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1.  INTRODUCTION 

Rivers as natural systems have been responsible for shaping the earth’s 

landscapes through the adjustment of their channels in response to changes imposed by 

both natural and human-induced conditions (Phillips, 1991; Benn and Erskine, 1994; 

Snyder et al., 2003; Hickin, 2009; Nardi and Rinaldi, 2015). The patterns of their 

channels reveal their history and behavior which are important not only to fluvial 

geomorphologists (Schumm, 1985; Twidale, 2004; Joeckel et al., 2016), but also to 

environmentalists, engineers, ecologists, and the society at large (Haque, 2000; Coratza 

and De Waele, 2012). Throughout history and different civilizations, rivers have been 

altered by humans for economic benefits (flood protection, improvement of shipping 

routes, energy production, water withdrawal among others). Although the 

consequences of these alterations may be undesirable, their detailed analysis have 

helped in our understanding of adjustment of rivers to change, and provided hydro-

morphological and ecological information crucial to sustainable future river 

engineering (Hooke, 1995).  

Alluvial rivers with their erodible beds and banks respond to different flows as 

their channels are susceptible to changes as a result of perturbations, in comparison to 

rivers with fixed beds and banks (Engelund and Fredsoe, 1982). Changes in hydraulic 

and sediment load conditions influence the temporal and spatial alteration in alluvial 

rivers (Thorne and Tovey, 1981; Smith and Winkley, 1996; Simon et al., 2000; 

Knighton, 2004). The sediment load and its characteristics also reflect the overlapped 

effects of all environmental subsystems of the river’s catchment (Fryirs and Brierly, 

2001; Fryirs et al., 2007, 2008). Therefore, any change in any subsystem of a river is 

reflected in the sediment transport, and consequently, in the channel forms of the river 

(Church, 2006; Anderson and Anderson, 2010; Hassanzadeh, 2012). Thus, alluvial 

channel morphology is the result of the interactions between channel-bed topography, 

flow field and sediment movement (van der Berg, 1995; Ferguson, 2010; Latapie et al., 

2014; Leigleiter, 2014; Powell, 2014; Pfeiffer et al., 2017). In their pristine state, large 

alluvial rivers tend to have floodplains which are often expansive and characterized by 

hyporheic flows through lattice-like substrata probably formed by glacial outwash or 

lateral migration of the river channel over long periods of time (Stanford and Ward, 

1993). They are also usually sinuous with various channel patterns (Schumm, 1963).  

Although rivers in their natural states develop towards an equilibrium, 

according to Schumm (1977), a river system without any external forcing still 

undergoes a form of intrinsic evolution notwithstanding. This character has been 

termed as dynamic equilibrium as the river counteracts any change by adapting its 

channel processes resulting in changes in the dimensions and pattern of the river 

channel (Leopold et al., 1964; Knighton, 2004; Phillips, 1999; Twidale and Campbell, 

2005). This is an implicit assumption in fluvial geomorphology which supposes that a 

fluvial system will reach a state of adjustment with a characteristic form, and a state of 

dynamic equilibrium will be maintained if allowed sufficient time after a disturbance 

or an environmental change. Tooth and Nanson (2000) traced the origins of the concept 

of equilibrium in fluvial geomorphology from Gilbert’s (1877) observations of self-
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adjusting and roughly balanced conditions between rates of sediment erosion, transport, 

and deposition in streams in the semi-arid Henry Mountains of Utah. In describing the 

equilibrium of river systems, the character and the response of river systems to changes 

in geometric and hydraulic characteristics have been used: adjustment to changes in 

load and discharge (Leopold et al., 1964); local rate of sediment transport equaling the 

sediment supply (Chang, 1986); discharge being independent both temporally and 

spatially in the flow direction (Chanson, 2004); balance between incoming and 

outgoing discharge and sediment load (Julien, 2018); and small-scale adjustments 

continuously made to maintain an approximate state of balance between processes and 

forms (Knighton, 2004). Although the concept of equilibrium is difficult to define in 

geomorphic systems due to its complexity as compared to other relatively simpler 

systems in which equilibrium conditions are easily identified (Tooth and Nanson, 

2000), there have been several attempts to standardize the term as applied in fluvial 

geomorphology. 

