
scheduling problems. We should mention, that with some modification the
method can be extended to flexible job shop problems as well. In this section
we choose the job shop problem as an example to show the expressive power
of the k-clique modeling.

The job sequencing problem is an optimization problem [Jain1999]. Cer-
tain products are to be produced on given machines satisfying predetermined
technological order. The objective is to determine the sequence of jobs in
which the various products are processed on the machines in the least possi-
ble time. The well-known standard approach recasts the problem by means
of a mixed integer linear program. Here we experiment with a more combi-
natorial idea.

Given a positive number T we constructand an auxiliary graph G and

15

compute an integer k. The graph G encodes the agreements of the job
sequencing problem. If the graph G contains a k-clique, then there is a
feasible job sequencing whose total completion time is at most T . So, instead
of an optimization problem we are dealing with a decision problem.

2.3.1 The clique reformulation of the problem

One has to make a decision which item should be scheduled to which machine
at a specified time. So we consider a triplet (u, v, w), where the number u
refers to item u. The number v means that item u is assigned to machine v.
Finally, the number w tells that the work on item u is started at the time
point w. We consider a list of triplets that are relevant to the scheduling at
hand. There are pairs of triplets that cannot be part together of any valid
schedule. Such conflicts can be recorded by constructing a conflict graph.
It turns out that a specified size conflict free set of triplets defines a valid
schedule. The graph G we use is actually the complement of the conflict
graph and instead of looking for a independent set of size k we are looking
for a k-clique.

The nodes of the auxiliary graph G are the triplets relevant to the sched-
ule. That is all possible job, machine and starting time combinations except
for those times that cannot occur – a machine starting too soon or too late.
Initially we connect all the pairs of distinct nodes by an edge. Next we delete
edges that connects conflicting triplets. Specifically we delete an edge if any
of the following conditions holds.

1. The machines are processing a given job not in the technologically
prescribed order.

2. Distance in time for two machines processing a given job are not suffi-
cient to fit in the prescribed intermediate processing times.

3. Processing periods of the same machine on different jobs overlap.

4. Processing periods of different machines on the same job overlap.

5. Processing of a fixed job on a fixed machine occurs several times.

Set k = (number of items) × (number of machines). How large clique
can appear in the graph G? The answer is that the graph G can contain an
k-clique. A Gantt chart which corresponds to a feasible schedule provides an
k-clique in G. The reader may note, that our formulation is quite generic.
That means that the three different problem classes, the flow shop, the job
shop and the open shop problems, all can be solved by this approach with
little variations.

16

2.3.2 A small example

In order to illustrate the previous considerations we work out small size
example in details. Three items are to be scheduled on two machines. The
work times are summarized in Table 2.1.

Item Machine 1 Machine 2
work time work time

1 d(1, 1) = 1 d(1, 2) = 3
2 d(2, 1) = 2 d(2, 2) = 1
3 d(3, 1) = 3 d(3, 2) = 1

Table 2.1: Processing times on the machines in the small example

Figure 2.8: Possible time slots (triplets) for the given problem in Table 2.1
with makespan of 6 hours.

Using some greedy heuristics, one can verify that there is a feasible sched-
ule with a completion time 7 hours. We ask if there is a schedule with a
completion time 6 hours. Assuming a 6 hours makespan the auxiliary graph
G has 20 vertices. The nodes of the graph G are triplets. We numbered
the triplets by 1, . . . , 20. Table 2.2 lists the triplets together with the cor-
responding numbers. The adjacency matrix of the graph G is in Table 2.3.

17

name triplet name triplet name triplet name triplet
1 (1,1,0) 6 (1,2,3) 11 (2,2,2) 16 (3,1,1)
2 (1,1,1) 7 (2,1,0) 12 (2,2,3) 17 (3,1,2)
3 (1,1,2) 8 (2,1,1) 13 (2,2,4) 18 (3,2,3)
4 (1,2,1) 9 (2,1,2) 14 (2,2,5) 19 (3,2,4)
5 (1,2,2) 10 (2,1,3) 15 (3,1,0) 20 (3,2,5)

Table 2.2: Nodes of the graph G in the small example

The question is if G contains any 6-clique. With exact clique search one can
prove that the graph G does not contain any 6-cliques. So the given schedul-
ing problem cannot be completed in T = 6 hours makespan, concluding that
T = 7 is the optimal value.

2.3.3 Numerical experiments

Given the graph reformulation of the flow shop, job shop and open shop
problems we are interested in the efficiency of the clique search approach.
We considered two large problems, of which the second is still open. As the
reader will see our first approach to this problem is not yet as efficient as
modern state-of-the-art solvers but can solve moderately hard problems. We
used heavy kernelization like detailed Section 4.3, but more sophisticated
according to the special features of the auxiliary graph. We do not detail
these as they lay outside the scope of the present work.

In fact, for medium problems we could use an exact k-clique solver af-
ter the kernelization, as the graph was considerably reduced. For the large
instances – apart from some trivial cases –, the reduced graph was still too
big for exact solvers. So we could use two heuristic algorithms to set upper
and lower bounds. As one can see our approach is stronger for finding lower
bounds.

The resulting graphs are very large, so we do not expect that exact clique
solvers could solve the k-clique problem. Instead we used two heuristics. First
is the DSatur coloring from Brelaz [Brel1979]. If the resulting graph after
kernelization can be colored with less then k colors, then there cannot be a
k-clique present and thus we can set the lower bound. Second is the KaMIS
heuristics [Lam2016] for finding independent sets – we used the complement
graph for this purpose. If the resulting graph after kernelization do has a
k-clique present this gives us an upper bound.

We tested our algorithm with two known instances from [Ada1988].
The abz8 instance, which sets up a problem of 20 jobs and 15 machines,

has a known lower bound of 648 and upper bound of 665. We could set the

18

1 1 1 1 1 1 1 1 1 1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 × • • • • • • • • • • • • • • •
2 × • • • • • • • • • • • •
3 × • • • • • • • • •
4 • × • • • • • • • • • • •
5 • • × • • • • • • • • •
6 • • • × • • • • • • •
7 • • • × • • • • •
8 • • • • × • • • • •
9 • • • • • × • • • • •
10 • • • • • • × • • •
11 • • • × • • • • • •
12 • • • × • • • • •
13 • • • • • • • × • • • •
14 • • • • • • • • × • • •
15 • • • • • • • × • • •
16 • • • • • • • • × • •
17 • • • • • • • • • × •
18 • • • • • • • • • ×
19 • • • • • • • • • • • • ×
20 • • • • • • • • • • • • • • • ×

Table 2.3: The adjacency matrix of the graph G in the small example

19

lower bound by setting the makespan to 599. The auxiliary graph has 66 210
nodes and 2 105 395 622 edges. After kernelization the resulting auxiliary
graph has 58 565 nodes and 1 569 659 812 edges, and the DSatur coloring
could color the graph with 296 colors, while we are looking for a clique of
size 300. This set the lower limit to 600.

For upper limit we used makespan 859. The auxiliary graph has 144 210
nodes and 10 264 886 876 edges. The KaMIS heuristic search found a clique
of size 300. This value proved that there is a feasible schedule with the given
makespan, leading to an upper bound of 859.

The abz5 instance, which sets up a problem of 10 jobs and 10 machines,
has an optimum of 1234. This problem is solvable by our method to opti-
mality. First we set the makespan to 1233. The auxiliary graph has 45 670
nodes and 956 998 171 edges. After kernelization the resulting graph has
27 072 nodes and 318 810 474 edges, and could be colored by 99 colors with
the DSatur algorithm, while we are looking for a clique of size 100. Thus the
lower bound is 1234.

With setting the makespan to 1234 the resulting auxiliary graph has
45 770 nodes and 961 249 429 edges. After preconditioning with node dom-
inance the resulting graph has 32 014 nodes and 461 551 291. The KaMIS
heuristic search found a clique of size 100, which sets the upper bound to
1234. As the lower and upper bounds are the same we have the optimum
solution.

We can conclude from these examples, that the instances are too big for
the available exact maximum clique solvers. On the other hand it is possible
to find a lower bound by the proposed preconditioning methods and an upper
bound by means of approximate methods.

2.4 Network analysis
There is an emerging tool in data science which we call network analy-
sis [Bota2014]. In some of these problems questions about cliques arise
[Patt2013a, Chan2014]. Among these problems we find the interaction of
people on a telephone network, for which a so called call graph is constructed
[Abe1999]. A clique or a quasi clique can hint the operator about being one
family or group of friends. One can also look for a terrorist cell in a friendship
graph [Kre2002, Hay2006] or find insurance frauds. Marketing information
also can be collected into graphs, as for example we can store similar pur-
chases.

The most common way to obtain data from networks is done by com-
munity detection, that is clustering. Cliques are used in clique clustering as

20

an auxiliary algorithm [Bota2015]. Also, k-clique search can be useful for
preprocessing [Kump2008, Greg2012].

A special usage of networks is the data analysis of stock price for careful
portfolio selection. The so called market graph is constructed, where each
node represents a stock, and nodes are connected if the price change in values
are correlated over a given time period. An independents set or a quasi
independent set means that the prices are pairwise independent making those
stocks a good portfolio [Bogi2003, Bogi2006, Bogi2014]. Also, one can use
the clique number to detect stock market crash. If the maximum clique in
the market graph becoming too big – almost all nodes of the graph are in the
clique –, then the prices moving in one direction and we should shut down
the stock exchange.

An interesting method of modeling the brain – either human or other
animals – arise in today’s neuroscience. Researchers detect certain regions of
the brain (nodes) and find correlations between their work (edges). Graph
based analysis done on these so called Brain Graphs, among them clique or
quasi clique search [Bull2009]. This method is used for detecting neurological
disorders and diseases such as epilepsy [Chi2014] or for characterization of
the connectivity of the brain [Rub2009] in brain research.

21

Chapter 3

Modeling graph and hypergraph
coloring with cliques

In the second chapter we presented an extended list of problems that can be
modeled and solved through graph representation and searching a k-clique
or maximum clique in the corresponding auxiliary graph. In the present
chapter we will pick one particular problem class. We shall explore more
deeply a case study of different types of graph and hypergraph colorings.
In all cases we will show how the problem can be modeled and solved with
k-clique search as a versatile method. In the present chapter we use results
from [Szab2016b] and [Szab2019b].

In this chapter we first define the legal coloring of the nodes of a graph and
show two methods of modeling it by maximum clique and k-clique. Second,
we discuss a special graph coloring method of nodes, the 3-free coloring, and
its modeling. Third, we conclude with hypergraph coloring problem and
models. Finally, with the the aid of proposed modeling method we give a
partial answer to an open problem by Voloshin. On usage of graph coloring
the reader can find more for example in [Ahm2012, Coop2006].

3.1 Legal coloring of the nodes of a graph
We color the nodes of a graph G satisfying the following conditions.

1. Each node of G receives exactly one color.

2. Adjacent nodes in G cannot receive the same color.

This is the most commonly encountered coloring of the nodes of a graph and
it is referred as legal or proper coloring of the nodes.

22

Problem 3.1. Given a finite simple graph G find the smallest integer k, such
that the nodes of G have a legal coloring using k colors.

Problem 3.2. Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a legal coloring using k colors.

Problem 3.1 is an optimization problem and belongs to the NP-hard com-
plexity class. Problem 3.2 is a decision problem and belongs to the NP-
complete complexity class [Karp1972].

3.1.1 Classical formulation

There is a well known formulation of Problem 3.1, the minimum coloring
problem, into an auxiliary graph and a maximum independent set search
[Corn2008]. The auxiliary graph Γ has n2 + n nodes, and it is constructed
as follows. We take n copies of the graph G – G1, G2, . . . , Gn. We connect
all copies of a node pairwise in Γ. We add extra nodes x1, x2, . . . , xn. We
connect xi to all nodes of Gi. A coloring of G will be represented as a union
of independent sets in some of the G1, G2, . . . , Gn subgraphs. For each other
Gi that has no part of the independent set one can add the node xi, making
a minimal coloring using the maximum number of xi-s, that is making the
independent set maximal. Obviously one can take the complement of the
auxiliary graph and instead of searching for the maximum independent set
search for the maximum clique, as we will do further.

A newer approach originating from the above was described in [Corn2016].
But we will go to a different direction, because we would like to extend this
method to other related problems as well.

3.1.2 The k-clique approach

Both Problems 3.2 – the k coloring problem – and Problem 1.2 – the k-clique
problem – are decision problems. From the complexity theory of computa-
tions we know that these problems belong to the NP-complete complexity
class. Problems 3.2 and 1.2 are polynomially reducible to each other. The
point we would like to make here is that reducing Problem 3.2 to Problem
1.2 can be utilized in practical computations.

Here is a way how Problem 3.2 can be reduced to Problem 1.2.
Using the graph G = (V,E) and using the positive integer k one con-

structs an auxiliary graph Γ = (W,F). The nodes of Γ are the ordered
pairs

(v, a), where v ∈ V, 1 ≤ a ≤ k.

23

The intended meaning of the pair (v, a) is that node v of G receives color a.
Let us pick two distinct nodes

w1 = (v1, a1) and w2 = (v2, a2)

of Γ. If the unordered pair {v1, v2} is an edge of G, then in a legal coloring
of the nodes of G the colors a1, a2 cannot be identical. When we construct
Γ we do not connect the nodes w1, w2 if the unordered pair {v1, v2} is an
edge of G and if in addition a1 = a2 holds. In a coloring of the nodes of G
a node cannot receive two distinct colors. Thus when we construct Γ we do
not connect w1, w2 by an edge in Γ if v1 = v2.

Let n be the number of vertices of G, that is, let n = |V |. The graph Γ
has nk vertices.

Observation 3.1. If the nodes of the graph G have a legal coloring using k
colors, then the graph Γ contains a n-clique.

Proof. Let us assume that the nodes of G can be colored legally using k
colors. Let f : V → {1, . . . , k} be a function which describes this coloring.
Let

D = {(v, f(v)) : v ∈ V }

and let ∆ be the subgraph of Γ induced by D. Clearly, D has n elements.
We claim that ∆ is an n-clique in Γ.

In order to verify this claim we pick two distinct nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

from D.
If v1 = v2, then f(v1) = f(v2) must hold as the node v1 receives exactly

one color. This means that w1 = w2. But we know that w1 6= w2.
If v1 6= v2 and the unordered pair {v1, v2} is an edge of G, then f(v1) 6=

f(v2) holds since the coloring defined by f is legal. This means that we have
connected the nodes w1, w2 by an edge in Γ when we constructed Γ.

If v1 6= v2 and the unordered pair {v1, v2} is not an edge of G, then we
have connected the nodes w1, w2 by an edge in Γ when we have constructed
Γ.

Observation 3.2. If the graph Γ contains an n-clique, then the nodes of the
graph G can be colored legally using k colors.

Proof. Let us suppose that Γ has an n-clique ∆ and D is the set of nodes of
∆. Let

Iv = {(v, a) : 1 ≤ a ≤ k}

24

for each v ∈ V . Obviously, Iv has k elements. Note that the sets Iv, v ∈ V
are pair-wise disjoint independent sets in Γ. Further note that the union of
these sets is equal to W .

The nodes of Γ can be colored legally using n colors. The sets Iv, v ∈ V
can play the roles of the color classes of the nodes of Γ. Since ∆ is a clique
in Γ it follows that each Iv contains at most one element from D. Using the
fact that |D| = n we can conclude that D is a complete set of representatives
of the sets Iv, v ∈ V .

Set
T = {v : (v, a) ∈ D}

We can see that T = V . Therefore each v ∈ V receives exactly one color.
We may express this result such that the map f : V → {1, . . . , k} defined by
f(v) = a is a function. It remains to show that the function f describes a
legal coloring of the nodes of G.

Suppose that the unordered pair {v1, v2} is an edge of G. and consider
two distinct nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

of ∆. When we constructed the graph Γ we have connected the nodes w1,
w2 by an edge in Γ because f(v1) 6= f(v2).

Theorem 3.1. Given a graph G on n nodes and an integer k and a auxiliary
graph Γ described above. There is a legal k coloring of nodes of G iff there is
an n-clique in Γ.

Proof. Follows from Observation 3.1 and 3.2.

Note, that the construction described here is quite similar to the classical
formulation for maximum independent set.

3.2 3-clique free coloring
As we stated above we would like to extend this modeling method to other
related problems. Here we shall show this for 3-clique free coloring problem
described in [Szab2012] and detailed in Subsection 4.2.3.

We color the nodes of a simple, finite graph G satisfying the following
conditions.

1. Each node of G receives exactly one color.

2. The three nodes of a 3-clique in G cannot receive the same color.

25

We call this type of coloring of the nodes of G a 3-clique free coloring. Col-
oring can be used for estimating clique size.

Let us suppose that ∆ is an l-clique in G and let us suppose that the
nodes of G have a 3-clique free coloring with k colors. Then l ≤ 2k holds.

We indicate the proof in the case when l is an even number. A 3-clique
free coloring of the nodes of G gives a 3-clique free coloring of the nodes of
∆. Note that in a 3-clique free coloring of the nodes of ∆ at least l/2 colors
must occur. This gives l/2 ≤ k, as required.

Problem 3.3. Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a 3-clique free coloring using k colors.

Problem 3.3 can be reduced to Problem 1.2. Starting with the the graph
G = (V,E) and the positive integer k we construct an auxiliary graph Γ =
(W,F). The nodes of Γ are the triples

({u, v}, a, b), where {u, v} ∈ E, 1 ≤ a, b,≤ k.

Let m be the number of edges of G, that is, let m = |E|. The number of the
triples is equal to mk2.

The triple ({u, v}, a, b) intends to code the information that the end points
u, v of the edge {u, v} are colored with the colors a, b respectively. In this
section we assume that each node of the graph G is end point of some edge
of G. In other words we assume that the graph G does not contain isolated
nodes.

Let us consider two distinct nodes

w1 = ({u1, v1}, a1, b1) and w2 = ({u2, v2}, a2, b2)

of Γ. Set
X = {u1, v1} ∪ {u2, v2} = {u1, v1, u2, v2}.

It is clear that |X| ≤ 4 and since u1 6= v1 we get that |X| ≥ 2. Thus
2 ≤ |X| ≤ 4. Let HX be the subgraph of G induced by X. The nodes u1,
v1, u2, v2 receive the colors a1, b1, a2, b2, respectively in the graph HX .

When |X| ≤ 3, then these nodes are not pair-wise distinct and it may
happen that two distinct colors are assigned to a node in HX . In this case
we call the graph HX a non-qualifying graph.

It also may happen that there is a 3-clique inHX and all the three nodes of
this 3-clique receive the same color. In this situation again we call the graph
HX a non-qualifying graph. In all the other cases HX is called a qualifying
graph.

When we construct the graph Γ we connect the nodes w1, w2 by an edge
in Γ if HX is a qualifying graph.

26

Observation 3.3. If the nodes of G have a 3-clique free coloring with k
colors, then the graph Γ contains an m-clique.

Proof. Suppose that the nodes of the graph G have a 3-clique free coloring
using k colors. Let f : V → {1, . . . , k} be a function that codes this coloring.
Set

D = {({u, v}, f(u), f(v)) : {u, v} ∈ E}

and let ∆ be the subgraph of Γ induced by D. It is clear that |D| = m. We
claim that ∆ is a clique in Γ.

In order to verify the claim let us choose two distinct nodes w1, w2 from
D. Let us consider the subgraph HX associated with w1, w2. Since f is
a function, each node of HX receives exactly one color. As f describes a
3-clique free coloring of the nodes of G, it follows that the restriction of f to
the nodes of HX is a 3-clique free coloring of the nodes of HX . Thus HX is a
qualifying graph. Consequently, we connected w1, w2 by an edge in Γ when
we constructed Γ.

Observation 3.4. If the auxiliary graph Γ contains an m-clique, then the
nodes of the graph G have a 3-clique free coloring with k colors.

Proof. Suppose that Γ contains an m-clique ∆ and D is the set of nodes of
∆. Now |D| = m.

Set
I{u,v} = {({u, v}, a, b) : 1 ≤ a, b,≤ k}

for each {u, v} ∈ E. Obviously, |I{u,v}| = k2. Note that the sets I{u,v},
{u, v} ∈ E are pair-wise disjoint independent sets in Γ.

Indeed, if

w1 = ({u, v}, a1, b1) and w2 = ({u, v}, a2, b2)

are distinct elements of I{u,v}, then the graph HX associated with w1, w2 has
two nodes. From w1 6= w2 it follows that a1 = a2, b1 = b2 cannot hold. Thus
HX is not qualifying. This means when we constructed Γ we did not connect
w1, w2 by an edge in Γ.

The nodes of Γ have a legal coloring using m colors. The independent
sets I{u,v}, {u, v} ∈ E can play the roles of the color classes.

As ∆ is a clique in Γ each color class contains at most one element from
D. Using the cardinality of D we can conclude that D is a complete set of
representatives of the color classes.

Set
T = {{u, v} : ({u, v}, a, b) ∈ D}.

27

�
�
�

�
�
�
�

r r

r r

3 2

4 1

Figure 3.1: A graphical representation of the graph G in Example 3.1.

It follows that E = T . Consequently, each node of G which is an end point
of at least one edge of G receives at least one color. We claim that each node
receives exactly one color.

In order to prove the claim assume on the contrary that more than one
colors are assigned to a node of G. In this case there are distinct nodes w1,
w2 of ∆ such that a node receives more than one color in the subgraph HX

associated with w1, w2. This means that HX is not qualifying. On the other
hand when we constructed Γ we connected w1, w2 by an edge on the base
that the subgraph HX was qualifying.

We may summarize our consideration by saying that we can define a
function f : V → {1, . . . , k} by setting f(u) = b whenever ({u, v}, a, b) is a
node of ∆. It remains to show that the coloring of the nodes of G described
by the function f is a 3-clique free coloring.

Suppose there is a 3-clique Ω in G whose nodes receive the same color.
There are distinct nodes w1, w2 of ∆ such that Ω is a 3-clique in the subgraph
HX associated with w1, w2. This means that HX is not qualifying. On the
other hand when we constructed Γ we connected w1, w2 by an edge in Γ
because the subgraph HX was qualifying.

Theorem 3.2. Given a graph G with m edges and an integer k and a aux-
iliary graph Γ described above. There is a 3-free coloring of nodes of G with
k colors iff there is an m-clique in Γ.

Proof. Follows from Observation 3.3 and 3.4.

Example 3.1. Let the finite simple graph G = (V,E) be given by its adja-
cency matrix in Table 3.2. The graph has 4 nodes and 4 edges. Figure 3.1
depicts a possible geometric version of G .

28

1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 × • • • •
2 × • • • • • •
3 × • • • • • •
4 × • • • •
5 • × • • •
6 • • × • • • • • •
7 • • × • • • • • •
8 • × • • •
9 • • • • • × • •
10 • • • • • × • •
11 • • • • • × • •
12 • • • • • × • •
13 • • • • ×
14 • • • • • • ×
15 • • • • • • ×
16 • • • • ×

Table 3.1: The adjacency matrix of the auxiliary graph Γ in Example 3.1.

1 2 3 4
1 × • •
2 × •
3 • • × •
4 • • ×

Table 3.2: The adjacency matrix of the graph G in Example 3.1

1 ({1, 3}, 1, 1) 9 ({2, 3}, 1, 1)
2 ({1, 3}, 1, 2) 10 ({2, 3}, 1, 2)
3 ({1, 3}, 2, 1) 11 ({2, 3}, 2, 1)
4 ({1, 3}, 2, 2) 12 ({2, 3}, 2, 2)
5 ({1, 4}, 1, 1) 13 ({3, 4}, 1, 1)
6 ({1, 4}, 1, 2) 14 ({3, 4}, 1, 2)
7 ({1, 4}, 2, 1) 15 ({3, 4}, 2, 1)
8 ({1, 4}, 2, 2) 16 ({3, 4}, 2, 2)

Table 3.3: The nodes of the auxiliary graph Γ in Example 3.1.

29

We wish to decide if the nodes of the graph G have a 3-clique free legal
coloring with 2 colors. By constructing the auxiliary graph Γ = (W,F) the
question is reduced to a clique search. The graph Γ has |V |·k2 = (4)(22) = 16
nodes. The nodes of Γ are listed in Table 3.3.

3.3 Reducing hypergraph coloring to clique
search

Our final example for using this technique will be the coloring of hypergraphs.
Namely, we will show how legal coloring of the nodes of a hypergraph can
be reduced to clique search in a uniform hypergraph. (More on hypergraphs
see [Berg1973, Bret2013].)

Let H = (V,E) be a finite simple hypergraph. The hypergraph has
finitely many nodes and finitely many edges. Further it does not have any
loop (hyperedge containing only one element) and it does not have double
hyperedges.

We color the nodes of the hypergraph H in the following way.

1. Each node receives exactly one color.

2. All the nodes of a hyperedge cannot receive the same color.

This type of coloring of the nodes of the hypergraph is called a legal coloring
of the nodes of H. A coloring of the nodes of the hypergraph H = (V,E)
can be conveniently given by a map f : V → {1, . . . , k}. Here the numbers
1, . . . , k represent the colors and f(v) is the color of the node v ∈ V . The i-th
level set of the function f is commonly referred to as the i-th colors class.
The i-th color class Ci is equal to {v : v ∈ V, f(v) = i}. A coloring of the
nodes can also be given by the colors classes C1, . . . , Ck.

The next problem is known as the k-colorability problem

Problem 3.4. Given a finite simple hypergraph H = (V,E) and given a
positive integer k. Let us decide if the nodes of H can be legally colored using
k colors.

For each finite simple hypergraphH there is a well defined positive integer
k such that the nodes of H can be legally colored using k colors but the
nodes of H cannot be legally colored using k − 1 colors. This k is called the
chromatic number of H and is denoted by χ(H).

By the complexity theory of algorithms, Problem 3.4 belongs to the NP-
complete complexity class even in the k = 2 special case (see [Gare2003,

30

Papa1994].) One may interpret this fact by saying that deciding if the nodes
of a given hypergraph can be legally colored using two colors is a computa-
tionally demanding problem. Consequently determining the chromatic num-
ber of a given hypergraph is a computationally hard problem as well.

There are other types of hypergraph colorings, namely rainbow coloring,
mixed coloring, etc. We will describe some in the text, but actually, al-
though they are truly different constructions, from the point of view of our
construction there is little difference between them.

A subset I of the nodes of the hypergraph H is called an independent set
if a subset of I is never a hyperedge of H. An independent set I is maximal
in H if it cannot be extended to a larger independent set by augmenting it
by a node of H. An independent set I with cardinality k is a maximum inde-
pendent set in H if H does not contain any independent set with cardinality
k + 1.

Legally coloring the nodes of an ordinary graph or a hypergraph has many
important applications in various fields besides its theoretical significance.
Since finding the optimal number of colors of a legal coloring can easily
exceed the available computational resources in many practical situation we
settle for approximate greedy coloring procedures. In this work we will reduce
hypergraph coloring problems to hyperclique search problems in r-uniform
hypergraph. We intend to exploit the many possible greedy clique locating
procedures to construct approximate legal coloring of the nodes of a given
hypergraph.

Let H = (V,E) be a finite simple r-uniform hypergraph. It means that
H is a finite simple hypergraph such that each edge contains exactly r nodes.
Let C be a subset of V . We say that C is a clique in H if each r pair-wise
distinct nodes in C are the nodes of a hyperedge of H. The size of the clique
is the cardinality |C| of C. If |C| = k we speak of a k-clique.

The next problem is the so-called k-clique problem for hypergraphs.

Problem 3.5. Given a finite simple r-uniform hypergraph H and given a
positive integer k. Decide if H contains a k-clique.

For a given finite simple r-uniform hypergraph H there is a well defined
positive integer k such that H has a hyperclique of size k and H does not
have any hyperclique of size k + 1. This k is called the clique number of H
and is denoted by ω(H). It is a well-known result from complexity theory
that the k-clique problem is in the NP-complete complexity class even in the
r = 2 particular case (see [Gare2003, Papa1994].) As the k-clique problem
is computationally challenging it must hold for the problem of determining
the clique number too.

31

hyperedge tiles
{1, 3, 6} {1, 3}, {6}
{1, 3, 8} {1, 3}, {8}
{1, 5, 8} {1, 5}, {8}
{2, 4, 5, 7} {2, 4}, {5, 7}

Table 3.4: The tiles assigned to the hyperedges in Example 3.2. The hyper-
edges are cut into two tiles.

To an r-uniform hypergraph H it is customary to assign an r-uniform
hypergraph H ′ such that the nodes of H ′ are the same as the nodes of H
and an r element subset e of the nodes is a hyperedge of H ′ when e is not a
hyperedge of H. The graph H ′ is called the complement of H. Note that the
nodes of hyperclique in H form an independent set in H ′ and the elements
of an independent set in H are the nodes of a hyperclique in H ′. We can
speak of maximal and maximum cliques in the same way as we spoke about
maximal and maximum independent sets.

3.3.1 Reducing hypergraph problems to ordinary graph
problems

Let H = (V,E) be a finite simple hypergraph. We assign colors to the nodes
of H such that the following two conditions are met.

1. Each node receives exactly one color.

2. Two distinct nodes of a hyperedge never receive the same color.

This type of coloring of the nodes of the hypergraph is called a rainbow
coloring of the nodes of H. The following problem can be called as the
k-rainbow colorability problem

Problem 3.6. Given a finite simple hypergraph H = (V,E) and given a
positive integer k. Let us decide if the nodes of H can be rainbow colored
using k colors.

One can observe that Problem 3.6 is not a genuine hypergraph problem
in the sense that it can be reduced to the coloring of the nodes of an ordinary
graph. Let us define an ordinary graph G. The nodes of G are identical to
the nodes of the hypergraph H. Two distinct nodes u, v of G will be adjacent
in G if u, v are elements of a hyperedge of H simultaneously. It is easy to

32

verify that if the nodes of the hypergraph H have a rainbow coloring with k
colors then the nodes of the ordinary graph G have a legal coloring using k
colors. And conversely, if the nodes of G have a legal coloring with k colors,
then the nodes of H have a rainbow coloring with k colors.

One may define cliques in a hypergraph H = (V,E) in the next way. A
subset C of V is a clique in H if for each distinct nodes u, v in V there is a
hyperedge of H that contains both u and v. We may consider Problem 3.5 in
connection with this clique concept. Locating a k-clique in the hypergraph H
can be reduced to find a k-clique in an ordinary graph G. For this purpose it
is enough to introduce the ordinary graph G we have described above. In this
sense this new clique concept is not a genuine generalization of the ordinary
clique concept for hypergraphs.

Let H = (V,E) be a 3-uniform hypergraph and suppose that we are
looking for a k-hyperclique in H. This problem can be reduced to a clique
search in an ordinary graph G. Let e1, . . . , em be all the hyperedges of H.
These hyperedges will be the nodes of G. Two distinct edges ei = {ui, vi, wi},
ej = {uj, vj, wj} are adjacent in G if the unordered triplets

{ui, uj, vj}, {ui, uj, wj}, {ui, vj, wj},
{vi, uj, vj}, {vi, uj, wj}, {vi, vj, wj},
{wi, uj, vj}, {wi, uj, wj}, {wi, vj, wj}

are all hyperedges of the hypergraph H. Both of the set {ui, vi, wi},
{ui, vi, wi} has three elements. It can happen that these sets are not disjoint.
In this case not all of the listed nine sets have three elements. We should
check if the three elements subsets among the listed nine sets are hyperedges
of the hypergraph H.

We claim that if the hypergraph H has a hyperclique of size k, then the
ordinary auxiliary graph G has a clique of size

(
k
3

)
.

In order to prove the claim let C ⊆ V with |C| = k such that for each
pair-wise distinct u, v, w ∈ C the unordered triplet {u, v, w} is a hyperedge
of H. We can form

(
k
3

)
unordered triples from the elements of C. All these

triplets are hyperedges of H. Further these hyperedges are pair-wise adjacent
nodes in the graph G. Thus G has a clique of size

(
k
3

)
.

Next we claim that if G has a clique of size
(
k
3

)
, then H has a hyperclique

of size k. Let m =
(
k
3

)
and let e1 = {u1, v1, w1}, . . . , em = {um, vm, wm} be all

the nodes of a clique of sizem inG. Of course e1, . . . , em are hyperedges of the
hypergraphH. Set C = {u1, v1, w1, . . . , um, vm, wm}. There maybe repetition
among the elements u1, v1, w1, . . . , um, vm, wm. In other words these elements
are not necessarily pair-wise distinct. Let us suppose that |C| = t. As
e1, . . . , em are pair-wise distinct three element subsets of C, it follows that
m =

(
k
3

)
≤
(
t
3

)
and so k ≤ t.

33

Choose u, v, w ∈ C such that u, v, w are pair-wise distinct. By the
definition of C there are hyperedges ep, eq, er of H for which u ∈ ep, v ∈ eq,
w ∈ er and ep, eq, er ⊆ C. Note that ep, eq are adjacent nodes in G. Using
the nine subsets in the definition of the adjacency in G we get that there is
a hyperedge es of H such that u, v ∈ es and es ⊆ C. Note that er, es are
adjacent nodes in G. We get that there is a hyperedge of H that contains
u, v, w. Therefore each three element subset of C is a hyperedge of H. This
means that H has a hyperclique of size k.

3.3.2 The auxiliary hypergraph

We pick a hyperedge e of the hypergraph H. We partition e into the subsets
T (e, 1), . . . , T (e, r). In other words we choose the subsets T (e, 1), . . . , T (e, r)
such that they satisfy the following conditions.

1. T (e, i) 6= ∅ for each i, 1 ≤ i ≤ r.

2. T (e, 1) ∪ · · · ∪ T (e, r) = e.

3. T (e, i) ∩ T (e, j) = ∅ for each i, j, 1 ≤ i < j ≤ r.

We will refer to the subsets T (e, 1), . . . , T (e, r) as tiles associated with the
hyperedge e.

We pick a tile T (e, i) and color its elements with the k colors in all possible
ways. If T (e, i) has t elements, then the number of possible colorings is equal
to kt. We will denote this number by α(e, i). We will denote a colored tile
by [T (e, i), C(e, i, j)]. Here C(e, i, j) is a coloring of the elements of T (e, i),
that is, C(e, i, j) is a map from T (e, i) to the set of colors {1, . . . , k}.

We define an ordinary graph Γ1. The nodes of Γ1 are the colored tiles we
have just constructed. Two distinct colored tiles

[T (e1, i1), C(e1, i1, j1)], [T (e2, i2), C(e2, i2, j2)]

will be adjacent in Γ1 if the colorings C(e1, i1, j1), C(e2, i2, j2) do not agree
on the intersection of the tiles T (e1, i1), T (e2, i2).

Next we define an r-uniform hypergraph Γ2. The nodes of Γ2 are the
colored tiles. The pair-wise distinct colored tiles

[T (e, 1), C(e, 1, j1)], . . . , [T (e, r), C(e, r, jr)]

form a hyperedge of Γ2 if all the nodes of the hyperedge e of H receive the
same color at the colorings C(e, 1, j1), . . . , C(e, r, jr) of the tiles. We call Γ1,
Γ2 conflict graphs. Both represent situations that obstruct legal coloring of

34

the nodes of the hypergraph H. As it turns out the information contained
by the conflict graphs Γ1, Γ2 is sufficient to locate legal coloring of the nodes
of the hypergraph H. We will state the results formally in two lemmas.
Suppose the given hypergraph H has m hyperedges. The m hyperedges are
partitioned into mr tiles.

Lemma 3.1. If the nodes of the hypergraph H can be legally colored using
k colors, then the conflict graphs Γ1, Γ2 contain an independent set I of size
mr simultaneously.

Proof. Let us assume that the nodes of the hypergraph H are legally colored
using k colors and suppose that the map f : V → {1, . . . , k} defines this
coloring. Note that the colored tiles

[T (e, i), C(e, i, j)], 1 ≤ j ≤ α(e, i)

that are all the colored versions of the tile T (e, i) are pair-wise adjacent in
the conflict graph Γ1. This means that only one of them can be an element
of an independent set in Γ1. It follows that an independent set in Γ1 can
have at most mr elements.

The map f restricted to the tile T (e, i) provides a colored tile
[T (e, i), C(e, i, j)] for some j, 1 ≤ j ≤ α(e, i). There are m choices for e
and there are r choices for i. Therefore Γ1 has an independent set I of size
mr.

The colored tiles that form a hyperedge of the conflict graph Γ2 are all
associated one fixed hyperedge e of H. Further all these tiles are colored
with one fixed color. But the map f cannot assign the same color to each
node of e. This shows that the set I is an independent set in the conflict
graph Γ2.

Lemma 3.2. If the conflict graphs Γ1, Γ2 contain an independent set I of
size mr simultaneously, then the nodes of the hypergraph H can be legally
colored using k colors.

Proof. Let us assume that the conflict graphs Γ1, Γ2 have an independent set
I of size mr simultaneously. As in the previous proof note that the colored
tiles

[T (e, i), C(e, i, j)], 1 ≤ j ≤ α(e, i)

are pair-wise adjacent in Γ1. It follows that exactly one of these colored tiles
must be an element of I. This means that each tile is colored, that is, no tile
remains uncolored. Consequently, each node of the hypergraph H receives
a color. The conflict graph Γ1 guarantees that a node can receive only one
color. The conflict graph Γ2 makes sure that all the nodes of a hyperedge of
H cannot receive the same color.

35

1 2 3 4 5 6 7 8
e1 • • •
e2 • • •
e3 • • •
e4 • • • •

Table 3.5: The incidence matrix of the hypergraph H in Example 3.2.

Let W be the set of all colored tiles. The edges of the conflict graph Γ1

are two element subsets of W . The hyperedges of the conflict graph Γ2 are r
element subsets of W . We add r− 2 new nodes β1, . . . , βr−2 to W to get W ′.
We construct a new conflict graph Γ = (W ′, F). If the unordered pair {u, v}
is an edge of Γ1, then we add the hyperedge {u, v, β1, . . . , βr−2} to Γ. We add
the hyperedges of Γ2 to Γ without any modification. The conflict graph Γ
carries exactly the same information as the conflict graphs Γ1, Γ2. In order
to find a legal coloring of the nodes of H we should locate an independent
set I of size mr + r − 2 in the conflict graph Γ. Or equivalently we should
look for a hyperclique of size mr + r − 2 in the complement of the conflict
graph Γ.

3.3.3 Examples

Let us consider the hypergraph H = (V,E) with V = {1, 2, . . . , 8} and
E = {e1, . . . , e4}, where

e1 = {1, 3, 6}, e2 = {1, 3, 8},
e3 = {1, 5, 8}, e4 = {2, 4, 5, 7}.

The hypergraph H has 8 nodes and 4 hyperedges. We ask if the nodes of H
can be colored legally using two colors. The incidence matrix of the edges of
H is in Table 3.5.

Example 3.2. Using the hypergraph H we construct an auxiliary hypergraph
G = (W,F). In this example we cut the hyperedges of H into two tiles. In
other words we choose the number r in the construction to be 2.

Using the hyperedges of the hypergraph H = (V,E) we construct certain
subsets of V . As in Section 3.3.2 we will call the family of these subsets tiles.
The list of pair-wise distinct tiles is the following

T1 = {6}, T2 = {8}, T3 = {1, 3},
T4 = {1, 5}, T5 = {2, 4}, T6 = {5, 7}.

36

t t t t

t t t t

t t t t

t t t t

t t

t
t

13 14 15 16

17 19 18 20

12 11 10 9

6 5 8 7

1 2

4

3

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

1, 2
�� �1 edge

2 edges

5, 6
7, 8

#
"

!6 edges

2 edges8 edges

3, 4
�� �1 edge

2 edges

9, 10
11, 12

#
"

!6 edges

8 edges
17, 18
19, 20

#
"

!6 edges

2 edges
13, 14
15, 16

#
"

!6 edges

Figure 3.2: On the left is the conflict graph G in Example 3.2. Each distinct
two among the elements of {5, 6, 7, 8} are adjacent. the same holds for the
sets {9, 10, 11, 12}, {13, 14, 15, 16}, {17, 18, 19, 20}, {1, 2}, {3, 4}. In order to
avoid an overly cluttered picture these edges are not drawn. On the right is
a condensed form of the conflict graph. The nodes inside each ovals are pair-
wise adjacent. An edge between ovals represents several edges. The number
of the edges are given near to the ovals and near to the edges.

37

1 1 1 1 1 1 1 1 1 1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 × • •
2 • × •
3 × • • •
4 • × • •
5 • • × • • • • •
6 • × • • • •
7 • • × • • •
8 • • • • • × • •
9 • • • × • • • • •
10 • • • × • • • •
11 • • • • • × • • •
12 • • • • • × • •
13 × • • • •
14 • × • •
15 • • × •
16 • • • × •
17 • • • × • • •
18 • • • × • •
19 • • • • × •
20 • • • • • • ×

Table 3.6: The adjacency matrix of the conflict graph in Example 3.2.

38

1 5
2 8
3 5 9
4 8 12
5 11 12
6 11 12
7 9 10
8 9 10
9 19 20
10 17 18
11 19 20
12 17 18
13 17
14
15
16 20
17
18
19
20

Table 3.7: The edges of the conflict graph in Example 3.2. The 9-th row of
the table codes the information that the unordered pairs {9, 19} and {9, 20}
are edges of the conflict graph G.

39

The way we constructed the tiles is summarized in Table 3.4. There are
many ways to divide the hyperedges of H into two tiles. Any of these can
be used to construct an auxiliary graph. These auxiliary graphs need not to
have the same number of nodes.

After the list of tiles is available we construct a list of colored tiles by
assigning colors to the nodes in the tiles in all possible ways. If a tile has
n nodes and we try to color the nodes of the hypergraph H using k colors,
then from the uncolored tile we will construct kn colored tiles. The colored
tiles are the nodes of the auxiliary hypergraph G.

There is a conflict in the following cases.

1. Two tiles are not disjoint and the common part of the tiles is not colored
in the same way in the two tiles.

2. The union of two tiles is equal to a hyperedge of the hypergraph H and
all the nodes in the two tiles are receiving the same color.

We are looking for a conflict free collection of colored tiles. In other
words we are looking for an independent set in the conflict graph. Or we are
looking for a clique in the complement of the conflict graph. Only one colored
version of each of the six uncolored tiles can enter into an independent set.
On the other hand each uncolored tile must occur in one colored version in
the independent set. As there are six uncolored tiles we are looking for an
independent set of size six in the conflict graph. Equivalently, we are looking
for a clique of size six in the complement of the conflict graph.

An inspection shows that the colored tiles numbered 1, 3, 6, 10, 13, 19
form an independent set in the conflict graph. From this we can read off a
coloring of the node of the given hypergraph H.

node 1 2 3 4 5 6 7 8
color 1 1 2 1 2 1 1 1

This coloring of the nodes is a legal coloring of the nodes of H using two
colors.

Example 3.3. Using the hypergraph H we construct an auxiliary hypergraph
G = (W,F). In Section 3.3.2 we did not cover the case when the tiles are
identical with the hyperedges of H. In this example we choose the number r
to be 1.

In this case the tiles coincide with the hyperedges of the hypergraph H.
For the sake of a unified treatment we listed the tiles in Table 3.8. The list
of pair-wise distinct tiles is the following

T1 = {1, 3, 6}, T2 = {1, 3, 8},
T3 = {1, 5, 8}, T4 = {2, 4, 5, 7}.

40

hyperedge tile
{1, 3, 6} {1, 3, 6}
{1, 3, 8} {1, 3, 8}
{1, 5, 8} {1, 5, 8}
{2, 4, 5, 7} {2, 4, 5, 7}

Table 3.8: The tiles coincide with the hyperedges in Example 3.3. The
hyperedges are cut into one tile.

1, 2
3, 4
5, 6

'

&

$

%
15 edges

18 edges

edges
26

7, 8
9, 10
11, 12

'

&

$

%
15 edges

edges
26

13, 14
15, 16
17, 18

'

&

$

%
15 edges

edges
42

19, 20, 21, 22, 23
24, 25, 26, 27, 28
29, 30, 31, 32

'

&

$

%
91 edges

Figure 3.3: The condensed form of the conflict graph G in Example 3.3. The
nodes inside an oval are pair-wise connected by edges. Edges between ovals
represent many edges. The number of edges are written near to the ovals
and near to the edges.

Table 3.9 lists the colored tiles. We dropped the colored tiles whose elements
are colored with one color. The remaining 32 colored tiles are the nodes of
the conflict hypergraph G.

There is a conflict in the following case.

1. Two tiles are not disjoint and the common part of the tiles is not colored
in the same way in the two tiles.

The conflict hypergraph is a 2-uniform hypergraph, that is, an ordinary
graph. We are looking for an independent set of size 4 in the conflict graph.
Or a clique of size 4 in the complement of the conflict graph. The 4 tiles we
constructed must be colored in same way and the corresponding 4 colored
tiles must be conflict free.

41

[
1 3 6
1 1 1

]
1 :

[
1 3 6
1 1 2

]
2 :

[
1 3 6
1 2 1

]
3 :

[
1 3 6
1 2 2

]

4 :

[
1 3 6
2 1 1

]
5 :

[
1 3 6
2 1 2

]
6 :

[
1 3 6
2 2 1

] [
1 3 6
2 2 2

]
[

1 3 8
1 1 1

]
7 :

[
1 3 8
1 1 2

]
8 :

[
1 3 8
1 2 1

]
9 :

[
1 3 8
1 2 2

]

10 :

[
1 3 8
2 1 1

]
11 :

[
1 3 8
2 1 2

]
12 :

[
1 3 8
2 2 1

] [
1 3 8
2 2 2

]
[

1 5 8
1 1 1

]
13 :

[
1 5 8
1 1 2

]
14 :

[
1 5 8
1 2 1

]
15 :

[
1 5 8
1 2 2

]

16 :

[
1 5 8
2 1 1

]
17 :

[
1 5 8
2 1 2

]
18 :

[
1 5 8
2 2 1

] [
1 5 8
2 2 2

]
[

2 4 5 7
1 1 1 1

]
19 :

[
2 4 5 7
1 1 1 2

]
20 :

[
2 4 5 7
1 1 2 1

]
21 :

[
2 4 5 7
1 1 2 2

]

22 :

[
2 4 5 7
1 2 1 1

]
23 :

[
2 4 5 7
1 2 1 2

]
24 :

[
2 4 5 7
1 2 2 1

]
25 :

[
2 4 5 7
1 2 2 2

]

26 :

[
2 4 5 7
2 1 1 1

]
27 :

[
2 4 5 7
2 1 1 2

]
28 :

[
2 4 5 7
2 1 2 1

]
29 :

[
2 4 5 7
2 1 2 2

]

30 :

[
2 4 5 7
2 2 1 1

]
31 :

[
2 4 5 7
2 2 1 2

]
32 :

[
2 4 5 7
2 2 2 1

] [
2 4 5 7
2 2 2 2

]

Table 3.9: The colored tiles assigned to the hyperedges in Example 3.3. The
first rows of the matrices contain the tiles and the second rows contain the
colors.

42

1 8 9 10 11 12 16 17 18
2 7 10 11 12 16 17 18
3 7 10 11 12 16 17 18
4 7 8 9 12 13 14 15
5 7 8 9 12 13 14 15
6 7 8 9 10 11 13 14 15
7 14 16 17 18
8 13 15 16 17 18
9 14 16 17 18
10 13 14 15 17
11 13 14 15 16 18
12 13 14 15 17
13 20 21 24 25 28 29 32
14 19 22 23 26 27 30 31
15 19 22 23 26 27 30 31
16 20 21 24 25 28 29 32
17 20 21 24 25 28 29 32
18 19 22 23 26 27 30 31
19
.
.
.

32

Table 3.10: The edges of the conflict graph in Example 3.3. The 7-th row
of the table holds the information that the unordered pairs {7, 14}, {7, 16},
{7, 17}, {7, 18} are edges of the conflict graph G.

43

3.3.4 An application

Voloshin [Volo2002] introduced the following type of coloring of the nodes of
a hypergraph. The edges of the given hypergraph H are labeled as C type
or D type hyperedges. An edge may belong to both types or may belong to
neither. We color the nodes of the hypergraph H in the following way.

1. Each node receives exactly one color.

2. All the nodes of a D type hyperedge cannot receive the same color.

3. The nodes of a C type hyperedge cannot receive all different colors.

It is easy to see that the proposed construction of Γ1 and Γ2 conflict
graphs can easily be carried out for this type of graph coloring too.

One remarkable property of mixed hypergraph coloring is that there are
some mixed hypergraphs that cannot be colored properly at all. In his book
Voloshin proposes some open questions and this particular one is among
them. “Develop a probabilistic method for the colorability problem. Let
H = (V,C,D) be a mixed hypergraph with the probability of each C edge
given by p and the probability of each D edge is given by q. What is the
probability, as a function of p and q that H will be colorable.” We are not
going to solve the proposed problem, but can back up this question with
some extended computational results. The question is ambiguous as it leaves
open if the same subset can be a C and D edge at the same time or not. So
we considered both possibilities.

We constructed a big series of 3-uniform mixed hypergraphs. In series A
all 3 element subset of the nodes were either a C edge or a D edge or no edge.
A random number 0 ≤ z < 1 was generated for each 3 nodes, and if z < p
these nodes became a C edge, if p ≤ z < q these nodes became a D edge. In
series B we allowed the same 3 size subset to be a C edge with probability of
p and to be a D edge with probability of q. That means that the same subset
can be either a C edge, or a D edge, or both, or not an edge. As in each
graph at least one C edge was present that meant that the graph cannot be
colored by |V | colors. So we asked the question if it can be colored by |V |−1
colors or less, and constructed an auxiliary graph Γ accordingly. There are
few practical software for hyperclique or hyper independent search. A recent
publication [Tor2017] can deal with only small hypergraphs. We used r = 2,
that is normal graphs for this construction. This also meant that we did not
need two but only one auxiliary graph. We performed the k-clique search
using the algorithm described in Chapter 5.

The nodes of the auxiliary graph Γ are all possible pairs of the set V
colored by all possible colors. At this juntion we would like to point that

44

when we ask if a the nodes of a hypergraph can be colored legally using k
colors we actually mean k or less than k colors.

The series of experiments calculated the colorability of graphs of size
6,8,10,12 and 14. We set the values for p and q all possible ways by 5% steps.
We generated 20 instances with the same p and q values, and checked the
colorability of the resulting graphs. The results are the f frequency of the
colorable ratio of these graphs, and pictured in Figure 3.4 for A series, and
Figure 3.5 for B series.

45

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0

0.5

1

p
q

f

|V | = 6

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0

0.5

1

p
q

f

|V | = 8

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0

0.5

1

p
q

f

|V | = 10

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0

0.5

1

p
q

f

|V | = 12

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0

0.5

1

p
q

f

|V | = 14

Figure 3.4: Results of the A series, where an adge can be a C edge or a D
edge but not both

46

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8

0

0.5

1

p
q

f

|V | = 6

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8

0

0.5

1

p
q

f

|V | = 8

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8

0

0.5

1

p
q

f

|V | = 10

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8

0

0.5

1

p
q

f

|V | = 12

0.2
0.4

0.6
0.8

0.2 0.4 0.6 0.8

0

0.5

1

p
q

f

|V | = 14

Figure 3.5: Results of the B series, where an edge can be C edge and D edge
at the same time

47

Chapter 4

Maximum clique solvers,
kernelization, auxiliary algorithms

In the present chapter we wold like to summarize the current results on
maximum clique solvers. First, we shortly list the history of these solvers
and try to point out the special steps in the development of the maximum
clique search algorithms. Second, we should compare the auxiliary algorithms
used in these solvers for bounding and cutting the search tree. The results
are from [Szab2017]. Finally, we would like to focus on kernelization, that
is the preconditioning techniques. These are becoming a very interesting
branch for solving hard combinatorial optimization problems, although they
are not yet found their way into the usage of the clique search community.

Apart from exact methods we would like to mention that the maximum
clique problem, as being very hard for even medium sized graphs, is of-
ten solved by some heuristic approach [Bom1997]. Apart from solving it
by usual computer program [Lam2016], some even use custom FPGA for
a Markov-chain Monte-Carlo search, which the authors name “Digital An-
nealer” [Nagh2019], and even quantum computing is used [Chap2019].

4.1 Sequential algorithms
The history of exact maximum clique search programs is a long one
[Bom1999]. The efficient programs always use some Branch-and-Bound tech-
nique [Carm2012].

The first specialized algorithm for clique search was the Bron-Kerbosh
[Bron1973]. It lists all maximal cliques, and today is not considered good
for maximum clique search. The second important algorithm was by Car-
raghan and Pardalos [Carr1990]. This algorithm makes the base for almost

48

all algorithms by today, at least any author would claim that.
The refinement of the Carraghan-Pardalos algorithm was using node col-

oring for bounding function instead of just the size of the ‘prospective’ nodes
set. Many researchers was doind research in this area including Tomita
[Tom2003], Kumlander [Kuml2005, Kuml2020] and Konz [Konc2007]. An
interesting variation of the program was embedding the search into a russian
doll techique by Östergård [Öst2002].

Nowadays the basic direction of the refinement is to use better bounds
then the bound coming from coloring. They would call such bound ‘in-
frachromatic’ noting this feature. Researchers like San Segundo [Seg2011,
Seg2012, Seg2013, Seg2014, Seg2015, Kom2015, Nik2015] or Li [Li2010a,
Li2013, Li2017] are the most prominent researchers in this field.

4.2 Auxiliary algorithms
In this section we would like to focus on different upper bounds for the clique
size. These bounds can be used for estimating such upper bound for large
problems and then compared to some heuristically found result. But they are
also extendedly used in the state-of-the-art clique solvers. These bounding
functions give us different results – some are sharper then others –, but the
algorithms that giving us these results are also of different complexity. Also,
some bounds can be computed exactly, while calculation the exact value for
others is NP-hard, so heuristic algorithms are in use. One would be interested
to compare these algorithms and bounds, and that is exactly we would like
to do in this section.

4.2.1 Coloring

The most common method for establishing a bound for ω(G) is determining
a legal coloring of the nodes of the graph G such that:

1. Each node receives exactly one color.

2. Two adjacent nodes cannot have the same color.

More formally, a node coloring of G with r colors, also an r-coloring, is
a surjective map f : V → {1, . . . , r}. Here we identify the r colors with
the numbers 1, . . . , r respectively. The level sets of f are the so-called color
classes of the coloring. The i-th color class Ci = {v : v ∈ V, f(v) = i} consists
of all the nodes of G that are assigned color i. The color classes C1, . . . , Cr
form a partition of V . Vice versa, the coloring is uniquely determined by the
color classes C1, . . . , Cr.

49

The smallest number of colors required by any legal coloring of the nodes
of the graph G is called the chromatic number of the graph and denoted by
χ(G). As the nodes of a clique ∆ are all pairwise adjacent, any legal coloring
of the nodes in ∆ will require at least as many colors as the cardinality of
the clique. Consequently, the chromatic number is always an upper bound
for the size of the largest clique in the graph, that is, χ(G) ≥ ω(G).

Finding the chromatic number of a graph is well known to be NP-hard.
In practice, approximate coloring algorithms are used as bound for the clique
number. Specifically, we are interested in two coloring heursitics. The first is
the well known Dsatur algorithm from Daniel Brélaz [Brel1979]. The second
one is the iterative coloring heuristic from Joseph C. Culberson [Culb1992],
in the following IC.