Rivers in equilibrium may be affected by external forcing such as climate 

change or human interventions which distort evolution patterns (Hooke, 2004; Twidale, 

2004; Wohl, 2004; Wang et al., 2007; Dai et al., 2013; Ye et al., 2013; Latapie et al., 

2014; Ma et al., 2014; Ashraf et al., 2016; Yu et al., 2016; Calle et al., 2017; Gautier et 

al., 2018). The common effect of these external forcing, especially human 

interventions, is disequilibrium in river systems. When a river system loses its 

equilibrium, it tries to adapt its processes and form to the disequilibrium based on its 

capacity for adjustment, ease of adjustment and the proximity to threshold conditions 

(Fryirs and Brierley, 2013), as alluvial riverbeds are sensitive to modifications in the 

discharge and the sediment supply within their catchments (Landon et al., 1998; Glas 

et al., 2018).  Climate change has implications for altered streamflow and, increasing 

floods and droughts (Nijssen et al., 2001; Mirza et al., 2003; Thodsen, 2007). 

According to Petts et al. (1989), the last 100-500 years have witnessed not only climate 

change, but also intensifying human impacts on river systems. Human interventions in 

river systems and their impacts vary: artificial meander cutoffs and channel 

straightening cause increases in the stream gradient and the average bankfull width, as 

well as upstream degradation, downstream aggradation and the loss of ability of the 

channel to handle floods (Parker and Andres, 1976; Brookes, 1985; Simon, 1989; Smith 

and Winkley, 1996; Weatherly and Jakob, 2014; Tiron Dutu et al., 2019); construction 

of embankments and levees for flood protection result in minor channel widening and 

increases in overbank sedimentation (Smith and Winkley, 1996; Li et al., 2007); bank 

stabilization and protection generate high flow velocities and induce incision (Shields, 

1991; Erskine, 1992, Gregory, 2006); in-channel mining and, dam/reservoir 

construction for power generation and other purposes  disrupt the natural continuity of 

sediment transport which may deprive the river of the needed sediment; thus, making 

the river channel susceptible to in-bed and bank erosion especially in channel bends, 

channel incision, coarsening of bed material and destruction of various ecosystems, as 

well as reduced sediments into the oceans resulting in coastal and deltaic erosion  (Petts, 

1979; Guillen and Palanques, 1992; Kondolf, 1994, 1997; Steiger et al., 1998; Yang et 

al., 2005; Yang et al., 2008; Jia et al., 2016); diversion and/or extraction of water from 
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channels induce aggradation and disrupt ecosystems in especially low-flow rivers  

(Gregory, 2006; King et al., 2015); urbanization increases the local run-off and flood 

levels resulting in poor water quality and destruction of riparian ecosystems  (Du et al., 

2012; Chu et al., 2013; Yu et al., 2016; Zope et al., 2016), deforestation/removal of 

riparian vegetation increased erodibility of banks as well as destruction of ecosystems 

(Palmer et al., 2004; Brierly and Fryirs, 2005; Osei et al. 2015); and, reforestation alters 

the sediment inputs from the catchment (Keesstra et al., 2009; Ouyang et al., 2013). 

The consequences of various human interventions on various rivers in the world have 

been well described (e.g. Rinaldi and Simon, 1998; Surian, 1999; Liébault and Piegay, 

2001; Kondolf et al., 2002; Rinaldi, 2003; Yates et al., 2003; Antonelli et al., 2004; 

Harmar et al., 2005; Pinter and Heine, 2005; Chang, 2008; Kroes and Kraemer, 2013; 

Kiss and Balogh, 2015; Morais et al., 2016; Nagy and Kiss, 2016). The patterns, forms 

and flow characteristics of alluvial rivers in both their natural and human-induced states 

have been widely-studied subjects of recent geomorphological researches, as their 

morphological changes affect their use, risks and hazards (Knox and Latrubesse, 2016; 

Wang and Xu, 2018). 