There is a vast literature on coloring, such as [Ross2014]. But different
coloring methods lay outside the scope of our work.

4.2.2 Fractional and b-fold coloring

[Wood1997]
Any legal k-coloring of the nodes of a graph G = (V,E) assigns the

same color number i = 1 . . . k to the nodes of each independent set Ci that
determines a partition of V . On the other hand, fractional coloring assigns
one real number as the weight of a color to every independent set [God2001,
pp. 135–138.]. More formally, let I(G, u) denote the independent sets of
G that contain the node u. A fractional coloring of the nodes of G is a
nonnegative real function f such that, for any node u ∈ V ,∑

S∈I(G,u)

f(S) ≥ 1

The sum of the values of f for every node is called the weight of the frac-
tional coloring, and the minimum possible weight of every fractional coloring
of the nodes of G is called the fractional chromatic number χf (G).

A simpler variation of the fractional coloring, the b-fold coloring of G,
is an assignment of a set of b colors to every one of its vertices such that
adjacent vertices receive disjoint sets. An a:b-coloring is a b-fold coloring
out of a available colors. Finally, the b-fold chromatic number χb(G) is the
smallest a such that an a:b-coloring exists. The special case of b = 1, the 1-
fold coloring, reduces to finding a legal node coloring, so consequently finding
the b-fold chromatic number is NP-hard. The connection between fractional
and b-fold chromatic number is the following:

χf (G) = lim
b→∞

χb(G)

b
(4.1)

50

A b-fold coloring of the nodes of a graph G also bounds the clique number
from above. Also, each k-clique must receive b × k colors, thus ω(G) ≤
χb(G)
b

. Since computing the fractional chromatic number is NP-hard, we
consider the heuristic b-fold coloring as substitute problem. To further reduce
computation resources we consider only small values of b, in particular b has
been set to 5 in our experiments.

From (4.1) it can easily be established that the bound derived from any
b-fold coloring is also an upper bound for the clique number of the graph.
Our choice of b-fold coloring is motivated by the fact that this coloring can
be easily reformulated as a legal node coloring of a graph [Szab2016b]. This
is done by using an auxiliary graph Γ = (W,F) constructed from the given
G = (V,E) graph. The nodes of Γ are ordered pairs (vi, k) ∈ W, vi ∈ V, 1 ≤
k ≤ b. The edges are defined as follows:

F =

{
{(vi, k), (vi, l)} if k 6= l 1 ≤ k, l ≤ b

{(vi, k), (vj, l)} if {vi, vj} ∈ E 1 ≤ k, l ≤ b
(4.2)

It is easy to see from (4.2) that any legal node coloring of the graph Γ
represents a b-fold coloring of the nodes of the graph G and vice versa. The
key idea is that the different color numbers assigned to the nodes (vi, k) in
Γ become the set of colors assigned to vi in the corresponding b-fold coloring
of the nodes of G. Figure 4.1 shows Γ in a 5:2-fold coloring of the nodes of
C5 cycle, that is, a 2-fold coloring using 5 colors.

If we are given a b-fold coloring to G, which means that a node vi of
G is assigned b different colors, then assigning these b colors to the nodes
vi,1, vi,2, . . . , vi,b in result we get a legal coloring for Γ. The same way back-
wards we can construct an b-fold coloring for G in the case if we are given a
legal coloring to Γ.

4.2.3 s-clique free coloring

Another modification to legal coloring may be proposed [Szab2012]. Let
G = (V,E) be a finite simple graph and let s be a positive integer such that
s ≥ 2.

Definition 4.1. A subset U of V is called an s-free set if the graph spanned
by U in G does not contain any s-clique. A partition U1, . . . , Ur of V is called
an s-clique free partition of V if Ui is an s-clique free subset of V for each i,
1 ≤ i ≤ r.

We color the nodes of G such that each node receives exactly one color
of the given r colors. A coloring of the nodes of G with r colors can be

51

a1,1

a2,1

a3,1 a4,1

a5,1

a1,1

a2,1

a3,1 a4,1

a5,1

Figure 4.1: The Γ auxiliary graph for C5 and its node coloring with 5 colors.

described more formally as a surjective map f : V → {1, . . . , r}. Here
we identify the r colors with the numbers 1, . . . , r, respectively. The level
sets of f are the so-called color classes of the coloring. The i-th color class
Ci = {v : v ∈ V, f(v) = i} consists of all the nodes of G that are colored
with color i. The color classes C1, . . . , Cr form a partition of V . Obviously,
the coloring is uniquely determined by the color classes C1, . . . , Cr.

Definition 4.2. A coloring of the nodes of G with r colors is called an s-
clique free coloring if the color classes C1, . . . , Cr are all s-clique free subsets
of V .

In particular, in a 2-clique free coloring of G adjacent nodes cannot receive
the same color. A 2-clique free coloring is commonly referred as a legal or
well coloring of G. In a 3-clique free coloring of G the nodes of a triangle in
G cannot receive the same color.

Proposition 4.1. If G has an s-clique free coloring with r colors, then
ω(G) ≤ r(s− 1).

Proof. Let ∆ be a k-clique in G and suppose that C1, . . . , Cr are the color
classes of an s-clique free coloring of G with r colors. Note that ∆ can have
at most s − 1 nodes in each of the color classes C1, . . . , Cr. It follows that
k ≤ r(s− 1) and therefore ω(G) ≤ r(s− 1).

We implemented two different algorithms for obtaining s-clique free col-
orings. One is based on Brelaz’ DSatur algorithm. Here the problem arose
from defining the saturation of a node. The other algorithm is derived from

52

the Culberson’s iterative coloring scheme. Note that combining any s − 1
color classes of a legal node coloring we get an s-clique free coloring. So
we started from a legal coloring scheme and started the iterative recoloring
proposed by Culberson, where the color classes were defined as above. Sadly
the results were not satisfactory. While for some tiny graphs we could get
better results for moderate and big graphs as our proposed test graphs we
never get any better result for upper estimate for ω(G) as the legal coloring.
So we omit here the table of our non-conclusive results.

4.2.4 Edge coloring

Edge coloring can also provide a good upper bound for the clique number.
We consider an edge coloring of a graph G with k colors an assignment of
color numbers to the edges of G such that:

1. Each edge of G receives exactly one color.

2. If x, y, z are distinct nodes of a 3-clique in G, then the edges {x, y},
{y, z}, {x, z} must receive three distinct colors.

3. If x, y, u, v are distinct nodes of a 4-clique in G, then the edges {x, y},
{x, u}, {x, v}, {y, u}, {y, v}, {u, v} must receive six distinct colors.

Note, that this edge coloring differs from the one usually found in the
graph literature. Comparable to node coloring, edge coloring can also be
used as an upper bound for the clique number of G, base on the following
property:

Property 4.1. Let ∆ be an l-clique in a graph G, and let G be edge-colorable
with k colors. Then l(l − 1)/2 ≤ k holds.

Proof. A legal edge coloring of G must also provide a legal edge coloring of
∆]. Since any legal edge coloring of ∆ must contain at least l(l−1)/2 colors,
then l(l − 1)/2 ≤ k, as required.

The procedure to color the edges of a graph G is to use an auxiliary graph
Γ = (W,F). Each edge of G is represented by a node in Γ. We connect
the nodes of Γ according the rules above, that is two nodes in Γ should be
connected if the corresponding edges in G forming a 3- or a 4-clique. It is
easy to see that any legal coloring of the nodes of Γ represents a legal edge
coloring of G. The auxiliary graph Γ can be quite large, but greedy coloring
procedure like the Brélaz’ Dsatur can still be used. We constructed the
auxiliary graph Γ from all our test graphs and tried to run first the Brélaz’
Dsatur coloring procedure, then using its output the Culberson’s iterative
coloring algorithm on these auxiliary graphs.

53

4.2.5 Lovász number

The last bound considered is the Lovász number of a graph, a real
number that is an upper bound on the Shannon capacity of the graph
[Lov1976, Karg1998, Hrg2019]. It is also known as Lovász theta function
and is commonly denoted by ϑ(G). Lovász theta is actually an upper bound
for the maximum independent set. There are several formulations of this
number, Knuth composed an extended list [Knu1994].

4.2.6 The partial MaxSAT bound

The bound based on partial MaxSAT was first described in [Li2010a], and
referred to as UBSAT. It reduces the maximum clique problem for a k-colored
graph G to a partial maximum satisfiability problem, and employs typical
Boolean constraint propagation techniques to prove that no k-cliques exists in
G. This bound is at least as good as the bound coming from coloring. In the
literature we find that it has been successfully applied as bounding function to
determine the clique number of a graph in the algorithms MaxCLQ [Li2010b]
and IncMaxCLQ [Li2013].

The input of the algorithm is an independent set partition C1, C2, . . . , Ck
of the vertices of the G, that is a coloring of the nodes of the graph. The
algorithm greedily looks for r conflicting subsets of independent sets I =
{I1, I2, . . . , Ir} to reduce the upper bound for the clique number from the
original k to k − r. A conflicting subset Ij in I is such that ω(G[Ij]) <
|Ij|, (1 ≤ j ≤ r), where G[Ij] is the graph induced by the vertices in Ij, and
|Ij| denotes the number of independent sets. For this step the algorithm uses
unit clause propagation from SAT. It stores all unit independent sets in a
queue Q, and repeatedly dequeues each one and assumes that its single node
v is part of a new clique. In the remaining independent sets, all vertices that
do not belong to v’s neighbor set N(v) are removed, which, in turn, may lead
to fresh independent sets added to Q. The procedure ends when either Q is
empty, or an independent set becomes empty.

A node v is called failed if the application of UP driven by Q = {v}
leads to an empty independent set. If this is the case, and v belongs to a
unit independent set f , a conflict Iv is determined by the set of independent
sets that participated in the UP chain (including the final one that became
empty) together with f . Another possible conflict derives from a non unit f
set with all its vertices failed. In this case, If =

⋃
v∈f Iv.

The second way to find disjoint conflicts with overlapping independent
sets is by using the clause relaxation method employed in maximum Boolean
satisfiability (MAX-SAT) [Fu2006]. Once a conflicting set of cardinality s

54

is found, a fresh node wi, (1 ≤ i ≤ s) is added to each independent set
in the conflict such that it is connected to all the other vertices in G with
two exceptions. Those vertices that belong to its same independent set,
and the other fresh vertices wj, (j 6= i). Each added node and its enlarged
independent set are denoted relaxed. It is easy to see that for a given conflict
Il, the set of |Il| relaxed vertices thus defined cover all possible cliques of size
|Il| in Il. Once a relaxed independent set Cj, (1 ≤ j ≤ k) from Il becomes
unit and is inserted into the UP queue Q, the remaining sets in Il \ Cj can
take part in future disjoint conflicts.

4.2.7 Numerical experiments

The listed auxiliary algorithms are of different complexity thus have big varia-
tion in running time. The upper bounds derived from them are also different.
For some we do not know how good the bound is, for others we have some
theoretical comparison, see [Karg1998, God2001]:

ω(G) ≤ χv(G) ≤ ϑ(Ḡ) ≤ χf (G) ≤ χ(G) (4.3)

We performed extended measurements on a carefully selected data set of
35 graphs, and reported the results in Table 4.1. The first 11 graphs in the
Table come from various error correcting code problems [Sloan]1. The next 19
graphs are taken from the 2nd DIMACS Challenge [Hass1993]2. The next 3
graphs are reformulated problems of monotonic matrices [Szab2013]3, and the
last 2 are from the so-called EVIL instances [Szab2019a]4. For the reported
graphs, the clique number is extremely hard to compute, and in some cases
these problems are still open. There are also instances where ω(G) is known
but which cannot be determined by state-of-the-art solvers. Examples of
these are the EVIL graphs, where ω(G) is known by construction, and a
subset of the johnson graphs. The latter are derived from code theory –
values for ω(G) available at https://www.win.tue.nl/~aeb/codes/Andw.
html#d4.

Table 4.1 reports the sizes of the 35 selected graphs, along with their
clique number, or alternatively the best known bounds. Also in the Table,
the columns Dsatur color and IC color show the best upper bound for ω(G)
considering the Dsatur and the IC coloring heuristics respectively. The IC
coloring is the obtained after 1000 iterations, taking the Dsatur coloring as

1https://oeis.org/A265032/a265032.html
2http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
3http://mathworld.wolfram.com/MonotonicMatrix.html
4http://clique.ttk.pte.hu/evil

55

https://www.win.tue.nl/~aeb/codes/Andw.html#d4
https://www.win.tue.nl/~aeb/codes/Andw.html#d4
https://oeis.org/A265032/a265032.html
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://mathworld.wolfram.com/MonotonicMatrix.html
http://clique.ttk.pte.hu/evil

starting point. For the experiments conerning UBSAT the coloring obtained
from IC was the starting point.

We used the CSDP program from Brian Borchers [Bor1999, Bor2007] for
calculating the value of Lovasz’ theta, ϑ(Ḡ).

We omitted the result on 3-free coloring, as we could not design a heuristic
algorithm that would give a better bound then legal node coloring. This task
is yet to be done.

A “*” in any cell refers to a bound that could not be computed due
to memory or time limitations. Table 4.1 also reports some previous, not
published, results by the author for some problems using a supercomputer.
These results are also indicated by a “*” and the bound is given in parenthesis.
Those calculations used up to several hundred of cores, up to half terabyte
of memory, and they run sometimes for weeks.

Table 4.1 reports the clique bound provided by Dsatur, and the best
bound obtained by the iterative Culberson’s method for legal coloring, the
Lovasz’ theta function over the complement graph, the partial MaxSAT
bound, the Culberson’s iterative method for the auxiliary edge graph and
the 5-fold node coloring. From the table, the best results were always pro-
vided by the Lovasz’ theta function. The second best bound came from
different algorithms, but mostly from the 5-fold coloring.

4.3 Kernelization
In the present section we would like to list some possible preconditioning
tools that can aid the maximum and k-clique solvers. Although there is
no strict definition the term “kernelization” usually used for such algorithm
which reduces the problem instance [Cyg2015]. For clique search we usually
would like to delete some nodes or edges, or transform the graph into a
smaller one. Our list is not complete, for other kernelization methods in this
area see [Aki2016, Hes2020].

4.3.1 Structions

In this section we rely on publications [Ebe1984, Ale2003]. We introduce
some notations. Let V = {1, . . . , n} be the set of nodes of G. We may
assume that node 1 is the pivot node, that is, the node which plays a pivotal
role in the struction construction. This is only a matter of renaming the
nodes of the graph G.

Let A = {a1, . . . , ar} be the set of neighbors of the pivot node 1 and let
B = {b1, . . . , bs} be the set of non-neighbors of the pivot node 1. Using the

56

Dsatur Iterated pMax Edge 5-fold
|V | ω(G) color color ϑ(Ḡ) SAT color color

1dc.512-c 512 52 83 74 53.03 136 65 56.8
1dc.1024-c 1024 94 152 137 95.98 136 * 103
1dc.2048-c 2048 172–174 304 268 *(174.73) 266 * 190.2
1et.1024-c 1024 171 225 215 184.23 209 * 194.4
1et.2048-c 2048 316 436 404 342.03 399 * 358.6
1tc.1024-c 1024 196 241 229 206.3 225 * 217.2
1tc.2048-c 2048 352 450 426 374.64 422 * 389.8
1zc.512-c 512 62 104 93 68.75 92 84 74.4
1zc.1024-c 1024 112–117 201 177 128.67 176 * 138
2dc.1024-c 1024 16 34 30 * 29 * 22.2
2dc.2048-c 2048 24 65 54 * 53 * 38

brock800_2 800 24 134 118 * 117 79 107
brock800_4 800 26 136 118 * 117 79 106.4

C1000.9 1000 68– 305 255 * 246 * 236.6
C250.9 250 44 92 78 56.24 71 70 76
C500.9 500 57– 164 140 84.2 132 123 131.8

hamm10-4 1024 40 85 74 * 73 * 55.8
johns-10-4-4 210 30 48 41 30 40 37 32
johns-11-4-4 330 35 71 61 41.25 60 53 45
johns-11-5-4 462 66 97 88 66 87 81 66.4
johns-12-4-4 495 51 99 86 55 85 73 60.8
johns-12-5-4 792 80 161 138 99 137 128 99
johns-13-4-4 715 65 133 116 71.5 115 * 80.4
johns-13-5-4 1287 123– 248 212 143 211 * 143

keller5 776 27 61 31 * 31 42 31
keller6 3361 59 141 63 * 63 * 63

MANN_a45 1035 345 369 360 356.05 359 * 360
MANN_a81 3321 1100 1153 1134 1126.62 1133 * 1134
p_hat1500-3 1500 94 270 265 * 263 * 244.8
p_hat700-3 700 62 143 134 * 131 105 125
monoton-9 729 28 53 47 *(34.41) 46 46 42.6
monoton-10 1000 32– 71 60 *(41.83) 59 59 53.2
monoton-11 1331 37– 84 72 *(49.96) 71 73 64.2

evil-N330 330 60 109 100 71.99 85 90 90.2
evil-N500 500 80 165 140 100 119 121 128.2

Table 4.1: The summary for the upper limit of ω(G) by different methods.
The sign * indicates that the bound cannot be computed due to time or
memory limit.

57

set B we construct a new set C. The elements b1, . . . , bs of B are listed such
that

b1 < · · · < bs (4.4)

holds. The ordered pair (bα, bβ) is an element of C whenever the unordered
pair {bα, bβ} is an edge of G and α < β. We denote such an ordered pair by
c(bα, bβ).

The set of nodes of the struction graph G′ is A∪C. Two distinct elements
ai and aj from A are adjacent in G′ if the unordered pair {ai, aj} is an edge
of G. Otherwise ai and aj are not adjacent in G′.

Two distinct elements c(bα, bβ) and c(bγ, bδ) from C are adjacent in G′ if
bα = bγ and the unordered pair {bβ, bδ} is an edge of G. Otherwise c(bα, bβ)
and c(bγ, bδ) are not adjacent in G′.

An element c(bα, bβ) from C and an element ai from A are adjacent in
G′ if the unordered pairs {bα, ai} and {bβ, ai} are edges of G. Otherwise the
elements c(bα, bβ) and ai are not adjacent in G′.

Lemma 4.1. If ∆′ is a clique in G′, then there is a clique ∆ in G, where
|∆| = |∆′|+ 1

Proof. If ∆′ contains no node from C, then ∆ = ∆′ ∪ {1} is such a required
clique.

If ∆′ contains nodes from C, they must be of the form c(i, bα), c(i, bβ),
c(i, bγ), . . ., and the nodes i, bα, bβ, bγ, . . . are the nodes of a clique in G. Then
∆ = ∆′ \ {c(i, bα, c(i, bβ), c(i, bγ), . . .} ∪ {i, bα, bβ, bγ, . . .} is a clique of G.

Lemma 4.2. If ∆ is a clique in G, then there is a clique ∆′ in G′, where
|∆′| = |∆| − 1

Proof. Let ∆ be a clique in G, and set ∆0 = ∆ ∩ (A ∪ {1}).
If |∆0| = 0 then removing any node from ∆ results a required clique ∆′

in G′.
If |∆0| = 1 then ∆′ = ∆ \∆0 is a required clique.
If ∆0 = {i1, i2, . . . , ir}, where r ≥ 2 and i1 < i2 < · · · < ir, then ∆′ =

(∆ \∆0) ∪ {c(i1, i2), c(i1, i3), . . . , c(i1, ir)} is a required clique.

The following result is a corollary of Lemma 4.1 and 4.2.

Theorem 4.1. ω(G)− 1 = ω(G′)

Before embarking on a large scale clique search it is advisable to carry
out a thorough inspection of the original graph to detect deletable nodes and
edges. We will use the notation N(a) for the set of neighbors of the node a.

58

4.3.2 Color indices

Suppose that the nodes of a finite simple graph G are legally colored using
k colors and C1, . . . , Ck are the color classes of this coloring.

Definition 4.3. The color index of a node v of G (with respect to a legal
coloring of the nodes of G) is the number of color classes Ci that contains at
least one node adjacent to v.

Note that if the color index of a node v is less than k − 1, then v cannot
be a node of a k-clique in G. In other words if the colors index of v is at
most k − 2, then v can be deleted from G without loosing any k-clique.

Definition 4.4. The color index of an edge {u, v} of G (with respect to a legal
coloring of the nodes of G) is the number of color classes Ci that contains at
least one node adjacent to u and v simultaneously.

Note that if the color index of an edge {u, v} is less than k − 2, then the
edge {u, v} can be deleted from G when one is looking for a k-clique in G.
(We do not delete the nodes u or v.)

4.3.3 Dominance

Definition 4.5. Let G be a graph and let a, b be distinct nodes of G. We say
that node b dominates node a if a and b are not adjacent and N(a) ⊆ N(b).

The basic observation is that a dominated node can be dropped from the
graph during the search for a k-clique. Note that we may loose k-cliques
during this reduction. But we are not going to loose all of them.

Definition 4.6. Let G be a graph and let a, u, b be distinct nodes of G such
that {a, u}, {u, b} are edges of G. We say that edge {u, b} dominates edge
{a, u} if b 6∈ N(a) ∩N(u) and N(a) ∩N(u) ⊆ N(u) ∩N(b).

If edge {u, b} dominates edge {a, u}, then the edge {a, u} can be canceled
from G when we are deciding if G contains a k-clique. (We do not delete the
nodes a or u.)

Definition 4.7. Let G be a graph and let x, y, u, v be distinct points of G
such that {x, y}, {u, v} are edges of G. We say that edge {u, v} dominates
edge {x, y} if {u, x} or {u, y} is not edge of G, and {v, x} or {v, y} is not
edge of G, and N(x) ∩N(y) ⊆ N(u) ∩N(v).

If edge {u, v} dominates edge {x, y}, then the edge {x, y} can be canceled
from G when we are deciding if G contains a k-clique. (We do not delete the
nodes x or y.)

59

Chapter 5

New method for k-clique search
and its extension to a maximum
clique solver

In the last years the scientific viewpoint about NP-complete and NP-hard
problems has shifted. First, today we have a more detailed analysis which
can distinguish between subclasses. By doing so we know that although
two problem are being in the same NP-hard class can be quite different
in difficulty. Second, the introduction of parameterized algorithms showed
that some problems happen to be much easier than the conservative worst
case prediction made by being in a certain class. In these cases some extra
information can guide the algorithm to solve the problem more efficiently.
Finally, the approach of parameterized algorithms sometimes able to deal
with the more complex problems by dividing the problem into an easier and
a harder part. Solving the easy parts as a preprocessing step we are left with
the hard part and so reducing the size of the original problem.

In this chapter, which is based mostly on [Szab2018a], we would like to
propose an approach driven by these ideas. The problem in question is the
NP-hard combinatorial optimization problem of maximum clique search in
simple graphs. There are many different algorithms and proposition for solv-
ing it, and most of the proposed algorithms are being refinements of the
Carraghan-Pardalos algorithm. (Patric Östergård’s cliquer is being as an
exception.) Our contribution is based on the fact that the NP hard maxi-
mum clique optimization problem can be replaced by a series of NP-complete
k-clique decision problems. The structure of a k-clique search algorithm is
simpler than the maximum clique problem. In addition the combined search
space of the k-cliqe problems is significantly smaller than the original max-
imum clique problem. Basically the parameter k drives the search and thus

60

we are able to reduce the size of the search tree.
This approach turns out to be more efficient in several cases. Using

simple methods, our program can keep up with the much more sophisticated
programs and even beat them on several instances.

5.1 Background
The Carraghan-Pardalos algorithm [Carr1990, Wu2015] forms the base for
many of the exact clique search algorithms. In this sense it occupies a spe-
cial position among the clique search procedures. The Carraghan-Pardalos
algorithm divides a given clique search instance into smaller instances by
choosing nodes into a prospective clique and repeats this process. We can
see this algorithm as a good example of the well known Branch and Bound
algorithm family.

In the present chapter we would like to introduce a different approach
for the maximum clique search optimization problem. As known from the
literature (see [Cyg2015]) one can often build a more efficient parameterized
algorithm for the k-clique search problem. So we followed this path and
started to build our own program, the kclique, which instead of solving the
optimization problem of maximum clique deals with the decision problem of
k-clique. Based on this program we could build a very simple and yet efficient
maximum clique search program, which we will call kclique-sequence. We will
first detail the key features of building a k-clique search program. Second
we will shortly describe the maximum clique search program. Last, we will
present results by a large scale numerical experiments. We will test our
procedures using well established test graphs, and compare these results to
those of the other programs. Finally, we will evaluate the results and make
comments and remarks on our implementation.

The program was implemented in C++ language, and we used dynamic
bitsets from the Boost Template Library.

5.2 Nuts and Bolts for k-clique search
The main idea behind our program is the strong reduction of the search tree.
For both branching and bounding the choice of searching for k-clique helps us
to reduce the search tree. It is also worth noting, that the k-clique approach
can help to make an efficient parallel program as well as the reader can learn
in Chapter 8.

61

5.2.1 Branching and Bounding

Other implementations for maximum clique use the biggest yet found clique
as a bounding condition. It is more than obvious, that such bounding will
be dependent on the early finding of a big clique. Thus, those programs that
find the final maximum clique early run faster. That is possibly why the
heuristics of ordering nodes by node degree in descending order plays such
an important role in these algorithms. And certainly that is why parallel
implementations of maximum clique search [McCr2015] find strange speed-
up results – sometimes even superlinear speed-ups – in the literature, as they
are dependent on this early big clique finding. In our case, by choosing a
different problem formulation, we always can bound by the value of k.

Also, for branching we can use the value of k. As we describe later, we use
coloring in our implementation. It is well known, that the coloring gives us
an upper limit for the clique size. Thus if given the value of k and a coloring
with c colors (c ≥ k), then we can choose the smallest c − (k − 1) color
classes, and use those nodes in them for branching – as a branching rule. (As
a terminology later we will call these nodes the k-clique covering node set –
KCCNS –, as introduced in the Chapter 7.) The importance of this comes
from the nature of the Branch and Bound algorithms. These algorithms
sort out the nodes already examined, meaning that they are not taken into
account in the future search. Thus if all these nodes are eliminated, then
the remaining nodes can be colored with (k − 1) colors, so there cannot be
any k-clique present. Note, that without the value of k one cannot make this
branching rule, and need to branch on all nodes. This method is the base of
our Branch and Bound algorithm. The size of the k-clique covering node set
is the branching factor, and finding the smallest possible of such set can aid
us in bounding the size of our search tree.

Algorithm 1 summarizes our kclique algorithm based on this branching
rule.

Algorithm 1 kclique
Require: G = (V,E), P = V
1: function kclique(P, k)
2: if k = 1 then return true
3: KCCNS ← construct a k-clique covering node set
4: for all vertex p ∈ KCCNS do
5: if kclique(P ∩N(p), k − 1) then return true
6: P ← P \ {p}
7: return false

62

5.2.2 Efficient coloring

It is well known from the literature, that coloring of the nodes can speed-up
the clique search. Two methods are widely used in the literature. One is
a simple sequential greedy algorithm, where in sequence we place the nodes
in the first possible color class. The second is a coloring procedure named
Dsatur presented by Daniel Brélaz [Brel1979], which always places the least
“suitable” node into a color class. The Brélaz’s algorithm usually gives us
better approximation to the chromatic number than the simple sequential
coloring algorithm, but it costs more in time complexity.

Designing a clique search algorithm one usually decides over the first,
especially when coloring takes place not only at the top of the search tree.
Using Dsatur at all levels reduces the size of the search tree, but costs in
time – as we learned from our preliminary test runs. Actually we need not to
choose between these two algorithms. An efficient algorithm can use a costly
DSatur coloring at the top of the search tree, and later it can switch to the
cheaper sequential greedy coloring.