In the 19th century, most European rivers flowed in wide braided or meandering 

channels. However, as a result of the various forms of human interventions and the 

attendant decrease in sediment supply to the channels in the 20th century, most of these 

rivers have been subjected to various human impacts resulting in various changes 

(Liébault and Piegay, 2001; Rinaldi, 2003; Surian and Rinaldi, 2003; Liébault et al., 

2005; Rinaldi et al., 2005; Houben et al., 2006; Klimek and Latocha, 2007; Wyżga, 

2007; Gurnell et al., 2009; Rakonczai and Kozak, 2011). In the Carpathian Basin, 

diverse human interventions altered the morphology of the Tisza River, which is the 

second largest river of Hungary (Dunka et al., 1996; Szlávik, 2000; Schweitzer, 2009; 

Pinke, 2014). In the last 50 years, rising flood water levels have been recorded on the 

Tisza River (Kiss, 2014; Kiss et al., 2019). This may be explained by the catchment-

scale runoff increase due to forest clearance, rough grazing, land-use changes, and 

probably increasing mining and quarrying activities on the catchment, as well as 

engineering alteration of the channel itself (Schweitzer, 2009, Amissah et al., 2017). 

Although the primary aim of the works was to protect towns and villages, infrastructure 

and agricultural lands from floods and to support shipping, the superimposed effects of 

these indirect and direct human impacts has changed the hydrology and fluvial 

morphology of the Tisza resulting in a loss in equilibrium of the river (Kiss et al., 2008, 

2019; Sàndor and Kiss, 2008; Amissah et al., 2018).  

The Lower Tisza, just like the entire Tisza River, has been the subject of various 

investigations to gain in-depth understanding of the effects of the regulations works on 

its hydro-morphological evolution, and the implications for river management (Kiss 

and Sipos, 2005; Kiss et al., 2005; Sipos et al., 2007; Sipos et al., 2008; Kiss et al., 

2008; Kiss et al., 2015). These were however limited to short sections of the river. To 

have a comprehensive understanding of the effects of the regulation works on the 

Lower Tisza River, an assessment of the spatial and temporal variations of longer river 

reaches are needed to reveal the spatial connections of the parametric changes over 
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various temporal dimensions for the river since it is critical to effective and sustainable 

river management.  

The Maros River, a tributary of the Lower Tisza, has also been the subject of 

various studies although their focus has been on its dynamic morphology due to the 

availability of large sediment volumes (Kiss and Sipos, 2003; Sipos and Kiss, 2003, 

2004; Kiss et al., 2011). To understand the sediment transport dynamics which forms 

part of channel processes as drivers of morphological change, The Maros River was 

selected since the Lower Tisza has a low bedload sediment transport making it difficult 

for bedload to be effectively monitored and analyzed.   

 

Aims and objectives 

The main aim of my research is to assess the morphological changes of a large 

alluvial river channel under various human impacts. It however has two parts: (1) to 

understand the long-term morphological changes in a large alluvial river channel which 

has been subjected to various form of human interventions, emphasizing the roles 

played by the various interventions over the last century; and (2) to apply models to 

replicate the morphological evolution of the river in the last century, and if successful, 

use the model in predicting the evolution of the river. 

 

To be able to achieve these aims of the study, the following were specifically 

undertaken:  

 

(1) Assessment of the long-term changes in river channel morphology of the 

Lower Tisza: 

Analysis of the horizontal and vertical channel parameters: mean depth, 

thalweg (maximum) depth, bankfull (maximum) width, mean width and the 

cross-sectional area.  

(2) Assessment of the short-term channel processes as drivers of morphological 

change: 

Analysis of sediment transport in the Maros River; analyses of river bank 

erosion, net point-bar accumulation and flow parameters (velocity, discharge 

and stream power) of the Lower Tisza River.  

(3) Application of models to replicate the sediment transport in the Maros River, 

and the long-term evolution of the Lower Tisza River channel and to possibly 

predict its future evolution. 

 

Research Questions 

To achieve the objectives, the following research questions were answered. 

(1) Assessment of the long-term changes in the Tisza River channel morphology 

a) What were the human interventions within the study area and when were 

they applied within the river? 

b) How did the cross-sectional area of the river channel vary spatially and 

temporally in response to the various human interventions?  
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c) How did the channel shape: depth (mean depth and thalweg depth) and 

width (mean width and full bank width) change spatially and temporal in 

line with changing cross-sectional area? 

d) How did the equilibrium condition of the river channel change over the 

studied period considering the various spatial and temporal adjustments? 

 

(2) Assessment of short-term channel processes of the Tisza River 

a) How do the in-channel processes correlate with the near-bank processes 

(bank erosion and accumulation)? 

b) How did the regulation works affect the bank processes? 

c) How well do near-bank process: bank erosion and point-bar development 

influence the river’s evolution? 