Although Dsatur gives us a good coloring it is often quite far from the
optimum. So we used in addition another technique, the Iterated Coloring
presented by Culberson [Culb1992]. This technique uses reordering the color
classes and using a sequential coloring several times. The result cannot be
worse than the previous coloring in terms of the number of colors, but it can
be better. Thus we started from a Dsatur coloring and performed iterated
coloring. Our stopping criteria was if the number of colors did nod decreased
after 1000 iterations, and we used it on the top of the search tree.

5.2.3 Recoloring the nodes

Some researchers proposed methods that would use the color classes from the
previous level of the search tree and use a recoloring procedure to improve
the actual coloring. [Nik2015] Here we present a similar approach.

As it was described by Culberson [Culb1992], the sequential greedy col-
oring has a special property, namely that it does not increase the number
of colors if it is applied to suitable orderings of the nodes. If this procedure
given a graph sequenced by color classes of a best possible coloring in which
exactly so many color classes used as the chromatic number of the graph,
then it will produce a coloring with the same number of color classes. If this
procedure given a sequence ordered by any color classes, then it will result
with a coloring at least as good as the previous one. One may see this pro-
cedure as repacking the color classes. Each node is moved forward as far as
possible in the already given color classes, and never backwards.

63

So during the Branch and Bound procedure, when there are less and less
nodes as we go down on the search tree, we can use the coloring of the previous
level, and use the repacking feature of the sequential greedy coloring. We
sort the color classes by their size, and start a greedy sequential coloring from
the biggest color class. As the k-clique covering node set is actually the set of
smallest color classes, the nodes from them moved ahead to the bigger color
classes. So this procedure directly reduces the size of the k-clique covering
node set and so the branching factor. Our tests showed us, that using this
method the size of the search tree is comparable with that when we would
use a DSatur coloring at each level while reducing the running time.

As this coloring is performed on each node of the search tree, we needed
a fast implementation of the sequential greedy coloring. Our original version
was of O(c|V |) for c colors, and proved quite fast. Later we implemented
this coloring using bitsets, similarly to the algorithm described in [Kom2015].
This method led to an even faster algorithm.

5.2.4 Rearranging branching nodes

From previous results [Zav2014a, Zav2014b, Zav2015] on parallel clique
search algorithms we concluded, that the branching is even more important
than it was thought before. It seems that the sequence of the nodes by which
we proceed in the branch has a big effect on the search tree size if pruning is
present. This was shown for SAT problems [Ouy1998], and could be shown
for clique search problems as well. This effect is used by our algorithm, and
so it reduces the search space. Note though, that this effect is different from
the effect of finding a big clique early, where the sequence by decreasing node
degrees proved useful!

We use a very basic reordering rule. We proceed with the nodes with the
smallest degree in the remaining subgraph. That is we ordered the nodes by
node degree in increasing order. By doing this we solve first the more easy
problems and reduce the size of the later ones. Although simple and “cheap”
this approach had quite a good effect on the size of the search tree.

5.3 Numerical results for maximum clique
The structure of our maximum clique problem is extremely simple. First
we find an upper bound for the size of the maximum clique. Although we
tried more sophisticated methods simply using the number of colors from the
coloring of the graph was good enough and the fastest. Note, that we started
with the Dsatur coloring and used Culberson’s Iterated Coloring scheme till

64

the number of colors did not changed for 1000 iterations.
We set k equal to the obtained number of colors and run our kclique

program with this parameter. If the result was that the graph did not contain
a k-clique we decreased the value of k by one. Doing these procedure as a
sequence our program finally founds the biggest value of k for which there is a
k-clique present. Thus ω(G) = k. We called this program “kclique-sequence
down”, see Algorithm 2. Note, that the program calls Algorithm 1 several
times.

Require: G = (V,E)
function main

k ← an upper bound by coloring
kclique-seq-down
Print k as the size of the maximum clique

Algorithm 2 kclique-sequence down
1: function kclique-seq-down
2: FOUND ← false
3: while ¬FOUND do
4: FOUND ← kclique(V, k)
5: if ¬FOUND then
6: k ← k − 1

7: return k

Our opinion was that the most time consuming part of maximum clique
search is the last but one step, namely to prove the non-existence of a clique of
size ω(G)+1. Our experiments confirmed this view in most of the cases. We
also included the running time of this particular subproblem in the Tables 5.1
and 5.2 under column “kclique, k = ω(G) + 1”. Also McCreesh and Prosser
pointed out so in the Section 3.3 in their work [McCr2015], and our results
confirmed this. This observation confirms our approach of using the k-clique
search in this sequential way as opposed for example to a more complex
binary search.

Though, one can question the decision of using a top-down approach,
and instead propose using a bottom-up sequence. We also implemented the
second algorithm as well, and it is built the following way. First we find a
lower bound for the size of the maximum clique. This is done by a simple
greedy clique search algorithm. We set k equal to the obtained number plus
one and run our kclique program with this parameter. If the result was that
the graph do contain a k-clique we increased the value of k by one. Repeating

65

this procedure as a sequence our program finally finds the smallest value of
k for which there is no k-clique present. Thus ω(G) = k − 1. We call this
program “kclique-sequence up”, see Algorithm 3.

Require: G = (V,E)
function main

k ← a lower bound by greedy clique search
k ← k + 1
kclique-seq-up
Print k − 1 as the size of the maximum clique

Algorithm 3 kclique-sequence up
1: function kclique-seq-up
2: FOUND ← true
3: while FOUND do
4: FOUND ← kclique(V, k)
5: if FOUND then
6: k ← k + 1

7: return k

5.3.1 Test graphs

We performed extended measurements on a carefully selected data set of dif-
ferent graphs and various maximum clique search programs. As there are no
challenges performed nowadays – the last well known is being the 2nd DI-
MACS Challenge more than 25 years ago – we used test graphs and programs
that have been published about exact maximum clique search recently. Our
program intends to solve previously infeasible or extremely hard problems,
thus we choose appropriate problems. Most of these test problems can be
solved only in minutes, if not in several hours. In the present chapter we
chose 50 examples out of all together 80 graphs tested in our extended ex-
periment. Those that were not chosen were either too easy, that is solvable
under a couple of second, or too hard, that is could not be solved in 12 hours
by any program including ours. We also omitted some examples that were
too repetitive in kind and results.

The Table 5.1 list graph from various sources. The first 7 graphs are
taken from the 2nd DIMACS Challenge [Hass1993]1. The next 2 graphs are

1http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark

66

http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark

reformulated problems of monotonic matrices [Szab2013]2, and the next 2
graphs in the table come from various error correcting code problems[Sloan]3.
Last 13 graphs are problems of Erdős–Renyi type random graphs [Erd1959],

In the second table, Table 5.2, we first list instances from benchmark tests
collected in the BHOSLIB library.4 Next in the table are graphs from the
so-called EVIL instances [Szab2019a]5.

5.3.2 Results

For comparison we choose the most known and best state-of-the-art programs
for exact maximum clique search.

We compared our program with the programs by Östergård6 [Öst2002],
Li7 [Li2010a, Li2013], Konc8 [Konc2007], Prosser9 (who implemented
Tomita’s algorithm [Tom2003]) and San Segundo10 [Seg2011, Seg2013,
Seg2014, Seg2015]. We indicated not only the running times but the size
of the search tree as well. (For this purpose a small modification was made
to the cliquer program, and the type of the counter in mcqd needed to be
changed to long long from int.)

For our kclique program we indicated not only the time and search tree
size of the whole maximum clique search, but also the time and the search
tree size for the k = ω(G) + 1 step, that is where our program proved the
nonexistence of cliques of size one bigger than ω(G).

Columns “kclique-seq up” and “kclique-seq down” show result from our
programs, |V | the size of the graph, % the density of the graph and ω(G)
stands for the clique size of the graph.

The hardware used for comparison was a Xeon E5-2670 v3 machine at
2.30GHz clock speed with 128GB of RAM, and we used a 12 hour time limit.

5.3.3 Evaluation

As the reader can see in Tables 5.1 and 5.2, our simple approach of running
the k-clique program with various k values gives time result that are usually
comparable or even better than most of the other programs. It is also worth

2http://mathworld.wolfram.com/MonotonicMatrix.html
3https://oeis.org/A265032/a265032.html
4http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
5http://clique.ttk.pte.hu/evil
6http://users.aalto.fi/~pat/cliquer.html
7http://home.mis.u-picardie.fr/~cli/EnglishPage.html
8http://www.sicmm.org/konc/maxclique/
9http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/

10https://www.biicode.com/pablodev/examples_clique

67

http://mathworld.wolfram.com/MonotonicMatrix.html
https://oeis.org/A265032/a265032.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-bench marks.htm
http://clique.ttk.pte.hu/evil
http://users.aalto.fi/~pat/cliquer.html
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://www.sicmm.org/konc/maxclique/
http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/
https://www.biicode.com/pablodev/examples_clique

|V
|

%
ω
(G

)
k
cl

iq
u
e,

k
=

k
cl

iq
u
e-

se
q

k
cl

iq
u
e-

se
q

B
B

M
C

B
B

M
C

-R
B

B
M

C
-L

B
B

M
C

-X
M

ax
-C

L
Q

M
ax

-C
L
Q

m
cq

d
m

cq
d
-d

y
n

M
C

R
cl

iq
u
er

ω
(G

)
+

1
d
ow

n
u
p

(S
.S

eg
.)

(S
.S

eg
.)

(S
.S

eg
.)

(S
.S

eg
.)

10
(L

i)
13

(L
i)

(K
on

c)
(K

on
c)

(T
om

it
a)

(Ö
st

er
g.

)

b
ro

ck
80

0-
3

80
0

65
25

19
55

s
88

37
s

11
17

1s
32

97
s

46
14

s
35

39
s

24
52

s
45

80
s

55
61

s
88

83
s

42
90

s
23

01
3s

25
45

9s
65

4M
25

05
M

33
61

M
23

4M
13

8M
25

3M
91

M
21

8M
18

M
15

45
M

85
1M

18
84

M
38

75
3M

b
ro

ck
80

0-
4

80
0

65
26

15
43

s
72

77
s

14
38

5s
22

62
s

22
94

s
24

76
s

17
87

s
43

70
s

70
37

s
61

44
s

30
72

s
22

34
9s

60
38

s
47

1M
18

66
M

46
12

M
14

9M
88

M
16

4M
59

M
22

9M
25

M
10

40
M

56
4M

19
15

M
95

54
M

la
ti

n
-

90
0

76
90

13
1s

21
3s

13
6s

>
12

h
>

12
h

>
12

h
>

12
h

47
s

>
12

h
>

12
h

11
80

s
>

12
h

>
12

h
-s

q
u
ar

e1
0

7M
11

M
7M

44
8k

50
M

ke
ll
er

5
77

6
75

27
46

s
53

s
53

s
>

12
h

>
12

h
>

12
h

>
12

h
68

48
s

23
8s

>
12

h
18

09
8s

>
12

h
>

12
h

8M
9M

8M
24

3M
24

9k
22

71
M

M
A

N
N

-a
45

10
35

99
34

5
>

12
h

>
12

h
14

8s
67

s
15

5s
82

s
25

s
12

3s
23

84
s

20
58

s
36

92
s

>
12

h
1M

11
8k

1M
11

8k
70

k
22

k
53

39
k

46
47

k
28

52
k

sa
n
r2

00
-0

.9
20

0
90

42
55

s
14

1s
86

s
27

s
31

s
30

s
21

s
7s

2s
12

3s
30

s
91

3s
>

12
h

15
M

38
M

25
M

4M
13

70
k

4M
85

0k
44

2k
8k

28
M

6M
62

M
12

11
56

M
sa

n
r4

00
-0

.7
40

0
70

21
14

0s
41

9s
15

7s
11

3s
13

5s
11

4s
10

5s
11

2s
11

7s
23

2s
11

0s
94

2s
35

93
s

67
M

16
9M

69
M

15
M

9M
17

M
6M

8M
47

7k
82

M
38

M
10

2M
55

35
M

m
on

ot
on

-7
34

3
79

19
3s

12
s

11
s

49
s

38
s

42
s

31
s

29
s

6s
15

1s
72

s
24

9s
13

54
s

1M
5M

5M
8M

5M
10

M
5M

61
8k

28
k

51
M

20
M

27
M

22
88

M
m

on
ot

on
-8

51
2

82
23

57
7s

84
6s

73
3s

17
91

9s
23

32
7s

17
21

9s
15

04
9s

41
31

s
12

79
s

>
12

h
19

27
2s

>
12

h
>

12
h

18
1M

25
1M

19
7M

26
63

M
17

60
M

33
44

M
15

77
M

89
M

6M
16

12
5M

33
86

M
1d

c.
25

6
25

6
88

30
2s

8s
19

s
3s

2s
3s

2s
6s

5s
15

s
22

s
65

s
37

5s
55

8k
2M

6M
38

2k
21

8k
49

1k
18

1k
15

6k
22

k
24

63
k

31
33

k
41

14
k

54
5M

2d
c.

10
24

10
24

68
16

11
2s

17
8s

13
5s

29
s

36
s

30
s

40
s

18
2s

19
9s

67
s

14
6s

13
9s

30
60

s
19

M
28

M
21

M
2M

15
09

k
2M

13
45

k
2M

30
7k

8M
23

M
8M

27
68

M
ra

n
d
20

0-
9

20
0

90
44

58
s

20
4s

15
8s

33
s

40
s

36
s

30
s

12
s

3s
22

5s
88

s
12

68
s

>
12

h
15

M
52

M
43

M
7M

3M
9M

2M
49

4k
7k

42
M

14
M

84
M

ra
n
d
30

0-
7

30
0

70
20

7s
28

s
15

s
5s

8s
5s

6s
10

s
5s

17
s

11
s

40
s

95
s

4M
13

M
8M

14
40

k
84

2k
15

66
k

58
3k

59
3k

26
k

6M
4M

7M
15

2M
ra

n
d
30

0-
8

30
0

80
28

31
3s

98
4s

61
5s

16
2s

21
6s

16
0s

14
2s

15
4s

11
5s

75
8s

27
4s

27
56

s
29

26
1s

13
0M

37
9M

20
7M

33
M

16
M

37
M

11
M

9M
37

0k
20

1M
72

M
27

1M
52

06
5M

ra
n
d
30

0-
9

30
0

90
48

>
12

h
>

12
h

25
33

3s
29

22
0s

28
07

1s
17

57
4s

66
45

s
58

94
s

>
12

h
98

00
s

>
12

h
>

12
h

32
88

M
12

56
M

40
83

M
80

2M
31

6M
9M

26
41

M
ra

n
d
50

0-
5

50
0

50
13

2s
7s

2s
1s

2s
1s

1s
4s

4s
3s

3s
7s

11
s

1M
3M

1M
22

4k
14

3k
23

9k
10

2k
26

2k
18

k
11

10
k

84
4k

12
11

k
14

M
ra

n
d
50

0-
6

50
0

60
17

24
s

86
s

40
s

22
s

36
s

24
s

20
s

57
s

32
s

61
s

39
s

13
6s

19
7s

11
M

35
M

15
M

4M
2M

4M
16

69
k

3M
16

5k
17

M
11

M
20

M
28

3M
ra

n
d
50

0-
7

50
0

70
23

71
2s

23
56

s
99

7s
88

6s
12

67
s

66
2s

63
8s

96
8s

92
9s

19
78

s
92

8s
64

56
s

16
24

4s
31

3M
89

8M
37

8M
10

6M
60

M
11

5M
40

M
47

M
2M

54
9M

22
7M

57
7M

26
66

8M
ra

n
d
80

0-
4

80
0

40
12

2s
11

s
5s

1s
2s

1s
1s

7s
6s

3s
3s

7s
11

s
90

1k
4M

2M
13

7k
81

k
13

7k
60

k
37

7k
34

k
95

1k
86

3s
10

78
k

14
M

ra
n
d
80

0-
5

80
0

50
14

45
s

16
6s

49
s

31
s

51
s

35
s

31
s

11
3s

10
7s

75
s

59
s

17
7s

29
7s

21
M

60
M

21
M

4M
3M

4M
2M

5M
49

1k
23

M
17

M
25

M
34

8M
ra

n
d
80

0-
6

80
0

60
19

85
9s

31
61

s
12

32
s

11
23

s
14

65
s

10
72

s
73

6s
15

71
s

16
57

s
25

23
s

14
96

s
65

46
s

83
98

s
39

7M
11

51
M

39
9M

89
M

54
M

96
M

38
M

77
M

5M
50

9M
28

5M
60

9M
12

39
7M

ra
n
d
10

00
-4

10
00

40
12

9s
39

s
11

s
7s

9s
6s

6s
36

s
20

s
16

s
14

s
32

s
24

s
4M

12
M

4M
73

4k
45

9k
78

0k
32

8k
14

40
k

64
k

4M
3M

5M
27

M
ra

n
d
10

00
-5

10
00

50
15

17
2s

67
9s

19
8s

12
5s

21
6s

12
9s

15
2s

52
6s

35
6s

36
4s

26
5s

79
5s

78
4s

71
M

21
6M

73
M

16
M

10
M

17
M

7M
21

M
14

86
k

87
M

65
M

94
M

11
76

M
ra

n
d
10

00
-6

10
00

60
19

75
19

s
26

39
8s

99
42

s
98

58
s

13
01

9s
95

52
s

71
64

s
16

55
8s

17
09

3s
19

68
3s

98
33

s
>

12
h

>
12

h
32

58
M

94
41

M
33

66
M

81
2M

49
1M

87
3M

33
5M

68
7M

57
M

46
22

M
46

41
M

Ta
bl
e
5.
1:

D
IM

A
C
S,

co
di
ng

th
eo
ry

an
d

ra
nd

om
in
st
an

ce
s.

R
un

ni
ng

ti
m
e
re
su
lt
s
in

se
co
nd

s.
T
he

“>
12

h”
si
gn

in
di
ca
te
s
th
at

th
e
ru
nn

in
g
ti
m
es

ar
e
ex
ce
ed
in
g
th
e
12

ho
ur

lim
it
.

68

|V
|

%
ω
(G

)
k
cl

iq
u
e,

k
=

k
cl

iq
u
e-

se
q

k
cl

iq
u
e-

se
q

B
B

M
C

B
B

M
C

-R
B

B
M

C
-L

B
B

M
C

-X
M

ax
-C

L
Q

M
ax

-C
L
Q

m
cq

d
m

cq
d
-d

y
n

M
C

R
cl

iq
u
er

ω
(G

)
+

1
d
ow

n
u
p

(S
.S

eg
.)

(S
.S

eg
.)

(S
.S

eg
.)

(S
.S

eg
.)

10
(L

i)
13

(L
i)

(K
on

c)
(K

on
c)

(T
om

it
a)

(Ö
st

er
g.

)

fr
b
30

-1
5-

1
45

0
82

30
0s

0s
0s

16
11

s
16

45
s

16
94

s
16

13
s

57
5s

0s
27

35
s

25
41

s
36

73
s

0s
0

13
k

16
k

25
6M

12
9M

31
6M

10
5M

25
M

0k
51

4M
47

4M
28

8M
45

5k
fr

b
30

-1
5-

2
45

0
82

30
0s

0s
0s

10
10

s
10

94
s

11
91

s
10

47
s

92
1s

0s
33

29
s

41
55

s
90

5s
2s

0
30

k
45

k
15

9M
86

M
20

5M
68

M
40

M
0k

66
8M

87
8M

73
M

5M
fr

b
35

-1
7-

1
59

5
84

35
0s

2s
3s

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
1s

>
12

h
>

12
h

34
98

3s
62

31
s

0
32

2k
43

7k
0k

17
23

M
12

63
0M

fr
b
35

-1
7-

2
59

5
84

35
0s

5s
11

s
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

1s
>

12
h

>
12

h
>

12
h

33
53

3s
0

1M
2M

0k
89

67
3M

fr
b
40

-1
9-

1
76

0
86

40
0s

16
s

29
s

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
1s

>
12

h
>

12
h

11
58

9
>

12
h

0
2M

3M
0k

40
3M

fr
b
40

-1
9-

2
76

0
86

40
0s

9s
19

s
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

0s
>

12
h

>
12

h
>

12
h

>
12

h
0

1M
2M

0k
fr

b
45

-2
1-

1
94

5
87

45
0s

82
7s

12
16

s
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

11
9s

>
12

h
>

12
h

>
12

h
>

12
h

0
11

1M
12

6M
11

k
fr

b
45

-2
1-

2
94

5
87

45
0s

17
5s

25
3s

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
72

s
>

12
h

>
12

h
>

12
h

>
12

h
0

22
M

26
M

5k
fr

b
50

-2
3-

1
11

50
88

50
0s

12
87

s
72

27
s

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
76

4s
>

12
h

>
12

h
>

12
h

>
12

h
0

12
5M

63
2M

46
k

fr
b
50

-2
3-

2
11

50
88

50
0s

38
28

s
55

32
s

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
36

3s
>

12
h

>
12

h
>

12
h

>
12

h
0

42
8M

46
6M

19
k

fr
b
53

-2
4-

1
12

72
88

53
0s

44
08

6s
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
47

71
s

>
12

h
>

12
h

>
12

h
>

12
h

0
38

83
M

25
2k

fr
b
53

-2
4-

2
12

72
88

53
0s

36
51

4s
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
19

0s
>

12
h

>
12

h
>

12
h

>
12

h
0

33
09

M
10

k
fr

b
59

-2
6-

1
15

34
89

59
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h

ch
v
12

x
10

12
0

92
20

18
40

s
18

97
s

19
12

s
4s

5s
4s

1s
1s

0s
47

59
s

48
s

70
0s

0s
34

50
M

35
18

M
34

50
M

2M
2M

3M
23

6k
58

k
17

k
17

09
2M

87
M

47
7M

0k
m

y
c1

1x
11

12
1

93
22

23
3s

23
8s

23
4s

8s
12

s
7s

2s
1s

0s
10

97
s

85
s

10
81

s
23

9s
34

7M
35

0M
34

7M
6M

5M
6M

24
1k

60
k

10
k

25
37

M
17

4M
84

5M
48

60
M

m
y
c5

x
30

15
0

97
60

47
s

63
s

47
s

1s
1s

1s
0s

0s
0s

10
s

2s
47

s
42

04
2s

11
M

15
M

11
M

19
4k

43
k

21
0k

7k
1k

0k
2M

32
6k

5M
23

55
14

M
s3

m
25

x
6

15
0

90
24

25
8s

27
9s

26
7s

19
2s

27
8s

19
5s

18
6s

4s
8s

64
s

92
s

12
8s

0s
28

5M
29

8M
28

5M
21

9M
17

6M
25

8M
94

M
23

4k
12

7k
49

M
14

2M
49

M
0k

ch
v
12

x
15

18
0

94
30

>
12

h
>

12
h

26
01

9s
34

16
1s

26
04

5s
77

96
s

12
35

s
18

4s
>

12
h

>
12

h
>

12
h

0s
20

11
8M

12
99

0M
21

79
0M

23
66

M
10

3M
3M

3k
m

y
c2

3x
8

18
4

90
16

62
3s

64
5s

64
5s

11
5s

16
5s

11
2s

88
s

21
5s

90
s

11
38

s
13

90
s

>
12

h
>

12
h

89
2M

90
6M

89
2M

46
M

45
M

85
M

24
M

21
M

2M
30

51
M

31
92

M
m

y
c1

1x
17

18
7

95
34

>
12

h
>

12
h

40
10

9s
>

12
h

33
95

7s
50

56
s

23
78

s
23

75
s

>
12

h
>

12
h

>
12

h
31

59
s

25
91

0M
26

33
8M

12
23

M
19

6M
38

M
52

11
3M

s3
m

25
x
8

20
0

92
32

>
12

h
>

12
h

46
25

3s
>

12
h

44
84

3s
38

98
7s

18
1s

48
7s

22
77

8s
18

14
8s

40
08

9s
0s

44
84

0M
50

66
5M

16
23

0M
10

M
4M

16
18

4M
10

91
5M

12
67

5M
58

1k
m

y
c5

x
42

21
0

98
84

40
06

s
60

48
s

40
67

s
26

s
15

s
25

s
4s

0s
0s

44
3s

36
s

14
14

s
>

12
h

57
3M

81
9M

58
3M

5M
59

1k
5M

94
k

6k
0k

51
M

3M
95

M
m

y
c1

1x
20

22
0

95
40

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
38

51
9s

>
12

h
>

12
h

>
12

h
>

12
h

36
6M

m
y
c2

3x
10

23
0

91
20

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
38

10
4s

26
21

0s
75

45
s

>
12

h
>

12
h

>
12

h
>

12
h

12
20

1M
20

83
M

21
6M

m
y
c5

x
48

24
0

97
96

>
12

h
>

12
h

23
s

22
s

25
s

13
s

0s
0s

31
9s

39
s

33
16

s
>

12
h

4M
61

6k
4M

26
6k

8k
0k

33
M

3M
90

M
s3

m
25

x
10

25
0

93
40

>
12

h
>

12
h

>
12

h
>

12
h

>
12

h
>

12
h

69
80

s
>

12
h

>
12

h
>

12
h

>
12

h
18

s
34

4M
10

4M

Ta
bl
e
5.
2:

B
H
O
SL

IB
an

d
E
V
IL

in
st
an

ce
s.

R
un

ni
ng

ti
m
e
re
su
lt
s
in

se
co
nd

s.
T
he

“>
12

h”
si
gn

in
di
ca
te
s
th
at

th
e

ru
nn

in
g
ti
m
es

ar
e
ex
ce
ed
in
g
th
e
12

ho
ur

lim
it
.

69

noting, that our program achieves the main goal, and it reduces the search
space considerably. It also clear, that although the “down” and “up” methods
are different, they are very close and none of them is superior to the other.
This follows from the fact that in our approach the proving of non-existence
of a (ω(G) + 1)-clique takes the most time, and that part is common to the
two methods.

Evaluating the numerical results the reader can see, that our simple ap-
proach of running the k-clique program with decreasing or increasing k values
gives running time result that are usually comparable with, or even better
than most of the best state-of-the-art programs. In 4 cases our simple ap-
proach is clearly better than more sophisticated programs that using subchro-
matic bounds – the keller5 graph, the monoton-8 graph and two BHOSLIB
instances. It is also at second place in 10 cases – the monoton-7, the latin
square and all of the BHOSLIB instances.11 It is also worth noting, that our
program achieves the main goal, and it reduces the search space considerably.
And it is very bad on one instance, the MANN-a45. But one would expect
exactly such a mixed behavior for a program that is based on a very differ-
ent approach. Note, that the EVIL graph instances were designed especially
against programs using coloring, so it is not surprising that programs using
subchromatic approach from San Segundo and Li perform better than our
program.

Also, we would like to mention, that the proposed program is highly
tunable, as one can use any suitable method to find the k-clique. We suspect
that fractional coloring or other means of finding a better bound – see Section
4.2 – than the chromatic number may increase the efficiency of our program.

5.4 PACE competition
Perhaps not the best way to compare programs, but stil a good indica-
tor is the results of the 1a track of the 2019 PACE competition, https:
//pacechallenge.org/2019/. The competition was about finding the min-
imum vertex cover, and was open for contestants Worldwide. The results
proved that the best practice to this problem is strong kernelization and
good maximum clique solver. The first place (solved 87 instances from 100)
and second place (solved 77 instances from 100) teams used a maximum
clique solver from Chu Min Li [Li2017], while the author of this work, result-

11Although the BHOSLIB instances are widely used for exact maximum clique search
testing we do not consider them as really good tests. This is because of the fact that in
each case ω(G) = χ(G), and it is easy to find a coloring using χ(G) colors. The good
behavior of our program is clearly because of this fact.

70

https://pacechallenge.org/2019/
https://pacechallenge.org/2019/

ing in third place (solved 76 instances from 100), used the solver described in
this chapter [Dzu2019]. Other competitors could not solve even 40 instances.
The results in detail depicted on Figure 5.1.