 

(3) Assessment of the sediment transport on the Maros River 

a) What are the rates of total bedload transport? 

b) How well do the temporal rates of bedload transport depend on the 

morphology of the channel? 

c) What are the connections between the temporal variation and spatial 

variation of bedload along the studied cross-section?  

 

(4) Application of models to the Lower Tisza and Maros Rivers  

a) How well does the model correctly simulate the in-channel and flow 

processes of the rivers using the imposed boundary conditions? 

b) How well does the simulation of in-channel processes correlate the 

changes in the morphology of the river? 

c) Which equations are able to estimate the bedload transport rates? 

 

 

Motivation 

Various planned and unplanned human interventions in river systems especially 

the unplanned ones have had unintended consequences on rivers all over the world. 

While fluvial geomorphologists strive to understand how rivers develop, various 

stakeholders in the fluvial environment, especially river and water engineers, must 

regard fluvial geomorphology as integral and critical, thereby, appreciating the impacts 

of their constructions on rivers, and vice versa. In this way, river and water engineers 

must incorporate fluvial geomorphology during the planning, design, construction and 

use of various engineering infrastructure which interfere with the functioning of rivers 

and their landscapes.  

Although rivers in Ghana have not been subjected to the interventions such as 

artificial meander cutoffs, construction of levees, bank stabilization and protection, 

three major hydropower dams have been constructed on the Volta River and its 

tributaries: Akosombo Dam, Kpong Dam and Bui Dam. In addition, small dams/weirs 

used to store and treat water for irrigation, human and industrial consumption are found 

in all parts of the country. Alluvial mining has been part of the Ghanaian mining culture 
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since the 19th century. However, in recent times, unplanned and indiscriminate mining 

which involves digging up whole sections of rivers and their floodplains have led to 

catastrophic impacts on river systems. Most rivers have been diverted or totally 

transformed both hydro-dynamically and morphologically. There is therefore an 

attempt at river restoration which requires an in-depth appreciation of fluvial 

geomorphology to be able to restore the rivers to their pre-modification states, as well 

as any perceived impacts of the restoration. 
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2. LITERATURE REVIEW 

The study of the morphological evolution of a river is dependent on the 

processes within the river channel and its floodplains. However, these processes are 

functions of how water and sediment interact due to both internal and external forces; 

as well as the characteristics of the channel. This chapter therefore gives a background 

to the study within existing scientific knowledge, and highlights the deficits in the 

context of this study. 

 

2.1 Channel Processes 

A river originates as a result of surface runoff, and moves towards an ultimate 

base level, which may be another river, lake or ocean (Leopold, 1994). Therefore, the 

river system is an integration of the flowing water, the channel it flows in together with 

its floodplain, and the processes that connect the physical characteristics of the system. 

Thus, channel processes (or fluvial processes) could be defined as the consequence of 

the interaction of the moving water with the landforms with which the water 

encounters. Although rivers range from different sizes to different morphologies, there 

are three basic channel processes (erosion, transportation and deposition) which are 

reflected in a river’s morphology (Montgomery and Buffington, 1998; Matsuda, 2009). 

Although these processes take place in all parts of a river, their dominance in various 

sections give rise to three main zones, i.e. sediment source zone, transfer zone and 

accumulation zone, which correspond to the dominant areas of erosion, transportation 

and deposition respectively (Matsuda, 2009; Fryirs and Brierley, 2012). Thus, fluvial 

landforms are therefore important indicators of various channel processes which 

dominate and shape them. 

Through these processes, the river functions in a three-dimensional form (with 

longitudinal, transverse and vertical dimensions); involving changes in morphology, 

and fluxes of water and sediment (Gilvear, 1999).  Thus, hydrodynamics and hydraulic 

action of water, sediment transport and the interaction of these with the various 

landforms of the river system serve as the basis for the processes and related forms of 

a river (Fig. 2.1).  

 
Fig. 2.1: Fluvial process zones in a catchment: erosion zone in upland, transfer zone in the middle 

reaches and accumulation zones in the lowland reaches (source: Church et al., 2009) 
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This is further highlighted by Thorne (1998), who indicated that channel 

processes serve as a link between driving variables (water and sediment) and the 

boundary characteristics of a river to form a channel.  