As kernelization12 – see Section 4.3 –, played a huge role in the results
one cannot directly conclude the performance of the underlying clique search
program. But indirectly we can state, that our version of the clique search
program is competitive to other state-of-the-art programs and among the
best ones at the present.

Figure 5.1: PACE 2019, Exact Vertex Cover track. Number of solved in-
stances in given time limit – the medalists compared to others.

1 2 4 7 14 28 56 112 225 450 900 1,8003,600
0

20

40

60

80

100

Time (s)

P
ro
bl
em

s
So

lv
ed

WeGotYouCovered
peaty
bogdan

12Our experiments, not detailed here, showed that reduction played little to no role in
solving the problems listed in Section 5.3.3, explaining why such reductions are usually
not implemented in maximum clique search programs.

71

Chapter 6

Concepts on parallelization

The main idea behind any parallelization algorithm is to divide the orig-
inal problem into several subproblems [Braw1989, Gram2003, Karn2003,
Matt2005, McCo2012, Pet2004, Var2013]. Then the problem of algorith-
mization lies in two key questions: Is the problem dividable? Can we easily
construct the final answer from the sub-answers? For discrete optimization
problems usually and for the clique problems particularly the division of the
problem is quite straightforward. Also one can trivially give the final answer
knowing the sub-answers.

In case of combinatorial optimization problems the main obstacle is the
uneven distribution of problem hardness [McCr2015]. So if there are a few
algorithms in this area, they are still not scaling well. For example the
algorithm in [Chen2012] lists all maximal cliques, but it only scales for 32
processors.

Another possible usage of parallel architectures are for using a portfolio
of algorithms [Gom1997].

Although the question lies outside of our work we must mention one
special parallelization approach to combinatorial optimization. Namely, the
parallel local search approach, which speeds up well for heuristic search of
combinatorial structures. Although such methods were at our knowledge not
used in clique search they were adopted to other similar problems like the
already mentioned Costas Array Problem [Diaz2012b, Diaz2012a, Can2015].

6.1 The problem of even distribution
In the case of large discrete problems the unevenness of problem size and
distribution makes scaling extremely problematic. Even in the most recent
research using specialized MPI communication protocols researchers could

72

achieve no better scaling as 2-4 thousand cores for the Breadth-first-search
problem from the Graph500 test suite and only up to 5 hundred cores in the
Unbalanced Tree Search problem [Dang2016]. Obviously the clique search
problems we dealing with fall into these categories.

It is important to emphasize the importance of even distribution. The
groundbreaking achievement of complete resolution of the Keller’s Conjec-
ture using graph representation and clique search of a 64 machine cluster
[Deb2011] was possible by using methods that concluded in even distribu-
tion: “The computation took 109 days in this environment. This means of
dividing the work resulted in a very even split. All machines finished on the
same day (after 109 days of computation!) with the longest job (measured
by the last update times for the output files) taking just 17 hours longer
than the shortest one.” Although we must note, that further scaling was less
effective, as a 8192 processor supercomputer with 64 times more processors
shortened the computation time less than 10 times.

Let us see an example. Given a graph G = (V,E), we search for the
answer if there is a k-clique in the graph. We pick an arbitrary node, and
can construct two subproblems depending whether this node is part of the
searched k clique or not. Let u ∈ V be a node of graph G. We can con-
struct two sub-graphs representing two subproblems as follows. Let G′ be
the spanned graph on V ′ = V \u; and let G′′ the spanned graph on the nodes
neighboring u, that is V ′′ = N(u). The first subproblem is to find k-clique in
G′ (the node u is not part of the searched clique), and the second subproblem
is to find (k−1)-clique in G′′ (the node u is part of the searched clique). The
final answer will be ’yes’, if at least one of the answers for the subproblems
is ’yes’, and ’no’, if both answers are ’no’.

This method trivially can be extended by dividing the subproblems into
even smaller subproblems, thus dividing the original problem into arbitrary
many subproblems. Also one can create subproblems by using instead of a
given node a given edge {u, v}. In this case we delete this edge from one
graph (E ′ = E \ {u, v}), and constrain the other graph by the neighborhood
of these two nodes (V ′′ = N(u) ∩ N(v)). Finally, as an edge can be seen
as a 2-clique, one can use 3-cliques or even any z-cliques for such division.
The problem with such division that it will be too complex to describe the
subproblems, and one need to use taboo lists in the search for excluding such
cliques in some subproblems.

After the successful parallel algorithmization of the problem one still faces
the problem of parallel efficiency. This depends on two key questions: What is
the ratio of communication between the processes dealing with subproblems
compared to the work to solve these subproblems? And is the distribution
of the subproblems even?

73

The first issue is usually unimportant in case of discrete optimization.
One can clearly see, that in the above proposed k-clique problem division
absolutely no communication is needed. When more complex scheduling is
used – we describe them in the next section – a little more communication
is needed. Still, the amount of this communication is negligible to the com-
plexity of the subproblems in case of mid sized and hard problems.

The other issue is the problem of even distribution. This is the real
problem in discrete optimization. Again, the reader should think about the
previously proposed division of the problem. Clearly the two subproblems
won’t be of equal size. So if one would have two processors to solve these
problems, then one processor would finish early, while the other one would
proceed with the calculations much, much longer.

The team of two BSc students on the National Student Competition
(OTDK) with the author as advisor showed in their work, that the difference
between the shortest and longest subproblem solution may be as much as
104 times for different hard problems [Har2015].

6.2 Effects on speedup
The main goals of the parallelization is to achieve more speed-up. In order
to achieve this we need to take care of three separate problems.

The first one is to distribute the work among the processes (running on
different processors) more evenly. If the distribution is uneven, then this
will cause some processes run shorter time while the whole running time will
be dominated by the slower processes. Let us look at an example. Take
a problem which is decomposed into 100 subproblems, and we will use 10
processors and so 10 processes. If the subproblems are even and we give
each process 10 subproblems, that is one tenth of the whole problem, then
each process will finish its work roughly in one tenth of the original time.
(We do not consider here other tasks connected to parallelization yet.) The
speed-up is 10. Now, if we give one process 20 subproblems and the others
only 9 or 8, then the processes given less tasks will roughly finish in less then
half time as the one given 20 subproblems. The whole system will have a
running time of the longest process, and that would lead to a speed-up of 5,
which is clearly a worse case. Obviously, if we know that the subproblems
are equal we will assign them to processes evenly. But in case of uneven
subproblems we cannot do so, and we either must correctly guess the size of
the subproblems to assign them evenly, or still end at an uneven distribution.
In this chapter we deal with this question in details.

The second problem is the locality of the data. For shared memory sys-

74

tems this question is a serious one, as the possibility of reading and writing
any data at any time hides away the real problem of how far the data is. Fail-
ing to notice this problem may cause a shared memory algorithm run slower
by magnitudes! Also, there is a huge problem of cache usage, as nowadays
multiprocessor computers are cache coherent, but achieving cache coherency
may take quite a good time from the computation. For detailed analysis on
cache coherency the reader may see the book [Sima1997]. For the question of
algorithmic design considering cache usage of the book [Braw1989] produces
very good examples.

In the case of distributed systems with message passing communication
this problem is easier and harder at the same time. It is easier, because
there is no possible way of directly reading data from the other computer, so
the algorithmic design must always take this into consideration. But it is a
harder problem, for the same reason, as there is no easy way of getting the
data. One must always design it, consider it, and reconsider several times.
And the main drawback is not the hardness of writing correct programs, but
the communication overhead. If we are sending back and forth data many
times, our program may be slower than the sequential version! At the end,
we will always face a special problem, when adding more processors does not
make the program faster, but even slows it down. In this case the execution
time of the program is dominated by the communication time. So, when
designing our problem decomposition we must take care of data locality,
hence minimising the intercommunication between different processes and
make them work mostly on their local data.

The third problem is the overhead of the algorithm. This one consists of
that part which must be done in serial way and the cost of the parallelization
itself. The serial part cannot be overridden. There will be always some parts
– mostly setting up the problem, distributing the original data, collecting
the sub-results, making tests on correctness –, which cannot be distributed.
Moreover, we may add to these the start-up time of an MPI system. Starting
several hundreds of processes on a distributed supercomputer may take some
seconds. If the problem itself is solvable on a PC in some minutes, there
is no reason for using a supercomputer, which will be slower, clumsier and
overloaded most of the time.

6.2.1 Problem of decomposition

When we need to construct a parallel algorithm we usually want to de-
compose the problem into subproblems. For some cases this can be done
straightforward, as the main problem itself consists of independent tasks or
the algorithm deals with a set of data which can be split and processed in-

75

dependently. While there are still some interesting questions of submitting
the split problems to different processes, this case counts as a good example
for parallelization.

But this is not always possible. In case of quite a few problems we cannot
divide the whole problem into independent subproblems, as they would not
be independent. Many discrete algorithms fall into this category.

With some luck we can still deal with this case if we assign subproblems
to parallel tasks, and combine the solution of subproblems by a sequential
thread. One clear example can be the problem of sorting. We can assign a
sub-domain of the elements to the parallel threads for sorting, and at the end
combine these already sorted subsets into the final solution. This can be done
by merging, so this scheme would be the parallel merge sort. By other means
we can first divide the whole set into subsets such as the value of elements
in each set is greater than in the previous set. In other words divide roughly
the elements by value into baskets of different magnitude. After sorting these
elements parallelly and routing back the solution to the master thread we are
done, as each subset follows the previous one, and is sorted by itself. This
scheme could be called the parallel Quicksort. But dividing the whole set
into subsets raises a special problem, so a tuned version of subdivision is
needed. By this subdivision is called this algorithm Samplesort.

6.2.2 Possible decomposition methods

As we have seen one of the main components of parallel algorithm design
is the decomposition of the problem. We are given a large problem and
our task is to split it up into parts so that these parts can be assigned to
different computing resources. This task is not straightforward, and we can
only outline some methods that can be helpful.

First, we should note, that one problem of the decomposition is the ac-
tual number of parts we would like to split the problem into. Actually we
should construct our algorithm in that way that we do not know the actual
number of processes in advance, as algorithms can be applied to different
cases. The actual number will be decided in runtime. It seems that choosing
the same number of parts as processes available is desired, but it is not so.
If the parts cannot be constructed in equally computational expensive way
then using the same number of parts will lead to unequal load balance. So
actually using more subproblems as processes is more useful, as we can deal
better with inequalities. Obviously using much-much more subproblems is
also undesirable, as accounting and scheduling them will cost us resources
comparable to those we use to do useful work. This means that using more
subproblems as processes but not too much more is usually the goal. More

76

detailed see [Mar1998].

6.2.3 Division by the branching tree

In the introduction of this chapter we described the basic step for dividing a
problem into two subproblems. Now we would like to detail the possibilities
for efficient division of a clique problem.

The most simple and widely used method is the division of the problem
according to the search tree. This means that when we run a sequential
algorithm it searches over a search tree in the problem space. We can divide
the problem by using the top levels of the search tree. Namely, on the first
level there will be problems represented by nodes. On the next level the
problems will be represented by edges, and so on.

The problem with this approach, as it turns out, that its efficiency is lost
after the second-third level [McCr2015]. The unevenness of the problems
becoming so big, that we cannot gain by subdividing the problems further.

6.2.4 Fixed and dynamic distribution

The most simple method is clearly the fixed distribution. One would divide
the problem into several subproblems without any extra knowledge of the
evenness of the distribution itself and use a master–slave or by other name
a work-pool distribution of the problems. In this case we would rather hope
for even distribution than exactly knowing it. While it seems unreasonable,
it has some advantages. Mainly, it is the simplest method, so it is easy
to implement, which also leads to robust and reliable program code. The
drawback of this method is obviously lays in the possible uneven solving
time of the subproblems, as we already pointed out the possibility in the
introduction of this chapter. In Chapter 8, which describes the “Las Vegas
Parallelization Method” we will propose a possible approach to deal with this
problem.

The usual question arising during this method is the number of created
subproblems. Clearly, if we would have less subproblems than processing
units then the parallel program would be inefficient, as there would be pro-
cessors that would do no job at all. In some methods the number of subprob-
lems are naturally concludes from the method itself. In this case the number
of subproblems will give an upper limit of possible number of parallel pro-
cesses. The methods of “disturbing structures” described in Chapter 7 falls
into this category.

If the method of dividing the problem gives us more freedom to choose
the number of subproblems, there are also two possibilities. First possibility

77

would be to choose a number of subproblems be near the magnitude of the
number of processors, say 1.5–3 times more. This will lead to a little more
even distribution because the master–slave scheduling will give more work
to those processors, which would finish early. Second possibility would be
to choose number of subproblems to be several magnitudes more than the
number of processors. The proposed name of this method is “Embarrassingly
Parallel Search”, which would go even further in the previously proposed way
[Reg2013]. Authors of this method propose 30 times more subproblems as
number of processors, but we suspect that in case of hard clique problems
with 104 difference in problem solving times there should be even more of
these subproblems. Alas if we make too many subproblems then the time
of starting the solver for these subproblems on a supercomputer may be
comparable to the problem solving itself. This issue needs more research.

In our opinion the work sharing by self scheduling is a good dynamic
method. Other literature give other examples as well. On of them is called
Work Stealing. It propose a static distribution in the beginning. When a
process runs out of its assigned jobs, then it steals unstarted jobs from other,
more occupied processes.

While the static distribution is the beginning may have real advantages,
the more complex programing of the stealing makes this method harder to
program.

6.3 Evaluation of scalability

6.3.1 Problematic case

A special problem of evaluating the speed-up may appear using varying pro-
cessor count algorithm. Some algorithms, may use different processor counts
in the different steps of the procedure. Adding to this one may use a normal
PC for preconditioning an algorithm – mainly do some coloring. This step
does not need a supercomputer and it is faster than being reasonable to use a
parallel algorithm for. So if an algorithm using 1 processor in the beginning,
thousand processors in the middle, and 64 at the end, then how could we
calculate the speedup of the algorithm and compare the running times of this
algorithm to other algorithms? This question is open, and needs arguments
from the supercomputing community.

78

6.4 Framework for parallel implementations
There is an increasing demand for computational power. One core could not
manage this need for over a decade. The speed of one core is limited. The
computers of today reached a maximum frequency of 3-5GHz, which is quite
flat in the last 15 years. Intel introduced its 3.8GHz Pentium4 processor 15
years ago.

There is a need of parallel computing, for multiprocessor systems. Later
we used multi core processors and distributed systems. Today, we use literally
millions of computing cores (www.top500.org). We can see, that we can
have exponentially increasing computational capacities. But this raises new
problems, namely heat dissipation and energy cost of supercomputers. The
3-5 years cost of energy supersedes the cost of the system itself.

We have also the problem of too many cores. Many algorithms do not
scale properly over hundred thousands of cores.

6.4.1 Parallel architectures

Today’s computer architectures vary in many ways. After we have seen the
urge of computer power for large computations, we shall show the classifica-
tion of nowadays’ computers.

The PCs, the standalone computers at home or at the office are multi-core
machines now. They have one CPU, but the CPU has more cores, typically
2 to 8, but there are processors with 16-32 cores, as well.

The next scale are bigger computers – these are the servers, usually multi-
processor systems. This later means they have more processors, usually 2 to
8. (Obviously these processors are multi-core, so such systems can have even
64 cores present.) Also specialized acceleration processors with hundreds or
thousands of processors are in use, like Xeon Pi, Nvidia Tesla GPGPU card
or the Sunway 260 processor.

For HPC, High Performance Computing much much bigger computers or
computer systems are used. These provide thousands or millions of cores
to their users. The SMP (Symmetric Multiprocessor) systems are shared
memory systems, where the programs can access the whole memory. These
systems nowadays are so called ccNUMA systems, which means that only
part of the memory is close to the processor, while other – bigger – part
of the memory is further away. This means more memory latency which is
balanced by the usage of cache, that is why the system is cc, cache coherent.
The programming of such systems is usually made by openMP programs,
but bigger systems can run MPI as well.

79

www.top500.org

The biggest supercomputers of our time are distributed systems or clus-
tered computers. They consist of separate computers connected by a fast
interconnect system, These are programed with MPI language extensions.

Other architectures of today’s computers are video cards, which can be
programed for different purposes and even used in supercomputers. This
paradigm is called the General Programming GPU, the GPGPU, and pro-
gramed with languages of for example CUDA or OpenCL.

6.4.2 Scheduling

Scheduling of subproblems can be done statically or dynamically. The prob-
lem with static assignment that it is hard to achieve even work distribution.
So one would like to make some dynamic assignment.

One best known method to do this is the master-slave work processing or
in other words post office parallelization.

There is a Master process, who takes care of and accounts for the work
to be done. The Slave processes ask for a job to do, and report back when
they are ready. After sending the results, they ask for another job. When
the job pool is empty, in other words no job (to be done) has been left, the
Master process tells the Slaves to terminate.

The basic – but yet incomplete – program part would be like this:

01: //N: number of elements
02: //id: the rank of the process
03: //a[]: the array of work descriptors
04:
05: if(id==0){//Master process
06: int id_from;
07: unit_result_t ANSWER;
08: for(int i=0;i<N;++i){
09: //recive from anybody, tag=1:
10: MPI_Rec(&id_from, 1, MPI_INT, MPI_ANY_SOURCE,
1,...);
11: //recieve answer, tag=2:
12: MPI_Rec(&ANSWER, 1, MPI_datatype, id_from, 2,...);
13: //send to slave who asked for job, tag=3:
14: MPI_Send(&a[i], 1, MPI_datatype, id_from, 3, ...);
15: }
16: }else{//Slave process
17: unit_result_t ANSWER;

80

18: unit_of_work_t QUESTION;
19: while(true){
20: //send our id
21: MPI_Send(&id, 1, MPI_INT, 0, 1, ...);
22: //send the answer
23: MPI_Send(&ANSWER, 1, MPI_datatype, 0, 2, ...);
24: //ask for the next question and calculate the answer
25: MPI_Rec(&QUESTION, 1, MPI_datatype, 0, 3,...);
26: ANSWER=do_work(QUESTION);
27: }
28: }
29:

We can notice the incompleteness, as there is no start and no end in this
question-answer conversation. These parts must be written separately. Also
the reader must note the strict ordering of send and receive commands. If
they would be in other order deadlock may occur, as discussed earlier in
chapter three.

It is also important to make distinction between the different message
types, and this is done by assigning different tags to messages of different
functionality. It is also important in order to make the program error free.

6.4.3 Problems arising of parallelization

When we write a parallel program we obviously would like to achive faster
computation. But apart from being fast it is an interesting question how
fast it is. One would like to measure the goodness of the parallelization.
Obviously, for different purposes different measures can be done. For some
cases even the slightes reduction in running time may be important as a
problem may be of a kind that it must be solved in some time limit. Others
may look at the question from economical point of view and compare the
income from faster computation with the invested money (and perhaps time).
There cannot be an overall perfect measurement, but still there is one which
is accepted the widest. This is called the speed-up, and it is calculated the
following way. For a given problem we measure the running time of the best
known sequential program and the running time of our parallel program.
The ratio of them will give us the speed-up number, which by this definition
will be dependent of processors or computers we use. One would like to
develop and use a parallel program, that will achive a speed-up of n with n

81

processors, or in other words with twice as many processors half the running
time.

In most cases, because the problem cannot be divided into independent
subproblems, we should find an alternative algorithm, which is more com-
plex than the original one. This algorithm would run on one thread slower
than the original one. So adding more processors we speed up the modified
algorithm, which means we are far from reaching speed-up of number of pro-
cessors compared to the original algorithm, namely we are unable to reach
linear speed-up. Still, there can be a good usage of such algorithms, as even
with sub-linear speed-up and with the aim of many computers (or a bigger
cluster or supercomputer) we can solve much bigger problems than with the
original sequential program. One may say, that gaining speed-up of 1.5 with
twice as many processors is a satisfying result.

6.4.4 Amdahl’s law and Gustavson’s law

At this point we need to mention two historical notes on the problem of speed-
up and its limits. These notes called the Amdahl’s law and the Gustavson’s
law.

The law by Gene Amdahl was formed in the late 60’s, and states, that
every parallel program has a limit in speed-up independently of the number
of processors used. This phenomena is caused by the fact, that every program
has a part which cannot be done in parallel. This usually includes the start-up
of the program and reading the initial values; the starting of parallelization;
the collecting the data by the main thread; and the ending of parallelization.
These parts cannot be done in parallel, so no matter how many processors we
use, and speed-up the parallelizable part, this part will run the same time.
Say 1% of the program is like this, and we use infinite number of processors to
speed up the remaining 99%, which will finish so immediately. The running
time of the whole program will be 1/100-th of the original time, the running
time of the non-parallelizable part, so we gain a total speed-up of 100. No
bigger speed-up is possible in this case.

We also should note, that in real problems we need communication be-
tween the different threads or processes. The ’cost’ of this communication is
not independent of the size of the cluster or the supercomputer. Namely, if
we use more and more processors the communication will take more and more
time. Also, the load balancing between different processors may be unequal
causing longer execution time as some processors may be unoccupied for
some time. So in real world the problem is even more pronounced, as adding
more and more processors the program cannot even reach the theoretical
speed-up, but will produce slower running time because of the communica-

82

tion taking more and more time and unbalanced problems becoming more
and more unbalanced.

Although not denying the law of Amdahl John L. Gustafson and Edwin
H. Barsis noted that the fraction which cannot be parallelized becoming less
and less if we increase the size of the problem itself. Because the main interest
is always solving problems and not finding theoretical speed-up limits, this
means that with bigger computers and computer clusters we can assign them
and solve bigger problems because we can achieve greater speed-up in the end.
With the case of communication overhead and unbalanced decomposition we
can assume mostly the same.

6.4.5 Superlinear speed-up

The theoretical expected speed-up of a parallel program is the number of
processors we use. But there can be an exception, where we gain more speed
than the added number of processors. This phenomenon is called the super-
linear speed-up, which occurs rarely, but not extremely rarely. There may
be two causes for such speed-up. One is the accumulation of the cache or
memory in the system. If the whole problem cannot fit into memory (or
cache) it slows down. But using so many processors that the chunk of the
data can fit into the memory (or cache) the problem will speed up extremely.
So the speed-up at this very point will be super-linear.

Other possible occurrence of super-linear speed-up may be observed in
backtracking algorithms, where the result of one branch may give information
to cut other branches [Pro2015].

83

Chapter 7

Parallelization by disturbing
structures

In this section, based on [Szab2017, Szab2018b], we would like to outline
a general method of creating subproblems for parallel computation. As we
will show some of the already known methods fall into this category. The
parallelization methods which use the top levels of the search tree are fall into
this category, as several methods described by Szabo in [Szab2011]. We also
would like to classify this method and show some possible expansions to it.
The most important result of this general method that new practical methods
can be implemented by its usage. We will show some of such examples.

7.1 Disturbing structures
One of the most convenient ways to divide a k-clique search problem into
subproblems is to partition the node set V of the graph G into two subsets:
A and B = V \A. Let GA be the graph that is spanned by the set of nodes A.
The goal of our division is to prove that ω(GA) < k, and we shall find such
an A for which this problem can be easier or trivially solved. That is, if we
remove the nodes of B from the graph G, the remaining graph will admit to
have no k-clique in it and this information is easier to determine than in the
original problem. In the original Carraghan–Pardalos algorithm [Carr1990],
this separation is made according to the number of nodes. Trivially, if we
take out (k− 1) nodes from V , the induced subgraph on these nodes cannot
contain a k-clique. Thus, we need to remove, also eliminate, the remaining
|V |− (k− 1) nodes in order to solve the problem. Moreover, this elimination
can be done one node at a time, producing an easier problem each time.

More formally, let V = {v1, v2, . . . , vn}. We then consider the following

84

subproblems: V1 = V, V2 = V1 \ v1, V3 = V2 \ v2, . . . , Vn−k+1 = Vn−k \ vn−k.
Clearly, solving the k-clique problem in G is equivalent to determining the
existence of a (k − 1)-clique in the induced subgraphs defined by the node
sets: N(v1)∩V1, N(v2)∩V2, . . . , N(vn−k+1)∩Vn−k+1 where N(vi) denotes the
neighbor set of vi. Note, that all these subproblems are independent and can
be solved in parallel.

Instead of the size of the graph, tighter bounds for ω(G) may be em-
ployed. The most frequently used bound is some form of greedy coloring
algorithm, as in [Brel1979, Culb1992], since computing the chromatic num-
ber is impractical for large problems. Given any legal coloring of the nodes,
the graph spanned by the subset of nodes determined by any (k − 1) color
class cannot have a k-clique. Consequently, the separation is done in exactly
the same way as before, but considering now the nodes of any partial k − 1
coloring of the nodes. This method was first described, with a number of
minor modifications, in [Bal1986]. In this Subsection we shall analyze the
described division of the problem into subproblems and propose some simple
algorithms to assist this goal.

7.1.1 k-clique covering node set

The separation method described above can be generalized as follows. Let
G = (V,E) be a finite simple graph and let k be a positive integer. Let
W ⊆ V . If each k-clique in G has at least one node in W , then we call W a
k-clique covering node set of G (see Figure 7.1).

Let W = {w1, w2, . . . , wn} be a k-clique covering node set in G. Consider
the subgraph Hi of G denote the graph induced by the neighbor set N(wi)
in G for each i, 1 ≤ i ≤ n. Let ∆ be a k-clique in G. The definition of W
states that wi must be a node of ∆ for some i, 1 ≤ i ≤ n. Consequently, the
subgraph Hi contains exactly k − 1 nodes of the clique ∆. This observation
has a clear intuitive meaning: the problem of determining the existence of a
k-clique in G can be reduced to a list of smaller problems of determining the
existence of a (k − 1)-clique in the subgraphs Hi for each i, 1 ≤ i ≤ n.

Moreover, the smaller the n, the fewer the subproblems to be analysed
become. In other words, starting with a k-clique covering node set with a
minimum number of nodes could save computational resources. However,
finding an optimal k-clique covering node set is again an NP-hard problem.
Clearly it is as hard as the k-clique decision Problem 1.2: a ‘yes’ in the latter
results in a non-empty k-clique covering node set; a ‘no’ gives an empty cover.

As explained previously, by computing a legal coloring of the nodes of
the graph we can parittion the nodes of the graph into two sets: a first set
consisting of nodes from the biggest (k − 1) color classes, and a second set

85

a1

a2

a3 a4

a5

b1

b3 b4

b5

c3

c4

c5

d2

d3

d4

d5

e3

e4

e5

Figure 7.1: A 5-clique covering node set – {d2, c3, a5}.

with the remaining nodes. It is easy to see that the latter set must be a
k-clique covering set, as any k-clique in the graph must have at least one
node in this set. Thus we arrive to the partitioning method described in the
previous Subsection. Obviously, any other k-clique covering set can be used
in the same manner.

7.1.2 k-clique covering s-clique set

More specifically, we are interested in searching for a k-clique covering edge
set. This is an extension of the node cover described previously to other
structures, such as s-cliques. Let G = (V,E) be a finite simple graph and
let k be a positive integer. Let F be a subset of all s-cliques in G. If each
k-clique in G has at least one s-clique in F , then we call F a k-clique covering

86

s-clique set of G. In particular, when s = 2, then F is an k-clique covering
edge set. Figure 7.2 depicts an example of an edge covering of all the 5-cliques
in a graph, that is, s = 2 and k = 5.

a1

a2

a3 a4

a5

b1

b3 b4

b5

c3

c4

c5

d2

d3

d4

d5

e3

e4

e5

Figure 7.2: A 5-clique covering edge set –
{{d3, d2}, {c3, b3}, {b3, a5}, {a4, a5}}.