 

2.1.1 River Flow and Hydrodynamics  

Rivers are the mainly responsible in shaping the earth’s continental landscapes 

as the moving water in river channels controls the erosion and transport processes 

which mobilize sediments stored in floodplains, channel-bars and islands, which are 

then deposited downstream (Ham and Church, 2000; Twidale, 2004; Vargas-Luna et 

al., 2019). This has been established by various researches which relate how flow 

together with sediments play significant roles in the alteration of river morphology both 

spatially and temporally (Chang, 2008; Anderson and Anderson, 2010; Posner and 

Duan, 2012; Nelson et al., 2013; Legleiter, 2014; Powell, 2014; Jaeger et al., 2017; 

Fleischmann et al., 2018). As indicated by Dingman (2009), the water that flows in a 

watershed originates from precipitation which flows through channels, and are 

controlled by the physical attributes of the watershed giving the network of streams a 

characteristic pattern. The variations in flow also create the necessary conditions for 

the banks to be eroded, resulting in channel widening and incision (Dapporto et al., 

2003; Rinaldi et al., 2004, 2008; Vargas-Luna et al., 2019). 

Flow is variable in natural rivers, and this variability is critical in how the river 

changes its form. There are various parameters used in characterizing the flow in river 

channels: discharge, velocity, cross sectional area of flow, roughness of channel bed 

and the slope of the channel bed. The discharge (Q), velocity (v) and area (A) are related 

by the continuity equation based on the law of conservation of mass (Chanson, 2004).  

 

𝑄 = 𝑣 𝐴 

 

This indicates that for the same discharge, different combinations of velocity 

and cross sectional area are possible to produce different flow regimes (Hugget, 2011). 

This is shown by the Froude Number (Fr), which is a dimensionless ratio of the inertial 

force to the gravitational force; and usually computed as the ratio of the velocity (v) to 

the velocity of gravity waves (√𝑔𝐷; where g is the gravitational acceleration and D is 

the hydraulic depth). Therefore, for a given discharge, flow is described as subcritical 

(Fr<1), deep and slow-moving; or supercritical (Fr>1), rapid and shallow. The flow in 

a natural river rarely exceeds a Froude Number of 0.5 although supercritical flows 

temporarily occur, and are associated with large energy losses which promote channel 

erosion and enlargement (Hugget, 2011). 

Flow in rivers can also be classified based on Reynold’s number (Re) which is 

the ratio of the inertial forces to the viscous forces in the flow (Anderson and Anderson, 

2010). For low Reynold’s numbers (Re< 500), the flow is termed as laminar, with 

viscous forces being significant. In contrast, at high Reynold’s numbers (Re>2000), the 

flow is termed turbulent, where inertia is the controlling factor; creating eddies, vortices 

and flow instabilities ( Chanson, 2004; Anderson and Anderson, 2010; Fryirs and 

Brierley, 2012). Flow in a natural river is turbulent and consists of the main longitudinal 
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flow and secondary/transverse flow with the direction of the secondary flow dependent 

on the location of the transverse cross section within the channel (Fig. 2.2).  

The flow in river channels has been closely linked with the study of fluid 

mechanics. Thus, hydrodynamics of river flow can be explained by the application of 

the theories of fluid mechanics through open channel hydraulics (Anderson and 

Anderson, 2010; Wright and Crosato, 2011); hence, to understand hydrodynamics of a 

river, the forces causing the flow and the forces the flowing water both within the flow 

and on the boundaries are important. Through the flow from headwaters to its mouth, 

a natural river represents a system in which potential energy provided by water volumes 

at given elevations is converted to kinetic energy of the flowing water, and dissipated 

through friction created at the boundaries (Leopold et al., 1964; Kondolf, 1997). These 

interactions highlight the two external forces that act on flowing water in river channels: 

the gravitational force (impelling force) which drives the water downslope; and the 

frictional force (resisting force) which resists the download movement of the flow 

(Leopold et al., 1964; Anderson and Anderson, 2010; Hugget, 2011). The impelling 

force refers to the hydraulic force due to the flowing water which is dependent on the 

slope of the flow; while the resisting force is the hydraulic resistance to the flow which 

depends on the nature of the flowing fluid and its interaction with the channel bed and 

bank, and the physical characteristics of the river which resist geomorphic change 

(Leopold et al., 1964; Charlton, 2007; Fryirs and Brierley, 2012; Bierman and 

Montgomery, 2014).  As alluvial rivers are shaped by successive water flows which 

scour the channel bed, the interaction of these impelling and resisting forces creates the 

conditions for the river to shape its channel through eroding its bed and banks, 

transporting sediments and depositing sediments (Leopold et al., 1964; Jia et al., 2016; 

Wang et al., 2017). 