Let F be an s-clique cover of all the k-cliques in G, and let

ci = {ui,1, ui,2, . . . , ui,s}, 1 ≤ i ≤ |F |

be all the s-cliques in F . Also, let Hi be the subgraphs spanned by the sets
of nodes

Hi =
⋂
j

N(ui,j) 1 ≤ j ≤ s. (7.1)

and let ∆ be a k-clique in G. According to the definition of F , there must
be a ci that is an s-clique of ∆ for some i, 1 ≤ i ≤ |F |. Consequently, the

87

subgraph Hi contains exactly k− s nodes of ∆. This observation has a clear
intuitive meaning: the problem of determining the existence of a k-clique in
G can be reduced to determining the existence of a (k − s)-clique in a series
of graphs spanned by each of the subgraphs Hi, 1 ≤ i ≤ |F |.

Rather than determining if a (k − s)-clique exists in each of the Hi sub-
problems, it would be preferable to examine the subproblems of finding a
(k − s)-clique in G′i(H

′
i, E

′
i) graphs derived from the previously described

general methodology. Specifically, we consider subproblems on the node set
H ′i =

⋂
j N(ui,j) with some suitable E ′i edge set that takes into account the

sequence of eliminated (examined) problems. For s = 2, when s-cliques are
edges of the graph, we can easily construct these Ei subsets as follows. Let

E1 = E,E2 = E1 \ {u1,1, u1,2}, E3 = E2 \ {u2,1, u2,2}, . . .

Then let E ′i be Ei on the node set of H ′i. That is we consider only those
edges, that have endpoints in this node set. However, for higher values of s
we cannot subtract each s-clique from its corresponding Vi or Ei set in the
same way. We will return to this issue in Subsection 7.2.

In what follows, we will refer to the k-clique covering node, edge and
s-clique sets as disturbing structures, because we need to eliminate them to
obtain simplified subproblems and to solve the original problem in the end.

7.2 Partitioning the k-clique problem for par-
allel architectures

In order to design a well-balanced parallel algorithm we now retake the dis-
cussion started in Subsection 7.1 concerning disturbing structures. We are
interested in finding a set of such structures so as to partition the k-clique
problem into several subproblems.

Recall that given any legal coloring of the nodes of a graph, it is possible to
choose (k− 1) color classes (namely the largest ones) and divide the k-clique
problem using the remaining nodes. More formally, let C1, C2, . . . , Cr, (r ≥
k) be the color classes of a legal coloring of the nodes of G = (V,E). Let

V ′ = C1 ∪ C2 ∪ · · · ∪ Ck−1 and V ′′ = Ck ∪ Ck+1 ∪ · · · ∪ Cr.

Also let p = |V ′′| and V ′′ = {v1, v2, . . . , vp}. The set V ′′ is a k-clique covering
node set. To partition the problem space, it suffices to define the subsets of
nodes

V1 = V, V2 = V1 \ v1, V3 = V2 \ v2, . . . , Vp = Vp−1 \ vp−1,

88

which incrementally eliminate the nodes of V ′′ and decrease in size as i
increases. With the help of Vi, the k-clique search can be partitioned into
finding a (k − 1)-clique in each one of the subgraphs spanned by the node
sets N(v1) ∩ V1, N(v2) ∩ V2, . . . , N(vp) ∩ Vp respectively. These problems are
independent and can be solved in parallel.

7.2.1 k-clique covering node set partitioning

It can be easily seen that some of the proposed bounding methods can also
be used for the same purpose, with minor changes. The PMAX-SAT method
described in Subsection 4.2.6 can be employed in a straightforward manner:
we need to determine the largest possible color classes in V ′, such that the
bound is below k. This can be achieved by solving a small integer linear
program. The remaining nodes will be the branching set V ′′, which is a
k-clique covering node set.

The s-clique free coloring can be used for partitioning the problem space
in much the same way as a legal coloring of the nodes. To note that the
bound provided by the coloring is k − s.

The b-fold coloring may also be used for such construction with the help
of the following simple algorithm. First we count and store the number of
nodes inside each color class Ci. We will denote this number by li. Then we
place the nodes that belong to the smallest Ci in V ′′. By definition of b-fold
coloring, these nodes can be in other color classes as well, so we subtract 1
from the total number of nodes count in each color class Cj, i 6= j, that is
lj = lj − 1, for each node shared with Ci. We next choose the smallest color
class in V \Ci, that is the smallest lj, and proceed in the same manner. The
process is repeated until the number of remaining non-empty color classes
falls below b× k. The resulting V ′′ is a k-clique covering node set.

7.2.2 Partitioning using the Lovász number

Using the Lovasz’ theta function described in Subsection 4.2.5 for partitioning
the k-clique problem is more computationally demanding than in the previous
case, because we need to calculate several theta functions. We start from a
subgraph S ⊂ G which does not contain a k-clique, for example because a
legal k − 1 coloring of the nodes exists for S. Then, at each step of the
process, we add a new node v ∈ V \ S and compute the theta bound of the
complement of the graph spanned by the node set S ∪ {v}. If this bound
is still under k, the node is accepted and the partitioning algorithm takes as
reference set S ← S ∪ {v} in future iterations; else v is not added to S. The

89

procedure ends when all vertices have been examined. The set V ′′ = V \ S
is a suitable k-clique covering set.

7.2.3 Partitioning by k-clique covering edge set

As shown in Subsection 7.1, edges, instead of nodes, can also be used as
disturbing structures. The edge coloring method described in Subsection
4.2.4 is a straightforward way to determine these edges. We choose the largest
(k(k−1)/2)−1 color classes, as the graph spanned by the union of the edges
in these color classes by themselves cannot form a k-clique. We denote by E ′
the set of edges inside these color classes. The edges in E ′′ = E \ E ′ , form
a k-clique covering edge set. From E ′′ we can construct the subproblems as
described in Subsection 7.1.

Moreover, finding such disturbing edges is not restricted to edge coloring.
For example, starting from a legal node coloring we can take the largest (k−1)
color classes and then move all the nodes from the other color classes at will
into these color classes. We will then arrive to an improper node coloring in
the general case, because some nodes in a color class will be adjacent. These
disturbing edges will form a k-clique covering edge set and can be used to
produce subproblems as described above (see [Zav2014b]).

It is easy to see the connection of this method to “subtree of distance 2
from the root” using the term from [McCr2015]. If we put all the nodes into
the color class this node has the smallest number of neighbors we will get the
same result as by making the parallelization over the top two levels of the
search tree constructed the method prescribed in the Chapter 5. But other
methods of placing these nodes into color classes will result in different set
of subproblems, and some of those may prove better.

7.2.4 Parallelization by s-free quasi coloring

With Szabo we introduced a variation of graph coloring problem, the s-
clique free coloring [Szab2012], also see Subsection 4.2.3. In this problem
we try to create color classes not edge free as prescribed in the original legal
coloring, but s-clique free classes. This method can be used for parallelization
the same way as we described in the previous chapters. We can construct
quasi s-clique free colorings, where some color classes are not perfect, and
may contain cliques of size s or even bigger. Again we may point out some
disturbing edges or even s-cliques that constrain us from constructing a legal
s-clique free coloring. The parallelization method is the same as described
previously.

90

One method would use the simulated annealing technique, and move
nodes from one color class into another while concluding in small number
of disturbing structures. Other method would start from an s-clique free
coloring of the graph, and placing the nodes from some smallest color classes
into bigger ones construct quasi s-clique free color classes.

The actual construction of subproblems also may be done different ways.
One method would point out disturbing edges, and construct subproblems
using these edges. The parallelization can then be made exactly as in the
previous methods.

Other method would use the s-cliques from the quasi s-clique free color
classes, and construct the subproblems by constraining the G graph to the
common neighborhood of all the nodes from the s-clique. As we pointed
out in the introduction of this chapter this method needs taboo listing to
be effective, as we cannot easily delete these s-cliques from the adjacency
matrix.

7.2.5 Parallelization by quasi coloring

This parallelization technique was introduced by Szabo in [Szab2011]. We
try to color the nodes of a graph by k−1 colors. If we can do so, there cannot
be any k-cliques in the graph, so we could solve the problem of k-clique in one
single step. If we cannot do a k−1 coloring we produce a quasi k−1 coloring,
which means there will be some disturbing edges in the color classes. The
proposed algorithm by Szabo is a simulated annealing technique. We move
nodes from one color class into another if the by this move we can reduce the
number of disturbing edges. As this method is strictly monotonic in therms
of the number of disturbing edges it will stop. The actual algorithm proved
to be very fast.

The parallelization technique is the following. We take the disturbing
edges one by one, and inspect, whether they can be an edge of a k-clique or
not. We do this step as follows. Let’s note the disturbing edge as {u, v} ∈ E.
We construct the common neighborhood of this edge, thus N(u)∩N(v), and
search for a (k − 2)-clique in the resulting graph. If we find one, then we
found the answer to the original question, because the resulting (k−2)-clique
can be extended by u and v to produce a k-clique in the G graph. If no such
clique present in the subproblem, then this edge can be deleted from the
graph. As inspection of the edges are independent problems this leads us to
a good parallel technique.

91

7.3 Increasing and modifying the subproblems
To achieve an even load in large scale parallelization, more subproblems
than the number of available processing cores are required. A reasonable
ratio ranges between 3 and 10× more subproblems than processing units.
The proposed k-clique covering node set will not meet this constraint in the
general case: their size frequently range between 30 and 100 nodes, while a
modern supercomputer may contain between 1000 and 100 000 cores. Note
that the k-clique covering edge set is more appropriate in this case, as it
typically generates from 500 to 2000 subproblems.

To overcome this limitation, we propose the following strategy. Let v, u
be the first two nodes of one such k-clique covering set, such that u ∈ N(v),
that is {u, v} an edge. The corresponding two subproblems following the
general partition methodology are searching for a (k − 1)-clique in each of
the two subgraphs spanned by the node sets N(v) ∩ V and N(u) ∩ (V \ v).
We propose to construct new subproblems using the edge {v, u}. Namely, we
search for a (k − 2)-clique in the graph spanned by node set N({v, u}) ∩ V ,
and search for a (k−1)-clique in each of the subgraphs spanned by node sets
N(v) ∩ (V \ u) and N(u) ∩ (V \ v) respectively. Clearly solving these latter
subproblems is equivalent to solving the former ones. This method may be
trivially extended to all the other edges in the k-clique covering node set,
and thus increment the number of subproblems by an order of magnitude.

We further discuss a problem that concerns the elimination of disturbing
structures, once the corresponding subproblem has been examined, for the
k-clique covering s-clique set strategy, where s > 2. In this case, it is not
possible to directly remove the disturbing s-cliques from the node sets Vi ⊆ V ,
or edge sets Ei ⊆ E, where each i corresponds to an s-clique element of the
cover. A possible solution is to consider additional edge subproblems instead
of s-cliques. For s = 3 it works as follows. Let ∆ be a 3-clique in the given
k-clique covering 3-clique set, with nodes x, y, z and edges e = {x, y}, f =
{y, z}, g = {x, z}. After failing to find a (k − 3)-clique in the graph spanned
by the node set N(∆), we cannot delete it from the graph directly. The
situation changes if it is possible to prove that there are no (k − 2)-cliques
in the graphs spanned by the node sets N(e) ∩ (V \ z), N(f) ∩ (V \ x) and
N(g)∩(V \y) respectively. It is easy to see that by examining these additional
subproblems, the nodes in ∆ can be removed in all ensuing subproblems
without losing completeness. If all the s-cliques of the cover are divided
in this way, the general elimination methodology can be extended to these
edge-based structures (see Subsection 7.1).

92

7.3.1 Refinement by usage of edge weights

We can construct the quasi coloring classes in several different ways. Note
that the resulting parallel problems may be quite different depending on the
subproblems represented by the disturbing edges.

This recognition leads us to a variation of the previously described al-
gorithm. We can inspect the edges prior to the quasi coloring algorithm,
and by some heuristics guess the hardness of the subproblem represented
by them. With this information we can construct a different quasi coloring
which results in easier problems of bigger set. The algorithm runs as follows.
All edges assigned a proportional weight which represent the time that the
subproblem defined by this edge would take us to solve. Then we follow
the previously described simulated annealing technique. Only this time the
objective function should be the sum of the weights of the disturbing edges
and not the mere number of these edges. So we move a node from one quasi
color class into another one if by this move the sum of weights over the dis-
turbing edges reduced. Again, it is easy to see, that this method is strictly
monotonic, and will stop.

The gain of this method is that even if we would have more subproblems
in the end they may be solved in shorter time altogether. The second gain
may come from the multitude of the subproblems, as we use many cores and
it is desirable to have more problems than few.

93

Chapter 8

The Las Vegas method for
parallelization

One goal of the present work is to find parallel, and even massively parallel
algorithms for the k-clique problem. In this chapter, based on the theory
detailed in the previous chapter, we shall detail such algorithms and evalu-
ate it using numerical experiments. The chapter is based on previous results
[Zav2015]. As the computations in question used 512 cores of a supercom-
puter – the Sisu computer in Finland –, we did not repeat the tests but
used our previous results. This means that the sequential program inside
the parallel one was a previous version of our program detailed in Chapter
5, and thus the results for one core run cannot be directly compared to the
running times of the new program version. The main message though is the
speed-up, which is independent from the sequential program version.

We should point out one more effect of discrete optimization problems.
The usual Branch-and-Bound method is sensitive to the sequence of sub-
problems in a branch. This was shown for SAT problems [Ouy1998], and
could be shown for clique search problems as well. This effect will be used
by my algorithm, as it eventually finds a better sequence for solution, and
thus reduces the search space. Those are the cases where the solution of a
subproblem alters the problem space of another one.

Another important effect is based on restarting the same subproblems.
This results of changed run time, as the same subproblem starts from dif-
ferent starting points, thus may have a better preprocessing optimization
[Moor2004]. Also this method can help to employ the free processors. If
the original subproblem would finish early, then we have the advantage of
running two or more instances of the same subproblem, which can cause that
one would finish earlier then the other.

94

8.1 Implementation of a massively parallel al-
gorithm

The Las Vegas algorithms, first described by Babai [Bab1979], is a variation
of the Monte Carlo randomized algorithm. Formally, we call an algorithm a
Las Vegas algorithm if for a given problem instance the algorithm terminates
returning a solution, and this solution is guaranteed to be a correct solution;
and for any given problem instance, the run-time of the algorithm applied to
this problem is a random variable.

The variance in the running time of a Las Vegas algorithm led Truchet,
Richoux and Codognet to implement an interesting way of parallelization of
the heuristic algorithms for some NP-complete discrete optimization prob-
lems [Tru2012]. The authors note that the algorithm implementation for
those problems heavily depends on the “starting point” of the algorithm, as
it starts from a random incorrect solution and constantly changes it to find a
real solution. Depending on the incorrect starting solution the convergence of
the algorithm may be very fast or slow. The idea behind the Las Vegas par-
allel algorithm was to start several instances of the sequential algorithm from
different starting points and let them run independently. The first instance
that finds the solution shuts down all the other instances and the parallel
algorithm terminates. As the running time of the different instances vary,
some will terminate faster, thus ending the procedure in shorter time. The
article describes the connection of the variance of the running times and the
possible speedup when using k instances and found that for some problems
a linear speedup could be achieved.

We may use these results in another way. We can alter the sequence of
the subproblems not knowing their complexity in prior, but in the course of
the computations.

8.1.1 Parallel Las Vegas algorithms

We choose, as an example algorithm, a parallel algorithm for k-clique problem
proposed in [Szab2011]. The basic step of this algorithm is the removing of
an edge from the graph. Given an edge vi, vj. If one can prove that this
edge is not part of any k-clique, then this edge can be freely deleted from
the graph without altering the answer to the k-clique question. The proof
takes the subgraph of G spanned by the nodes N(vi)∩N(vj), and examines
whether there is a (k−2)-clique in it. (N(v) denotes the neighboring nodes of
node v.) If the answer is ‘Yes’, then we found a ‘Yes’ answer for the original
question. If the answer is ‘No’, then we can delete this edge, as it cannot be

95

an edge of a k-clique.
The algorithm uses the concept of disturbing edges. Given some set of

edges, if we can delete them, then the original question can be answered by
‘No’, and this answer is trivial. The actual algorithm enumerates disturbing
edges by a quasi coloring, and by deleting these edges we get a graph which
can be colored by k − 1 colors, thus there can be no k-clique in it. Actually
this method of reducing the graph by taking the neighbors of two nodes is
closely related to the two level branching detailed in [Pro2015].

The subproblems, which can be denoted by an edge, are independent,
but overlapping. In order to eliminate the overlapping parts let us consider
a fixed sequence of the disturbing edges. Should we solve the problems in
a sequential manner, then after solving the first one we can delete this edge
from all the other problems to be solved. And so on for all the edges, one by
one. The resulting problems are free of overlapping. Because these problems
can still be solved independently, we can run them parallelly, deleting these
edges a priory even before solving the specific problem.

We propose two other methods. First, which we call the Las Vegas edge
deletion, starts the original overlapping problems without any edge deletion
parallelly. The problems will be of different complexity, thus some of them
will run fast, and others slowly. If one problem (a fast one) finishes, then the
edge denoted by this problem shall be deleted from all the other problems
in the course they are being solved. (Obviously this can be done only if
the sequential program can allow this.) This method will do some surplus
calculation because of overlapping search spaces, but can profit by reordering
the sequence of edge deletion. As we already pointed out previously the
sequence in which the problems are solved can affect the size of the search
space. The structure of the program:

Master Slave
Get report / get request /
asked for deleted edges

Report / request for new task
(edge)

IF found: exit Construct the task from edge
IF not found: delete the edge Solve the task
IF asked: give deleted edges (repeatedly ask for deleted

edges)
IF requested: give new task
(edge)

Second version, which we call the Las Vegas edge deletion with restart,
do the same as the previous one, but uses an other technique, as well. If
no work left to be given out (the number of subproblems fall below the
number of processors), then we give out an edge, which is already given out

96

to another process, and so two threads do the same calculation. It may seem
redundant, but the restarting process can start from scratch, and with some
already deleted edges, can produce better preconditioning of the subproblem.
This method is well known in SAT solving community, but my proposal is
somehow different, as given spare processors we run the original, half solved
subproblem, along with the newly started. On the other hand, if the already
long-running solver is near to the finish, we do not need to throw it out.

As it will be seen from the evaluation, both methods are really strong.
Also, there is an interesting effect of reproducibility. While different runs
will delete edges in different order, one can save the actual order of a given
run. It is clear, that given this special order of edges we can run the original
a priory edge deletion algorithm with the same, or even better speed.

We would like to summarize the three approaches:

1. The a priory deletion sequence, where we list edges in a fixed way, and
delete the edges representing an earlier (in the sequence) subproblem
from a later (in the sequence) problem.

2. The Las Vegas method, where we do not delete any edge from the sub-
problems. We start the solvers in parallel manner, and if a subproblem
finished we delete the edge representing this subproblem from all sub-
problems – either waiting for starting to be solved either if a solver
presently working on it.

3. The Las Vegas method with restarting is at first the same as the pre-
vious one. The difference comes into play at the very end, when we
solved most of the subproblems, and the remaining (running) subprob-
lems are less then the number of processing elements. In this case we
restart a subproblem – keeping the same subproblem being solved at
the same time –, so there will be two instances of solvers solving the
same subproblem. One have the advantage of being half through solv-
ing it, the other have the advantage of being restarted, and so having
a better preconditioning.

From theoretical point of view we can compare the proposed Las Vegas
parallelization to the work share – work steal methodology. As in our case
we have a fixed distribution it does not fall into the second category. But
because the work to be done changes dynamically it is not in the first category
either. We call this approach “work help”, as an early finishing subproblem
helps other solvers to solve their job. Note, that this approach connected to
the technique of parallel blackboard system [Clea1991, Clea1992].

97

8.1.2 Other possible usage

The method described in this section can be used for parallelization of differ-
ent combinatorial optimization problems such as SAT, Integer Linear Pro-
gramming or Constraint Programming. In order to utilize the algorithm it is
important, that the original problem can be divided into several independent
(and actually overlapping) subproblems. Also, the result of a subproblem
should be usable to help other subproblems – it will reduce the search tree
by the overlapping part.

The usage can be done in three different ways. First, the “help” can be
given a priory in a chosen sequence – in all cases we can add additional
constrains to the problem description. In fact, this is the usual method for
parallelizing discrete optimization problems. Second, start the independent
subproblems, and if one finished give this information to all the other threads.
This is my method of Las Vegas edge deletion. Third, if some threads have
no work to do, than restart a subproblem, but with the information gained
from the previous results. The third algorithm uses this technique together
with the edge deletion.

8.1.3 Tests

We programmed the described algorithms in c++ and MPI, and performed
several tests on different graph sets. Table 8.1 below summarize the running
times for sequential and different parallel algorithms for k = ω + 1. The
columns labeled as follows. “N ” denotes the size of the graph; “%” denotes
the edge density; “ω” denotes the size of the maximum clique. The “parts”
indicates the number of disturbing edges, thus the number of different sub-
problems that will be started. The rest of the columns denote the number
of processors we used, where “1” means the sequential run time. The “seq”
denotes the original algorithm where the edges deleted in the given sequen-
tial order, a priori. The “lv” denotes the Las Vegas method where the edge
deletion is performed after a subproblem was solved. The “rest” denotes that,
apart from the Las Vegas edge deletion, the problems also restarted when
free processors were available, so the same problem run on several processors.
The running times are in seconds, and for really big figures we used “k” for
denoting thousand. All tests, including the sequential runs, were performed
on the same supercomputer.

The first set consists of random graphs, the second set is the DIMACS
set of graph problems [Hass1993], the third set is graphs of hard problems of
monotonic matrices [Szab2013, Öst2019] and of deletion code [Sloan]. The
data presented here is partial, as we left only those instances, where the

98

run-times are big enough to be of any interest.
The time limit for sequential and 16 processor runs was 12 hours, while

for 64 and 512 processor runs 72 hours. The symbol “*” denotes run times
exceeding the time limit, and “-” means that we have not run the test.

N % ω parts 1 16 16 64 64 64 512 512 512
seq lv seq lv rest seq lv rest

rand 200p9 200 90 40 152 480 27 35 22 30 20 22 30 32
rand 300p8 300 80 29 540 754 41 45 13 16 17 12 19 19
rand 300p9 300 90 47 341 * * * * * * * 16k 14k
rand 500p6 500 60 17 2478 48 9 9 2 2 2 0 0 0
rand 500p7 500 70 22 2231 3069 167 179 40 45 46 9 15 15
rand 500p8 500 80 32 1664 * * * 15k 17k 17k 5703 3543 3377
rand 800p5 800 50 14 7296 71 26 26 6 7 7 1 1 1
rand 800p6 800 60 19 6345 2371 158 166 38 41 41 5 6 6
rand 800p7 800 70 25 5587 * * * 5999 6571 6578 830 968 967
rand 900p5 900 50 15 8729 132 40 41 10 10 10 3 2 2
rand 900p6 900 60 19 8215 6493 398 423 96 103 104 13 14 15

rand 1000p5 1000 50 15 10955 282 65 66 16 16 16 2 2 2
rand 1000p6 1000 60 20 9823 14k 798 847 192 206 207 25 30 29
brock800_3 800 65 25 4888 6383 357 373 86 91 91 12 14 15
brock800_4 800 65 26 4592 4899 280 291 68 71 71 9 11 11
latin_sq_10 900 76 90 380 4053 91 121 40 61 59 40 55 54

keller5 776 75 27 420 4071 369 382 118 198 166 115 114 133
sanr200_0.9 200 90 42 128 297 15 25 14 33 33 14 29 28
sanr400_0.7 400 70 21 1408 351 22 23 5 6 6 1 2 2
p_hat700-2 700 50 45 826 740 36 59 27 48 44 27 82 84
p_hat300-3 300 74 36 297 198 9 15 7 14 14 7 15 15
p_hat500-3 500 75 50 657 * * * 9645 6020 4960 9653 4328 2253
monoton-8 512 82 23 590 2123 367 266 367 165 145 367 154 114
monoton-9 729 84 28 932 * - - 137k 39k 23k 137k 27k 6377
deletion-9 512 93 52 375 * - - - - - * * 67k

Table 8.1: Test runs

N % ω parts 1 64 64 64 512 512 512
seq lv rest seq lv rest

monoton-9 729 84 28 932 ∼1150k 137k 39k 23k 137k 27k 6377
hours: ∼320h 38h 11h 6h 38h 8h 2h

speed-up: 1x 8x 30x 50x 8x 43x 180x
average run: 1232 1717 909

minimum run: 1 11 3
maximum run: 137k 27k 5k

Table 8.2: Test runs for monoton-9

8.1.4 Evaluation

The test runs lead to several conclusions. First, it is clear, that the original
idea of disturbing edges by Sandor Szabo enables quite good parallel speedups
even for large number of cores. Second, for some (harder) problems there is a

99

limit for the original algorithm. For other problems, such as random graphs,
the speedup is nearly linear. Actually, in my opinion, this indicates not as
much the goodness of the algorithm, as it is rather shows the problem of
testing with random graphs.

The Las Vegas methods are also performing well, and while being a bit
behind for smaller and easier problems, they make a big difference for bigger
and harder problems. Actually the lower performance for the easy problems
are less interesting: one would not use a supercomputer for those problems!
The difference between the simpler edge deletion Las Vegas algorithm and
the restarting algorithm is similar. For very small problems the second can
be a little slower – it takes time to shut down the threads that are not needed.
For most problems they run for the same time, and for really hard problems
the restarting version makes one more huge leap in performance.

We would point out the problems of monoton-9 and deletion-9. These
problems are extremely hard, and only few achieved solving them with the
aid of reducing the problem by finding symmetries, and in the second case,
with the aid of semi definite programming. My method is using none of
these.

Details of one problem.

Let us take a close look at one special problem, the monoton-9. Table 8.2
presents the monoton-9 problem alone, and we indicated also the running
times in hours, the speedup and the average run time for the subproblems as
well. The sequential run time is calculated by summing up the run times of
the 512-seq subproblems. This is obviously not the same, as we would run
the sequential program, but it is as if the a priory edge deleted problems
would be run in sequential order. This figure, in my opinion, should be close
enough to the real one.

Evaluating the results, one can clearly see, that the a priory edge deletion
method is dominated by one subproblem, and that is why it cannot sped up
using more processors. The edge deletion Las Vegas method is much better,
but it also has some limits of speedup. The restarting Las Vegas method on
the other hand scales very well. A scale up is usually considered good if by
doubling the cores the running time reduced by a factor of 1.5. In case of this
hard combinatorial optimization problem we could achieve a better scale up
using 512 processors. This indicates that the method possibly can be scaled
up for several thousands processors.

Also, the average run times of the subproblems are quite interesting.
The edge deletion Las Vegas method has a bigger average run time than
the a priory edge deletion – and one would expect this –, as this method

100

is certainly making more calculations in order to eliminate the dominating
subproblem. More interesting is that the average time of the restarting al-
gorithm is less. That indicates, that this method even possibly can achieve
super linear speedups in some lucky problems one day. Obviously then the
whole question of super linearity should be examined and rethinked, because
it depends on which sequential algorithm we compare it to. There certainly
will be a faster sequential algorithm, but we cannot find it without using the
Las Vegas randomization method.

Finally, we would present the graphs of actual running times of the sub-
problems. In the first graph on Figure 8.1 we reordered the problems by
the magnitude of the times. Be aware, that the time scale is logarithmic, so
the actual differences are of several magnitudes. In this graph one can see,
that all three algorithms are dominated by the longest subproblem, although
the restarting Las Vegas can smooth out this problem the best, reducing the
variance of running times by more then 2 magnitudes.

0 100 200 300 400 500 600 700 800 900

100

101

102

103

104

105

Problems sorted by running times

ti
m
e
(s
)

edges deleted a priory in a given sequence
Las Vegas method for edge deletion

Las Vegas method for edge deletion with restarting

Figure 8.1: The sorted running times of the monoton-9 subproblems.

The second graph on Figure 8.2 is the running times sorted by finishing
times. To the left the time passes while we run the parallel algorithm, and
the finished subproblem times denoted on the x axis. The graph is smoothed,
to have less ‘noise’ of big variance of running times. It could clearly be seen,
that the restarting Las Vegas algorithm helps at the very end by reducing
the dominating problems exactly where it needs it the most.

101

0 100 200 300 400 500 600 700 800 900

101

102

103

104

105

Problems sequenced by finishing time

ti
m
e
(s
)

edges deleted a priory in a given sequence
Las Vegas method for edge deletion

Las Vegas method for edge deletion with restarting

Figure 8.2: The time sequence of running times of the monoton-9 subprob-
lems.

8.2 Further possible usage
The Las Vegas approach detailed in this chapter shows not only its usefulness
but also its potential for further development. Backed up with the idea that
different subproblems may be used as work-help to solve the whole problem
we can construct different methods that can exploit this approach. The
actual implementation and evaluation of these methods lay outside of the
scope of our work.

8.2.1 Anything goes

With this method some interesting variations can be implemented mostly
because there is an uncertainty which edge will be disturbing. This may lead
us to a method where we start to solve more problems than desirable.

First proposed algorithm goes as follows. We consider all possible sub-
problems defines by nodes. That is we take each node v in the graph, compute
the neighborhood N(v) and take the subgraph spanned by these nodes. We
start all subproblems at once – or as much as we have processing elements.
If any calculation finishes we delete that node from all other subproblems.
This way we do not need to build a branching set, and guessing which node
is representing an easier problem just done by parallel run. After a while the
problems become trivial and the algorithm will finish. Or one can run peri-
odically a sub procedure, for example a coloring, to check if the remaining
graph still can have the prescribed k-clique or not.

102

The proposed method trivially can be extended to use edges instead of
nodes, that is using the neighborhood N({u, v}) for each edge. Maybe a full
algorithm to wait for each subproblem represented by an edge would not be
feasible, but we can use this method for some preconditioning. This means
if we stop after some edges were deleted the result will be an easier graph
instance. As the number of edges would be much bigger then the number of
processing elements, one may consider to use a time limit for calculation a
certain instance. This would mean, that we skip the hard subproblems but
finish with the easy ones helping to reduce the whole instance.

8.2.2 Combined with disturbing structures

The previous idea may be combined with the idea of disturbing structures
as well.

Construct a sequence of disturbing edges by a proposed method. Start the
Las Vegas parallel algorithm on the subproblems defined by these disturbing
edges. After some time limit stop the work. Some edges will be deleted, some
will remain. We call the remaining edges are un-nice, since they represent
hard problems.

Run the method for constructing disturbing edges again. But this time
modify the procedure, and search for a sequence of disturbing edges that
contain as little as possible un-nice edges. Start the Las Vegas parallel algo-
rithm again. We expect the constructed series of subproblems to be easier
each time we restart the procedure. At the end the problem will became so
easy, that it will finish in the prescribed time limit.

For example if we constructing the sequence of disturbing edges using a
coloring then we try to put nodes from the small color classes into bigger
ones. So if one insertion proves to be hard, then we can construct different
disturbing edges by trying to insert such a node into another color class which
will produce different disturbing edges.

8.2.3 Las Vegas search for disturbing structures

We can directly use the Las Vegas idea for constructing the disturbing struc-
tures themselves. This is done the following way.

Make a legal coloring. Take the nodes in the smallest c − (k − 1) color
classes. We would like to put them into the bigger k − 1 classes, but there
are disturbing edges for any class.

Start the k-clique search program for all disturbing edges of a node at
once. That is for each edge this node would produce in any color class if it
would be put there. One will stop early as there is no (k − 2)-clique in the

103

neighborhood of that edge. Delete that edge. If for a node and a given color
class all disturbing edges were deleted we can put the node into that color
class – and stop all other instances.

This approach would help us in two ways. First, it would amplify the
number of subproblems. Sometimes the disturbing method gives us much
less problems as the number of processors we have, so amplifying them means
that we can use all processing elements. Second, it would be quite hard to
predict which disturbing edge concerning one node is the easiest one. And
we cannot know the best elimination sequence of those disturbing edges. The
Las Vegas method solves both unknowns at the same time.

104

Chapter 9

Summary and conclusions

The aim of this work was to synthesize knowledge about the k-clique problem.
We detailed the modeling expressivity by showing several problems that can
be modeled and solved by k-clique and maximum clique search. We detailed
the up-to-date methods of solving this problem, and discussed the possibility
of parallelization of it, which opens the possibility of using supercomputers
to solve it.

9.1 Theses

9.1.1 1st thesis

In our work we showed that several problems can be modeled by graphs
and solved using a k-clique solver. These problems arise from various fields.
First, we showed reformulation for Latin square, Sudoku game, the problem
of non attacking queens, Costas Arrays and combinatorial problems arising
from coding theory. Second, we detailed a group of real life problems that
connected to subgraph isomorphism, like protein docking, molecule search,
fingerprint and image recognition. Third, we detailed the reformulation for
scheduling problems, namely open shop, flow shop and job shop problems.
Finally, we described how clique search can be of use in network analysis
using market graphs or brain graphs.

In a few cases we did also some numerical experiments. The goal in that
was not to beat other methods, but to show that these reformulations can
solve non trivial problems of these kind in comparable manner then other
methods and solvers.

105

9.1.2 2nd thesis

We choose one problem class for extended demonstration of modeling power
of graphs and k-cliques, namely various graph coloring problems. We detailed
reformulation for the problem of k coloring of the nodes of a graph, 3-clique
free coloring and coloring of hypergraphs. With the aid of the last one we
could solve some hard hypergraph coloring problem and aid an open question
by Voloshin. The question asks about colorability of hypergraph having C
edges – nodes cannot receive all different colors –, and D edges – nodes
cannot receive all the same color. The construction is interesting, because
there are hypergraphs that cannot be colored at all. We performed a series
of calculation from witch one can conclude about probability of edge C and
D where this transition from colorable to uncolorable happens.

9.1.3 3rd thesis

After listing different sequential maximum clique solvers we look for the most
helpful auxiliary algorithms that can help us to solve these problems. First,
we compared algorithms that produce upper bounds on clique size, and as
such can be used inside a maximum or k-clique solver as a bounding or cutting
function. Our measurements help to see how good is the produced bound
and how long it takes to calculate it. Second, we showed some kernelization
steps that can help in reducing the size of the graph.

9.1.4 4th thesis

We designed and implemented a specialized k-clique search program, and
detailed its building blocks. Using this program we built a maximum clique
solver, which could be compared to other state-of-the art solvers. Our ap-
proach proved successful, and we could show that our program is among the
best ones.

9.1.5 5th thesis

After detailing the background on parallelization we introduced the concept
of disturbing structures. This concept helped us to build the sequential k-
clique search algorithm. It also gives a method on parallelizing algorithms
for this problem.

106

9.1.6 6th thesis

Based on the previous concept we implemented a massively parallel program
for k-clique search. We examined the importance of the deletion sequence,
that is the ordering of subproblems. Driven by this we constructed the so
called Las Vegas method of parallelization, which helps us find a better or-
dering and thus reduce the search place. Among other data we also could
show that the running times for different subproblems may differ in 4 mag-
nitudes, and this is exactly where the Las Vegas method and solver instance
restarting helps.

9.2 Future work
A work like the present one is never finished. There are and will be still open
questions, algorithms to be implemented and compared. In the future we
would like to concentrate on further development of the sequential k-clique
program. We would like to include subchromatic coloring methods like b-fold
coloring.

We also would like to implement parallelization techniques detailed in
Chapter 7.

As we showed ordering by increasing subproblem hardness can lead to
very efficient program. We would like to implement an algorithm which esti-
mates the size of the backtrack tree [Knu1974, Purd1977, Kilb2006, Mar1998,
Corn2006]. This can prove useful in ordering the nodes of the branching, and
also in parallelization.

9.3 Author’s own results
The question that may be open at this point to the reader is that which of the
results in the present work are considered common knowledge or results from
other researchers, and which of these are the achievements of the author. So
we shall list my own results.

1. The formulation of the Costas Array problem by graphs in Section 2.1.4
is my own result. It is not yet published.

2. The formulation of the flow shop, open shop and job shop problems in
Section 2.3 is the joint work with Sandor Szabo. It is not yet published.

3. The k-clique approach of the 3-free coloring in Section 3.2 is my own
result. It was published in [Szab2016b].

107

4. The k-clique approach to hypergraph coloring including its application
to Voloshin’s problem Section 3.3 is my own result. It was published
in [Szab2019b].

5. Measurements and comparison of different upper bounds in Section
4.2, including sequential and parallel implementation of DSatur and
Iterated Coloring algorithms, and also its application to edge and b-fold
coloring is my own result. It was published in [Szab2017, Marg2019].

6. The sequential k-clique program in Chapter 5 was first developed by
Sandor Szabo and later extendedly developed by myself including ad-
dition of Culberson’s Iterative Coloring, node rearrangement, paral-
lelization by bitsets and transformation to a maximum clique search
algorithm. It was published in [Szab2018a].

7. The theoretical background of parallelization which we call “disturbing
structures” in Chapter 7 is mostly my own result. It was published in
[Szab2018b].

8. The parallel algorithm and program detailed in Chapter 8 is based on
the idea from Sandor Szabo, while the Las Vegas approach and the
measurements proving its effectiveness was done by myself. It was
published in [Zav2014a, Zav2014b, Zav2015].

108

Appendix A

Összefoglaló

A jelen munka célja, hogy szintetizálja a k-klikk keresés tudományos kutatá-
sának eredményét. Bemutattuk, hogy a gráfokkal való modellezés, és ezek-
ben a gráfokban k-klikk illetve maximum klikk keresés milyen módon tud
modellezni legkülönfélébb problémákat, azaz bemutattuk a k-klikk keresés
modellező erejét. Bemutattuk a maximum klikk keresés legjobb programja-
it és azok hátterét, illetve bemutattuk a probléma párhuzamosíthatóságát.
Ezzel megnyílt a lehetőség, hogy superszámítógépet is használhassunk ezen
problémák megoldásához.

A.1. Tézisek

A.1.1. Első tézis

Bemutattunk problémákat, melyek hatékonyan fogalmazhatók meg mint
klikk-keresési feladat. Többek között a latin négyzetek és sodoku, a sok
királynő feladat, Costas téblázatok és kódelmélet témaköréből. Bemutattuk,
hogy a részgráf izomorfizmus is visszevezethető klikk feladatra, és rámutat-
tunk, hogy a kémia és alakfelismerés témakörének feladatai így megoldható-
ak. Bemutattuk, hogy ütemezési feladatokat is meg tudunk fogalmazni klikk
feladatként, és hogy ezek hatékonyan is számolhatóak.

A.1.2. Második tézis

Kiválasztottunk a problémáknak egy osztályát, a gráfok és hipergráfok szí-
nezésének problémáját, és részletesen bemutattuk, hogy miképp lehet ezeket
ugyancsak viszavezetni klikkeresésre. Az átfogalmazás segítségével meg tud-
tunk támogatni egy nyitott kérdést, melyet Volosin tett fel a hipergráfok
színezhetősége kapcsán.

109

A.1.3. Harmadik tézis

Miután bemutattuk, hogy milyen klikk-keresők vannak, ezek segédalgoritmu-
sait is bemutattuk. Külön részleteztük, hogy milyen felső becslők vannak a
klikkszámra, és ezek eredményeit – mind jóság, mind az algoritmus tapasz-
talati hatékonysága tekintetében – mérések segítségével összehasonlítottuk.

A.1.4. Negyedik tézis

Megterveztünk és implementáltunk a saját k-klikk kereső programunkat, il-
letve részleteztük annak hátterét. A program segítségével maximum klikk
keresőt is implementáltunk, melyet mérésekkel összehasonlítottunk más, mo-
dern klikkeresőkkel, melynek alapján kijelenthetjük, hogy a klikkeresőnk a
legjobbak között van.

A.1.5. Ötödik tézis

Miután bemutattuk a párhuzamosítás problémakörét bevezettük a zavaró
struktúrák elvét. Ezen elv segítségével elméleti szinten tudtuk megalapozni
a párhuzamos algoritmusainkat.

A.1.6. Hatodik tézis

A fenti elvek alapján implementáltunk egy nagyléptékben párhuzamos k-
klikk kereső algoritmust. Megvizsgáltuk a részproblémák sorrendjének jelen-
tőségét. Ezen alapulva bevezettük a Las Vegas párhuzamosítási elvet, amely
jelentősen csökkentette a keresőteret.

A.2. A szerző saját eredményei
1. A Costas táblázat átfogalmazása a 2.1.4 fejezetben saját eredmény.

Még nem publikált.

2. Az ütemezési feladatok átfogalmazása a 2.3 fejezetben közös eredmény
Szabó Sándorral. Még nem publikált.

3. A 3-free színezés k-klikk megközelítése a 3.2 fejezetben saját eredmény.
A [Szab2016b] lett publikálva.

4. A hipergráfok színezés k-klikk megközelítése, illetve Voloshin által fel-
vetett problémának a számolása a 3.3 fejezetben saját eredmény. A
[Szab2019b] lett publikálva.

110

5. A klikk méretének felső becsléseinek összehasonlítása a 4.2 fejezetben,
beleértve a soros és párhuzamos DSatur és ismételt színező algoritmu-
sok implementálását, illetve az él és b-fold színezésekhez való használata
saját eredmény. A [Szab2017, Marg2019] lett publikálva.

6. A 5 fejezetben bemutatott soros k-klikk keresőt először Szabó Sándor
fejlesztette ki, de később a szerző jelentősen kibővítette az ismételt
színező, csúcsátrendezés illetve bitsetekkel való párhuzamosítás fejlesz-
tésével. Továbbá a szerző szerkesztette ennek segítségével a maximum
klikk kereső algoritmust és programot. A [Szab2018a] lett publikálva.

7. A „zavaró struktúrák” elméleti háttere és az ezen alapuló párhuzamo-
sítási elvek a 7 fejezetben főképp a szerző eredménye. A [Szab2018b]
lett publikálva.

8. A 8 fejezetben részletezett párhuzamos program Szabó Sándor ötletén
alapulva a szerző fejlesztése. A Las Vegas párhuzamosítási elv, illetve
a mérések, melyek a megközelítést megalapozták saját eredmény. A
[Zav2014a, Zav2014b, Zav2015] lett publikálva.

111

Appendix B

Publications related to this thesis

Book chapters
1. Margenov, S., Rauber, T., Atanassov, E., Almeida, F.,

Blanco, V., Ciegis, R., Cabrera, A. Frasheri, N.,
Harizanov, S., Kriauzien, R., Rünger, G., San Segundo, P.,
Starikovicius, A., Szabo S. and Zavalnij B. Applications for
ultrascale systems. In: Ultrascale Computing Systems. Eds.: Car-
retero, J., Jeannot, E., Zomaya, A.Y. Institution of Engineering and
Technology (IET), London, (2019) pp. 189–244.

2. Varady G. and Zavalnij B. Introduction to MPI by examples. Ty-
poTEX. 2013. 304 p. ISBN: 978 963 279 378 8

Journal papers
3. Szabo S. and Zavalnij B. “Benchmark Problems for Exhaustive Ex-

act Maximum Clique Search Algorithms.” Informatica (Ljubljana). 43
: 2 (2019) pp. 177–186.

4. Szabo S. and Zavalnij B. “Reducing hypergraph coloring to clique
search.” Discrete Applied Mathematics. 264. (2019) pp. 196–207.

5. Szabo S. and Zavalnij B. “Decomposing clique search problems into
smaller instances based on node and edge colorings.” Discrete Applied
Mathematics. 242 (2018) pp. 118–129.

6. Szabo S. and Zavalnij B. “The gulf between the clique number and
its upper estimate provided by fractional coloring of the nodes.” Serdica
Mathematical Journal. 43:2 pp. (2017) 111–126.,

112

7. Szabo S. and Zavalnij B. “Edge coloring of graphs, uses, limitation,
complexity.” Acta Univ. Sapientiae, Informatica. 8, 1 (2016) 63—81.

8. Szabo S. and Zavalnij B. “Reducing Graph Coloring to Clique
Search.” Asia Pacific Journal of Mathematics. 3 (2016), 64–85.

9. Zavalnij B. “Three Versions of Clique Search Parallelization.” Jour-
nal of Computer Science and Information Technology. Vol. 2: (No. 2)
pp. 9–20. (2014)

10. Szabo S. and Zavalnij B. “Coloring the edges of a directed graph.”
Indian Journal of Pure and Applied Mathematics. April 2014, Vol-
ume 45, Issue 2, pp 239–260.

11. Szabo S. and Zavalnij B. “Coloring the nodes of a directed graph.”
Acta Univ. Sapientiae, Informatica. 6, 1 (2014) 117—131.

12. Szabo S. and Zavalnij B. “Greedy algorithms for triangle free col-
oring.” AKCE International Journal of Graphs and Combinatorics.
9:(2) pp. 169–186. (2012)

Proceedings
13. Szabo S. and Zavalnij B. Combining algorithms for vertex cover

and clique search. In: Middle-European Conference on Applied The-
oretical Computer Science (MATCOS 2019). Proceedings of the 22nd
International Multiconference INFORMATION SOCIETY – IS 2019
pp. 71–74.

14. Szabo S. and Zavalnij B. Splitting partitions and clique search algo-
rithms. In: Middle-European Conference on Applied Theoretical Com-
puter Science (MATCOS 2019). Proceedings of the 22nd International
Multiconference INFORMATION SOCIETY – IS 2019 pp. 75–78.

15. Szabo S. and Zavalnij B. A different approach to maximum clique
search. In: IEEE Computer Society, 20th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing.
(SYNASC2018) IEEE Proceedings, (2018) pp. 310–316.

16. Depolli, M., Konc, J., Szabo S. and Zavalnij B. Usage of heredi-
tary colorings of product graphs in clique search programs. In: Middle-
European Conference on Applied Theoretical Computer Science (MAT-
COS 2016). Proceedings of the 19th International Multiconference IN-
FORMATION SOCIETY - IS 2016. pp. 40–43

113

17. Zavalnij B. Speeding up Parallel Combinatorial Optimization Algo-
rithms with Las Vegas Method. In: Lecture Notes in Computer Science,
10th International Conference, Vol. 9374. Springer, 2015. pp. 258–266.

18. Bóta A., Krész M. and Zavalnij B. Adaptations of the k-means
algorithm to community detection in parallel environments. In: IEEE
Computer Society, 17th International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing. (SYNASC2015) IEEE Pro-
ceedings, (2015) pp. 299–302.

19. Zavalnij B. The Las Vegas method of parallelization. In: Proceedings
of Information Society 2014 – IS 2014: Volume A; Intelligent Systems.
pp. 105–108. (Best paper award.)

Conference talks
20. Szabo Sandor, Zavalnij Bogdan. Using sequential kclique solver for

the Vertex Cover problem. 14th International Symposium on Parame-
terized and Exact Computation (IPEC 2019 / ALGO 2019). Munich,
Germany. 2019.09.11–13. Poster.

21. Zavalnij Bogdan On the auxiliary algorithm of coloring. SWORDS
2014: Szeged WORkshop on Discrete Structures. Szeged, Hungary,
2014.10.09–10.

22. Zavalnij Bogdan. Discrete optimization in supercomputing environ-
ment. 9th International PhD and DLA Symposium. October 21–22,
2013, Pécs.

23. Szabo Sandor, Zavalnij Bogdan. Selected topics in combinatorial
optimization. Sok-processzoros rendszerek a mérnöki gyakorlatban:
TÁMOP–4.1.2/A/1–11/1–2011–0063. October 16–18, 2013, Harkány.

24. Zaválnij Bogdán. Different Coloring Methods in Maximum Clique
Search. 5th Veszprém Optimization Conference: Advanced Algorithms.
Veszprém, Hungary, December 11-14, 2012.

25. Zaválnij Bogdán. Let’s Gamble! Casinoes and Parallelization.
Mathematics in Educating Civil-Engineering and Architecture Confer-
ence. Pécs, 2011.

114

Bibliography

[Abe1999] Abello, J., Pardalos, P.M. and Resende, M.G.C. On
Maximum Clique Problems In Very Large Graphs. In: External
Memory Algorithms. AMS. 1999. pp. 119–130.

[Ada1988] Adams, J., Balas, E., Zawack, D. “The shifting bottle-
neck procedure for job shop scheduling.” Management Science.
34.3, 391–401, 1988.

[Ahm2012] Ahmed, S. “Applications of Graph Coloring in Modern Com-
puter Science.” International Journal of Computer and Infor-
mation Technology VOLUME 03, ISSUE 02. 2012.

[Aki2016] Akiba, T. and Iwata, Y. “Branch-and-reduce exponential/fpt
algorithms in practice: A case study of vertex cover.” Theoret-
ical Computer Science. 609:211–225, 2016.

[Ale2003] Alexe, G., Hammer, P. L., Lozin, V. V. and de Werra,
D. “Struction revisited.” Discrete applied mathematics. 132(1-
3):27–46, 2003.

[Bal1986] Balas, E. and Yu, Ch. S. “Finding a maximum clique in an
arbitrary graph,” SIAM J. Comput. Vol 15, No 4, November
1986.

[Bab1979] Babai, L. Monte-Carlo algorithms in graph isomorphism test-
ing. Université de Montréal, D.M.S. No.79–10. (1979)

[Bat2013] Batsyn, M., Goldengorin, B., Maslov, E. and Parda-
los, P.M. “Improvements to MCS algorithm for the maxi-
mum clique problem.” Journal of Combinatorial Optimization.
February 2014, Volume 27, Issue 2. pp. 397–416.

[Berg1973] Berge, C. Graphs and Hypergraphs. North-Holland, 1973.

115

[Bogd2001] Bogdanova, G. T. and Östergård, P. R. J. “Bounds on
codes over an alphabet of five elements.” Discrete Mathematics.
240, 1-3, pp. 13–19. 2001.

[Bogi2003] Boginski, V., Butenko, S. and Pardalos, P.M. On Struc-
tural Properties of the Market Graph. In: Innovations in Finan-
cial and Economic Networks. Ed. Nagurney, A. Edward Elgar
Publishing Inc. 2003.

[Bogi2006] Boginski, V., Butenko, S. and Pardalos, P.M. “Mining
Market Data: A Network Approach.” Computers and Opera-
tions Research. Volume 33 Issue 11, November 2006. pp. 3171–
3184

[Bogi2014] Boginski, V., Butenko, S., Shirokikh, O., Trukhanov,
S. and Lafuente, J.G. “A network-based data mining ap-
proach to portfolio selection via weighted clique relaxations.”
Annals of Operations Research. May 2014, Volume 216, Issue
1. pp. 23–34.

[Bom1997] Bomze, I., Pelillo, M. and Giacomini, R. Evolutionary Ap-
proach to the Maximum Clique Problem: Empirical Evidence
on a Larger Scale. In: Developments in Global Optimization.
Ed. Bomze, M., Csendes T., Horst, R., Pardalos, P.M. Springer
1997. pp. 95–108.

[Bom1999] Bomze, I., Budinich, M., Pardalos, P.M. and Pelillo,
M. The Maximum Clique Problem. In: Handbook of Com-
binatorial Optimization. Supplement Volume A. Eds. Du, D-
Z.,Pardalos, P.M. Kluwer Academic Publishers 1999. pp. 1–74.

[Bor1999] Borchers, B. “CSDP, A C library for semidefinite program-
ming.” Optimization methods and Software. 11:1–4. pp. 613–
623. 1999.

[Bor2007] Borchers, B. and Young, J. G. “Implementation of a
primal–dual method for SDP on a shared memory parallel
architecture.” Computational Optimization and Applications.
37:3. pp. 355–369. 2007.

[Bota2014] Bóta A. Methods for the description and analysis of processes
in real-life networks. PhD Dissertation. 2014.

116

[Bota2015] Bóta A., Krész M. and Zavalnij B. Adaptations of the k-
means algorithm to community detection in parallel environ-
ments. In: IEEE Computer Society, 17th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Com-
puting. (SYNASC2015) IEEE Proceedings, (2015) pp. 299–
302.

[Braw1989] Brawer, S. Introduction to Parallel Programming. Academic
Press. 1989.

[Brel1979] Brélaz, D. “New Methods to Color the Vertices of a Graph.”
Communications of the ACM. 1979. Volume 22. Number 4. pp.
251–257.

[Bret2013] Bretto, A. Hypergaph Theory: An Introduction. Springer
2013.

[Bron1973] Bron, C. and Kerbosch, J, “Algorithm 457: finding all
cliques of an undirected graph." Commun. ACM. 16 (9): 575–
577. 1973.

[Bull2009] Bullmore, E. and Sporns, O. “Complex brain networks:
graph theoretical analysis of structural and functional sys-
tems.” Nature Reviews Neuroscience. 10. pp. 186–198. 2009.

[But2002] Butenko, S., Pardalos, P., Sergienko, I., Shylo, V. and
Stetsyuk, P. Finding Maximum Independent Sets in Graphs
Arising from Coding Theory. In: Proceedings of the 2002 ACM
Symposium on Applied Computing. Madrid 2002. pp. 542–546.

[But2009] Butenko, S., Pardalos, P., Sergienko, I., Shylo, V. and
Stetsyuk, P. Estimating the size of correcting codes using
extremal graph problems. In: Optimization. Structure and Ap-
plications. Ed. Pearce, Ch. and Hunt, E. Springer. 2009. pp.
227–243.

[Can2015] Caniou, Y., Codognet, P., Richoux, F. et al. “Large-scale
parallelism for constraint-based local search: the costas array
case study.” Constraints. 20, 30–56. 2015.

[Carm2012] Carmo, R. and Züge, A. “Branch and bound algorithms
for the maximum clique problem under a unified framework.”
Journal of the Brazilian Computer Society . June 2012, Volume
18, Issue 2. pp. 137–151.

117

[Carr1990] Carraghan, R. and Pardalos, P.M. “An exact algorithm
for the maximum clique problem.” Operation Research Letters.
9 (1990), 375–382.

[Chan2014] Chan, J., Lam, S. and Hayes, C. “Generalised blockmod-
elling of social and relational networks using evolutionary com-
puting.” Soc. Netw. Anal. Min. (2014) 4:155

[Chap2019] Chapuis, G., Djidjev, H., Hahn, G. et al. “Finding Maxi-
mum Cliques on the D-Wave Quantum Annealer.” J Sign Pro-
cess Syst. 91, 363–377 2019.

[Chen2012] Cheng, J., Zhu, L., Ke, Y. and Chu, S. Fast Algorithms for
Maximal Clique Enumeration with Limited Memory. In: Pro-
ceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Beijing, 2012. pp.
1240–1248.

[Chi2014] Chiang, S. and Haneef, Z. “Graph theory findings in the
pathophysiology of temporal lobe epilepsy.” Clinical Neuro-
physiology. 2014 Jul. 125(7). 1295–1305.

[Clea1991] Clearwater, S.H., Huberman, B.A. and Hogg, T. “Coop-
erative Solution of Constraint Satisfaction Problems.” Science.
1991 Nov 22;254(5035):1181–1183.

[Clea1992] Clearwater, S.H., Hogg, T. and Huberman, B.A. Coop-
erative Problem Solving. In: Computation: The Micro and the
Macro View. Ed. Huberman B.A. World Scientific 1992. pp.
33–77.

[Coop2006] Cooper, K.D. and Dasgupta, A. Tailoring Graph-coloring
Register Allocation For Runtime Compilation. In: Proceedings
of the 2006 International Symposium on Code Generation and
Optimization (CGO’06), New York. New York, 2006.

[Corn2006] Cornujols, G., Karamanov, M. and Li, Y. “Early Es-
timates of the Size of Branch-and-Bound Trees.” INFORMS
Journal on Computing. Volume 18 Issue 1, Winter 2006. pp.
86–96.

[Corn2008] Cornaz, D. and Jost, V. “A one-to-one correspondence be-
tween colorings and stable sets.” Operations Research Letters.
36 (2008) pp. 673–676.

118

[Corn2016] Cornaz, D., Furini, F., Malaguti, E. “Solving vertex col-
oring problems as maximum weight stable set problems.” Dis-
crete Applied Mathematics. Volume 217, Part 2, (2017), pp.
151–162.

[Cost1965] Costas, J.P. Medium constraints on sonar design and perfor-
mance. Class 1 Report R65EMH33, G.E. Corporation. 1965.

[Cost1984] Costas, J. P. “A Study of Detection Waveforms Having Nearly
Ideal Range-Doppler Ambiguity Properties.” In: Proc. IEEE
72, 996-1009, 1984.

[Culb1992] Culberson, J.C. Iterated Greedy Graph Coloring and the
Difficulty Landscape. Technical Report. University of Alberta.
1992.

[Cyg2015] Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D.,
Marx D., Pilipczuk, M., Pilipczuk, M., Pilipczuk, M.
and Saurabh, S. Parameterized algorithms. Springer. 2015.

[Czaj2009] Czajkowski, G. Large-scale graph computing at Google.
2009. http://googleresearch.blogspot.hu/2009/06/
large-scale-graph-computing-at-google.html

[Dang2016] Dang, H.-V., Snir, M. and Gropp, W. Towards millions of
communicating threads. EuroMPI 2016.

[Deb2011] Debroni, J., Eblen, J.D., Langston, M.A., Myrvold, W.,
Shor, P. and Weerapurage, D. A complete resolution of
the Keller maximum clique problem. In: Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. 2011. pp. 129–135.

[Diaz2012a] Diaz. D., Richoux, F., Codognet, P., Caniou, Y. and
Abreu, S. “Parallel Local Search for the Costas Array Prob-
lem,” 2012 IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum, Shanghai,
2012, pp. 1793–1802.

[Diaz2012b] Diaz. D., Richoux, F., Codognet, P., Caniou, Y. and
Abreu, S. “Constraint-Based Local Search for the Costas Ar-
ray Problem.” In: Hamadi Y., Schoenauer M. (eds) Learn-
ing and Intelligent Optimization. LION 2012. Lecture Notes in
Computer Science, vol 7219. Springer, 2012.

119

http://googleresearch.blogspot.hu/2009/06/large-scale-graph-computing-at-google.html
http://googleresearch.blogspot.hu/2009/06/large-scale-graph-computing-at-google.html

[Dzu2019] Dzulfikar, M.A., Fichte, J.K. and Hecher, M. “The
PACE 2019 Parameterized Algorithms and Computational Ex-
periments Challenge: The Fourth Iteration.” In: 14th Interna-
tional Symposium on Parameterized and Exact Computation
(IPEC 2019). Leibniz International Proceedings in Informatics
(LIPIcs). 25:1–25:23. 2019.

[Ebe1984] Ebenegger, Ch. Hammer, P.L. and de Werra, D. “Pseudo-
boolean functions and stability of graphs.” North-Holland
mathematics studies. volume 95, pp. 83–97. 1984.

[Ebl2012] Eblen, J. D., Phillips, C. A., Rogers G. L. and
Langston, M. A. “The maximum clique enumeration prob-
lem: algorithms, applications, and implementations.” BMC
Bioinformatics. 2012;13

[Erd1959] Erdős P. “Graph theory and probability.” Canad. J. Math. 11
(1959), 34–38.

[Foul1992] Foulds, L.R. Graph Theory Applications. Springer. 1992.

[Fu2006] Fu, Z. and and Malik, S. On solving the partial MAX-SAT
problem. In: International Conference on Theory and Appli-
cations of Satisfiability Testing – SAT2006. Lecture Notes in
Computer Science. pp. 252–265. 2006.

[Gare2003] Garey M.R. and Johnson, D.S. Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness, Freeman, New
York, 2003.

[God2001] Godsil, Ch. and Royle, G. Algebraic Graph Theory.
Springer, 2001.

[Gom1997] Gomes, C.P. and Selman, B. “Algorithm Portfolio Design:
Theory vs. Practice.” In: Proceedings of the Thirteenth Con-
ference on Uncertainty in Artificial Intelligence. UAI’97. 1997.

[Gram2003] Grama, A., Gupta, A., Karypis, G. and Kumar, V. Intro-
duction to Parallel Computing. 2nd ed. Addison Wesley. 2003.

[Greg2012] Gregori, E., Lenzini, L. and Mainardi, S. “Parallel k-
Clique Community Detection on Large-Scale Networks.” IEEE
Transactions on Parallel and Distributed Systems. Volume: 24,
Issue: 8, Aug. 2013. pp. 1651–1660.

120

[Har2015] Harangozó P. and Szabó I. Egy nehéz gráfelméleti probléma
megoldása szuperszámítógép segítségével. (In English: Solving a
hard graph problem using supercomputers.) National Scientific
Students’ Associations Conference 2015.

[Hass1993] Hasselberg, J., Pardalos, P.M. and Vairaktarakis, G.
“Test case generators and computational results for the max-
imum clique problem.” Journal of Global Optimization 3
(1993), 463–482. http://www.springerlink.com/content/
p2m65n57u657605n

[Hay2006] Hayes, B. “Connecting the Dots.” American Scientist. Volume
94. pp. 400–404.

[Hes2020] Hespe, D., Lamm, S., Schulz, Ch. and Strash, D. “We-
GotYouCovered: The Winning Solver from the PACE 2019
Implementation Challenge, Vertex Cover Track.” SIAM Work-
shop on Combinatorial Scientific Computing 2020, February
11–13, 2020, Seattle.

[Hrg2019] Hrga, T. and Povh, Accelerated Direction Augmented La-
grangian Method for Semidefinite Programs. In: Proceedings
of the 15th International Symposium on Operations Research.
SOR’19. Slovenia. pp 155-160. 2019.

[Iva2013] Iványi P. and Radó J. Előfeldolgozás párhuzamos számítá-
sokhoz Tankönyvtar, 2013.

[Jain1999] Jain, A.S. and Meeran, S. “Deterministic job-shop schedul-
ing: Past, present and future.” European Journal of Opera-
tional Research. 113, 390–434. 1999.

[Karg1998] Karger, D., Motwani, R. and Sudan, M. “Approximate
graph coloring by semidefinite programming,” J. ACM, 45, 2
(March 1998), pp. 246–265.

[Karn2003] Karniadakis, G.E. and Kirby, R.M. Parallel Scientific Com-
puting in C++ and MPI. Cambridge UP. 2003.

[Karp1972] Karp, R.M. Reducibility Among Combinatorial Problems. In:
Complexity of Computer Computations. Eds: R. E. Miller and
J. W. Thatcher. New York. Plenum. pp. 85–103.

121

http://www.springerlink.com/content/p2m65n57u657605n
http://www.springerlink.com/content/p2m65n57u657605n

[Kilb2006] Kilby, P., Slaney J., Thiébaux, S. and Walsh, T. Es-
timating Search Tree Size. In: Proceedings of the 21st Na-
tional Conference on Artificial Intelligence - Volume 2. 2006.
pp. 1014–1019.

[Kivi2016] Kiviluoto, L., Östergård, P. R. J. and Vaskelainen,
V. P. “Algorithms for finding maximum transitive subtourna-
ments.” Journal of Combinatorial Optimization. 31, 2, pp. 802–
814. 2016.

[Knu1974] Knuth, D. E. Estimating the Efficiency of Backtrack Pro-
grams. Technical Report. Stanford University. 1974.

[Knu1994] Knuth, D. E. “The Sandwich Theorem .” Electronic Journal
of Combinatorics. 1. 1994. #A1

[Kom2015] Komosko, L., Batsyn, M., San Segundo, P. and Parda-
los, P.M. “A fast greedy sequential heuristic for the vertex
colouring problem based on bitwise operations.” Journal of
Combinatorial Optimization. March 2015.

[Konc2007] Konc, J. and Janezic, D. “An improved branch and bound
algorithm for the maximum clique problem.” MATCH Com-
mun. Math. Comput. Chem. 2007, 58, 569–590.

[Konc2010] Konc, J. and Janezic, D. “ProBiS algorithm for detection
of structurally similar protein binding sites by local structural
alignment.” Bioinformatics. 26(9), 03. pp. 1160–1168. 2010.

[Konc2012] Konc, J., Depolli, M., Trobec, R., Rozman, K. and
Janezic, D. “Parallel-ProBiS: Fast parallel algorithm for local
structural comparison of protein structures and binding sites.”
Journal of Computational Chemistry. 33(27):2199–2203, 2012.

[Krai1953] Kraitchik, M.Mathematical Recreations. 2nd ed. Dover Pub-
lications. New York. 1953.

[Kre2002] Krebs, V. “Mapping Networks of Terrorist Cells.” Connec-
tions. 24(3), 2002. pp. 43–52.

[Kuml2005] Kumlander, D. Some Practical Algorithms to Solve The
Maximum Clique Problem. PhD Thesis. Tallin, 2005.

122

[Kuml2020] Kumlander, D. and Porošin, A. Reversed Search Maxi-
mum Clique Algorithm Based on Recoloring. In: Le Thi H.,
Le H., Pham Dinh T. (eds) Optimization of Complex Sys-
tems: Theory, Models, Algorithms and Applications. WCGO
2019. Advances in Intelligent Systems and Computing, vol 991.
Springer. 2020.

[Kump2008] Kumpula, J.M., Kivelä, M., Kaski, K. and Saramäki, J.
“A sequential algorithm for fast clique percolation.” Phys. Rev.
E 79, 026109 (2008), arXiv:0805.1449

[Lam2016] Lamm, S. and Sanders, P. and Schulz, C. and Strash,
D., Werneck, R.F. “Finding Near-Optimal Independent Sets
at Scale.” In: Proceedings of the 16th Meeting on Algorithm
Engineering and Exerpimentation (ALENEX’16)

[Leš2020] Lešnik, S. and Konc, J. In Silico Laboratory: Tools for
Similarity-Based Drug Discovery. In: Labrou N. (eds) Tar-
geting Enzymes for Pharmaceutical Development. Methods in
Molecular Biology, vol 2089. Humana, 2020.

[Li2010a] Li, C.-M. and Quan, Z. An Efficient Branch-and-Bound Al-
gorithm Based on MaxSAT for the Maximum Clique Problem.
In: Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence. (AAAI-10), pp. 128–133.

[Li2010b] Li, C.-M. and Quan, Z. Combining graph structure exploita-
tion and propositional reasoning for the maximum clique prob-
lem. In: 22nd IEEE Internat ional Conference on Tools with
Artificial Intelligence (ICTAI). IEEE. pp. 344–351. 2010.

[Li2013] Li, C.-M., Fang, Z. and Xu, K. Combining MaxSAT Rea-
soning and Incremental Upper Bound for the Maximum Clique
Problem. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence. (ICTAI2013),
pp. 939–946.

[Li2017] Li, C.-M., Jiang, H. and Manya, F. “On Minimization of
the Number of Branches in Branch-and-Bound Algorithms for
the Maximum Clique Problem.” Computers & Operations Re-
search. 84: 1–15. 2017.

123

[Lov1976] Lovasz L. “On the Shannon Capacity of a Graph,” IEEE
Transactions on Information Theory. Volume 25 Issue 1, Jan-
uary 1979 pp. 1–7.

[Madd2007] Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R.
and Hendrickson, B.A. Multithreaded Algorithms for Pro-
cessing Massive Graphs In: Petascale Computing: Algorithms
and Applications. Ed.: Bader, D.A. Chapman & Hall/CRC
Computational Science. 2007.

[Marg2019] Margenov, S., Rauber, T., Atanassov, E., Almeida, F.,
Blanco, V., Ciegis, R., Cabrera, A. Frasheri, N.,
Harizanov, S., Kriauzien, R., Rünger, G., San Se-
gundo, P., Starikovicius, A., Szabo S. and Zavalnij B.
Applications for ultrascale systems. In: Ultrascale Computing
Systems. Eds.: Carretero, J., Jeannot, E., Zomaya, A.Y. Insti-
tution of Engineering and Technology (IET), London, (2019)
pp. 189–244.

[Marx2004] Marx D. “Graph colouring problems and their applications in
scheduling.” Periodica Polytechnica, Electrical Engineering. 48
(1—2), pp. 11—16. 2004.

[Mar1998] Marzetta, A. ZRAM: A Library of Parallel Search Algo-
rithms and Its Use in Enumeration and Combinatorial Op-
timization. PhD dissertation, Swiss Federal Institute of Tech-
nology Zurich. 1998.

[Math2017] Mathew, K. A. and Östergård, P. R. J. “New lower bounds
for the Shannon capacity of odd cycles.” Design Codes and
Cryptography. 84, 1-2, pp. 13–22. 2017..

[Matt2005] Mattson, T.G., Sanders, B.A. and Massingill, B.L. Patterns
for Parallel Programming. Addison-Wesly. 2005.

[McCo2012] McCool, M., Robison, A.D. and Reinders, J. Structured
Parallel Programming. Patterns for Efficient Computation. El-
sevier. 2012.

[McCr2015] McCreesh, C. and Prosser, P. “The Shape of the Search
Tree for the Maximum Clique Problem, and the Implications
for Parallel Branch and Bound.” ACM Transactions on Parallel
Computing. Volume 2 Issue 1, May 2015. Article No. 8.

124

[Milo2002] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N.,
Chklovskii, D. and Alon, U. “Network motifs: simple build-
ing blocks of complex networks.” Science. 298(5594):824–827
(2002)

[Moor2004] van Moorsel, A. and Wolter, K. “Optimal restart times
for moments of completion time.” IEE Proceedings – Soft-
ware(2004),151(5). pp. 219–223.

[MPI2012] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Version 3.0. 2012.

[Nagh2019] Naghsh, Z., Javad-Kalbasi, M. and Valaee, S. “Digitally
Annealed Solution for the Maximum Clique Problem with Crit-
ical Application in Cellular V2X.” ICC 2019 - 2019 IEEE In-
ternational Conference on Communications (ICC), Shanghai,
China, 2019, pp. 1-7.

[Nik2015] Nikolaev, A., Batsyn, M. and San Segundo, P. “Reusing
the Same Coloring in the Child Nodes of the Search Tree for
the Maximum Clique Problem.” Learning and Intelligent Op-
timization. LNCS Volume 8994, 2015, pp. 275–280.

[Öst2002] Östergård, P.R.J. “A fast algorithm for the maximum clique
problem.” Discrete Applied Mathematics. 120 (1–3): 197–207.
2002.

[Öst2019] Östergård, P. R. J. and Pöllänen, A. “New Results on
Tripod Packings.” Discrete and Computational Geometry. 61,
2, pp. 271–284. 2019.

[Öst2020] Östergård, P. R. J. and Szöllősi, F. “Constructions of
maximum few-distance sets in euclidean spaces. ” Electronic
Journal of Combinatorics. 27, 1, P1.23. 2020.

[Ouy1998] Ouyang, M.: “How Good Are Branching Rules in DPLL?”
Discrete Applied Mathematics. 89 (1–3): 281–286. 1998.

[Papa1994] Papadimitriou, C.H. Computational Complexity, Addison-
Wesley Publishing Company, Inc., Reading, MA 1994.

[Patt2013a] Pattillo, J., Youssef, N. and Butenko, S. “On clique re-
laxation models in network analysis.” European Journal of Op-
erational Research. Volume 226, Issue 1, 1 April 2013. pp. 9–18.

125

[Patt2013b] Pattillo, J., Veremyev, A., Butenko, S. and Bogin-
ski, V. “On the maximum quasi-clique problem.” Discrete Ap-
plied Mathematics . Volume 161, Issues 1–2, January 2013. pp.
244–257.

[Pet2004] Petersen, W.P. and Arbenz, P. Introduction to Parallel
Computing. A practical Guide with Examples in C. Oxford UP.
2004.

[Pol2019] Polak, S. C. and Schrijver, A. “New lower bound on the
Shannon capacity of C7 from circular graphs.” Information
Processing Letters. Volume 143, March 2019, pp. 37–40.

[Purd1977] Purdom, P.W. Tree Size by Partial Backtracking. Technical
Report. Indiana University. 1977.

[Pro2015] McCreesh, C. and Prosser, P. “The Shape of the Search
Tree for the Maximum Clique Problem, and the Implications
for Parallel Branch and Bound.” ACM Transactions on Parallel
Computing. Volume 2 Issue 1, May 2015 Article No. 8.

[Reg2013] Régin, J. C., Rezgui, M. and Malapert, A. Embarrass-
ingly Parallel Search. In: Schulte C. (eds) Principles and Prac-
tice of Constraint Programming. CP 2013. Lecture Notes in
Computer Science, vol 8124.

[Rob2013] Robinson, I., Webber, J. and Eifrem, E. Graph Databases.
O’Reilly Media. 2013.

[Ross2014] Rossi, R.A. and Ahmed, N.K. “Coloring large complex net-
works.” Soc. Netw. Anal. Min. 4, 228. 2014.

[Rub2009] Rubinov, M. and Sporns, O. “Complex network measures
of brain connectivity: uses and interpretations.” NeuroImage.
2010 Sep. 52(3). pp. 1059–1069.

[Seg2010] San Segundo, P., Rodríguez-Losada, D., Matía, F. et
al. “Fast exact feature based data correspondence search with
an efficient bit-parallel MCP solver.” Appl Intell. 32, 311–329
2010.

[Seg2011] San Segundo, P., Rodriguez-Losada, D. and Jimenez,
A. “An exact bit-parallel algorithm for the maximum clique
problem.” Computers & Operations Research. 38(2), 2011, 571–
581.

126

[Seg2012] San Segundo, P. “A new DSATUR-based algorithm for ex-
act vertex coloring.” Computers & Operations Research. 30:7,
2012, 1724–1733.

[Seg2013] San Segundo, P., Matia, F.; Rodriguez-Losada, D. and
Hernando, M. “An improved bit parallel exact maximum
clique algorithm.” Optimization Letters. 7(3), 2013, 467–479.

[Seg2014] San Segundo, P. and Tapia, C. “Relaxed approximate color-
ing in exact maximum clique search.” Computers & Operations
Research. 44, 2014, 185–192.

[Seg2015] San Segundo, P., Nikolaev, A. and Batsyn, M. “Infra-
chromatic bound for exact maximum clique search.” Comput-
ers & Operations Research. Volume 64, December 2015, pp.
293—303.

[Schl2016] Schlauch, W.E. and Zweig, K.A. “Motif detection speed
up by using equations based on the degree sequence.” Social
Network Analysis and Mining. (2016) 6: 47. doi:10.1007/
s13278-016-0357-6

[Sew1996] Sewell, E. An improved algorithm for exact graph coloring.
In. M.A. Trick, D.S. Johnson (Eds.), Cliques, coloring, and
satisfiability. Proceedings of the second DIMACS implementa-
tion challenge, vol. 26. American Mathematical Society, 1996,
359–373.

[Sima1997] Sima, D., Fountain, T. and Kacsuk, P. Advanced Com-
puter Architectures: A Design Space Approach. Addison Wes-
ley. 1997.

[Sloan] Sloane, N.J.A. Challenge Problems: Independent Sets in
Graphs. http://neilsloane.com/doc/graphs.html

[Szab2011] Szabo, S. “Parallel algorithms for finding cliques in a graph.”
Journal of Physics: Conference Series Volume 268, Number
1. 2011 J. Phys.: Conf. Ser. 268 012030 doi:10.1088/1742-
6596/268/1/012030

[Szab2012] Szabó S. and Zaválnij B. “Greedy Algorithms for Triangle
Free Coloring.” AKCE Int. J. Graphs Comb., 9, No. 2 (2012),
pp. 169–186.

127

doi:10.1007/s13278-016-0357-6
doi:10.1007/s13278-016-0357-6
http://neilsloane.com/doc/graphs.html

[Szab2013] Szabó, S. “Monotonic matrices and clique search in graphs.”
Annales Univ. Sci. Budapest., Sect. Comp. 41 (2013), 307–322.

[Szab2014a] Szabó S. and Zaválnij B. “Coloring the edges of a directed
graph.” Indian Journal of Pure and Applied Mathematics.
April 2014, Volume 45, Issue 2, pp 239–260.

[Szab2014b] Szabó S. and Zaválnij B. “Coloring the nodes of a directed
graph.” Acta Univ. Sapientiae, Informatica. 6, 1 (2014) 117—
131.

[Szab2014c] Szabó S. and Zaválnij B. “Estimating clique size via coloring
edges in graphs.” AKCE Int. J. Graphs Comb. (submitted.)

[Szab2016b] Szabó S. and Zaválnij B. “Reducing Graph Coloring to
Clique Search,” Asia Pacific Journal of Mathematics, 3 (2016),
pp. 64–85.

[Szab2017] San Segundo, P., Szabó S. and Zaválnij B. “Paralleliza-
tion of the clique search problem using sub-chromatic bounds.”
NESUS. Technical Report. January 17, 2017.

[Szab2018a] Szabo S. and Zavalnij B. A different approach to maximum
clique search. In: IEEE Computer Society, 20th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing.
(SYNASC2018) IEEE Proceedings, (2018) pp. 310–316.

[Szab2018b] Szabo S. and Zavalnij B. “Decomposing clique search prob-
lems into smaller instances based on node and edge colorings.”
Discrete Applied Mathematics. 242 (2018) pp. 118–129.

[Szab2019a] Szabo S. and Zavalnij B. “Benchmark Problems for Exhaus-
tive Exact Maximum Clique Search Algorithms.” Informatica
(Ljubljana). 43 : 2 (2019) pp. 177–186.

[Szab2019b] Szabo S. and Zavalnij B. “Reducing hypergraph coloring to
clique search.” Discrete Applied Mathematics. 264. (2019) pp.
196–207.

[Tor2017] Torres-Jimenez, J., Perez-Torres, J.C. and
Maldonado-Martinez, G. “hClique: An exact algo-
rithm for maximum clique problem in uniform hypergraphs.”
Discrete Mathematics, Algorithms and Applications. December
2017, Vol. 09, No. 06

128

[Tom2003] Tomita, E. and Seki, T. “An Efficient Branch-and-Bound
Algorithm for Finding a Maximum Clique.” Discrete Math-
ematics and Theoretical Computer Science, Lecture Notes in
Computer Science 2731. Springer-Verlag, pp. 278–289. 2003.

[Tru2012] Truchet, C., Richoux, F. and Codognet, P. “Predic-
tion of Parallel Speed-ups for Las Vegas Algorithms.” http:
//arxiv.org/abs/1212.4287

[Val1990] Valiant, L.G. “A bridging model for parallel computation.”
Communications of the ACM. Volume 33 Issue 8, Aug. 1990.

[Var2013] Várady G. and Zaválnij B. Introduction to MPI by exam-
ples. TypoTEX Kiadó, 2013.

[Volo2002] Voloshin, V.I. Coloring Mixed Hypegraphs: Theory, Algo-
rithms and Applications. AMS. 2002.

[Weisst] Weisstein, E.W. “Monotonic Matrix.” In: MathWorld–A
Wolfram Web Resource. http://mathworld.wolfram.com/
MonotonicMatrix.html

[Wood1997] Wood, D.R. “An algorithm for finding a maximum clique in
a graph.” Operations Research Letters. Volume 21, Issue 5, 12
January 1997. pp. 211–217.

[Wu2015] Wu, Q. and Hao, J.-K. “A review on algorithms for maximum
clique problems.” European Journal of Operational Research.
242:3. 693–709. 2015.

[Zav2014a] Zaválnij B. “Three Versions of Clique Search Parallelization.”
Journal of Computer Science and Information Technology. Vol.
2:(No. 2) pp. 9–20. (2014)

[Zav2014b] Zavalnij, B. “The Las Vegas method of parallelization.” In:
Rok Piltaver, Matjaž Gams (eds.) Information Society 2014 –
IS 2014: Volume A; Intelligent Systems. Ljubljana, Slovenia,
2014.10.07–2014.10.08. Ljubljana: pp. 105–108.

[Zav2015] Zavalnij, B. “Speeding up Parallel Combinatorial Optimiza-
tion Algorithms with Las Vegas Method.” 10th International
Conference on Large-Scale Scientific Computations. June 8–
12, 2015, Sozopol, Bulgaria. (accepted for publication in the
Lecture Notes in Computer Science (LNCS) – Springer)

129

http://arxiv.org/abs/1212.4287
http://arxiv.org/abs/1212.4287
http://mathworld.wolfram.com/MonotonicMatrix.html
http://mathworld.wolfram.com/MonotonicMatrix.html

	Introduction – graphs and cliques
	Definition of the problems
	Other related problems

	Motivation and background

	Modeling expressivity
	Puzzles, games, codes and other combinatorial problems
	Latin squares
	Non-attacking queens
	Monotonic matrices
	Costas arrays
	Communication and coding theory

	Subgraph isomorphism
	Chemistry
	Pattern matching and Artificial Intelligence

	Job shop scheduling
	The clique reformulation of the problem
	A small example
	Numerical experiments

	Network analysis

	Modeling graph and hypergraph coloring with cliques
	Legal coloring of the nodes of a graph
	Classical formulation
	The k-clique approach

	3-clique free coloring
	Reducing hypergraph coloring to clique search
	Reducing hypergraph problems to ordinary graph problems
	The auxiliary hypergraph
	Examples
	An application

	Maximum clique solvers, kernelization, auxiliary algorithms
	Sequential algorithms
	Auxiliary algorithms
	Coloring
	Fractional and b-fold coloring
	s-clique free coloring
	Edge coloring
	Lovász number
	The partial MaxSAT bound
	Numerical experiments

	Kernelization
	Structions
	Color indices
	Dominance

	New method for k-clique search and its extension to a maximum clique solver
	Background
	Nuts and Bolts for k-clique search
	Branching and Bounding
	Efficient coloring
	Recoloring the nodes
	Rearranging branching nodes

	Numerical results for maximum clique
	Test graphs
	Results
	Evaluation

	PACE competition

	Concepts on parallelization
	The problem of even distribution
	Effects on speedup
	Problem of decomposition
	Possible decomposition methods
	Division by the branching tree
	Fixed and dynamic distribution

	Evaluation of scalability
	Problematic case

	Framework for parallel implementations
	Parallel architectures
	Scheduling
	Problems arising of parallelization
	Amdahl's law and Gustavson's law
	Superlinear speed-up

	Parallelization by disturbing structures
	Disturbing structures
	k-clique covering node set
	k-clique covering s-clique set

	Partitioning the k-clique problem for parallel architectures
	 k-clique covering node set partitioning
	 Partitioning using the Lovász number
	Partitioning by k-clique covering edge set
	Parallelization by s-free quasi coloring
	Parallelization by quasi coloring

	Increasing and modifying the subproblems
	Refinement by usage of edge weights

	The Las Vegas method for parallelization
	Implementation of a massively parallel algorithm
	Parallel Las Vegas algorithms
	Other possible usage
	Tests
	Evaluation

	Further possible usage
	Anything goes
	Combined with disturbing structures
	Las Vegas search for disturbing structures

	Summary and conclusions
	Theses
	1st thesis
	2nd thesis
	3rd thesis
	4th thesis
	5th thesis
	6th thesis

	Future work
	Author's own results

	Összefoglaló
	Tézisek
	Elso tézis
	Második tézis
	Harmadik tézis
	Negyedik tézis
	Ötödik tézis
	Hatodik tézis

	A szerzo saját eredményei

	Publications related to this thesis
	Bibliography