 
 

Fig. 2.2: Flow within a meandering channel: maximum velocity line in channel shows the longitudinal 

flow, while flow in channel cross-sections (A-C) indicates secondary flows  

(modified after Nugget, 2011). 
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The impelling force is reflected in the stream power and the boundary shear 

stress. The stream power measures the rate of work done by the flow in overcoming the 

bed resistance, internal flow resistance as well as transporting the sediment load of the 

flow; hence, the total energy of the flow (Fryirs and Brierley, 2012). The stream power 

(measured in W/m2) is defined by the expression (Huggett, 2011): 

 

Ω =  𝛾 𝑄 𝑠 

 

Where Ω is the stream power, 𝛾 refers to the specific weight of the flowing water (9800 

N/m2), Q is discharge (m3/s) and s is bed-slope (m/m). From the equation, it is evident 

that discharge and slope are the main influencing factors of stream power; thus, an 

increase in discharge and/or slope increases stream power.  

The boundary shear stress (τ) on the other hand, is a measure of the force of the 

flow per unit area of channel bed and is defined as the drag force exerted the flow on 

the channel bed (Huggett, 2011). This is expressed mathematically as: 

 

τ =  𝛾 𝑅 𝑠 

 

with 𝛾 referring to the specific weight of the flowing water (9800 N/m2), R is the 

hydraulic radius (m) and s is the bed-slope (m/m). 

The resisting force in a flow serves a means for the river to dissipate its energy, 

thereby reducing the available energy for channel processes or adjustment. When the 

resisting force is due to the physical properties of the fluid, or as a result of the 

interaction of the fluid with the channel bed and banks, it is termed as hydraulic 

resistance (Fryirs and Brierley, 2012)). When physical characteristics of the river 

system such as bedrock, outcrops, bedforms or bend development which increase the 

roughness and resist geomorphic change in a quest to maintain channel morphology, it 

is termed as the physical resistance (Fryirs and Brierley, 2012).  

Due to the forces generated by the flow in rivers, the flow rate influences the 

sediment transport rate of a river. However, the sediment transport rate increases as a 

power function of the rate of flow.; thus, the sediment transport will therefore increase 

by more than a 100% in response to a 100% increase in flow rate, with most sediments 

transported during floods ( Richards, 1982; Kondolf, 1997).  

 

2.1.2 Sediment transport in rivers 

On the scale of the channel, there is an intricate relationship between channel’s 

morphology, flow and sediment transport processes that modify the channel (Legleiter, 

2014; Boskidis et al., 2018). In alluvial channels, the flow induced forces on the mobile 

bed causes the displacement of sediments from the bed (Chanson, 2004; Armanini and 

Gregoretti, 2005). These forces on a sediment particle include the hydrodynamic forces 

(lift and drag forces), seepage force, weight and buoyancy force (Armanini and 

Gregoretti, 2005; Fig. 2.3).  
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These forces are functions of the properties of the flow [velocity (u) and density 

(ρ)], gravity, sediment particle [size (d) and density (ρs)], and the slope (α) in the 

direction of flow. They are related by the following relationships (Armanini and 

Gregoretti, 2005): 

𝐹𝐷 = 𝑓(𝜌, 𝑑2,  𝑢2 ) 

𝐹𝐿 = 𝑓(𝜌, 𝑑2,  𝑢2 ) 

𝑆𝑒 = 𝑓(𝜌, 𝑔, 𝑑
2, 𝛼 ) 

𝑊 = 𝑓(𝜌𝑠, 𝑔, 𝑑
3, 𝛼 ) 

𝐵 = 𝑓(𝜌, 𝑔, 𝑑3, 𝛼) 

 

Where FD is the drag force, FL is the lift force, Se is seepage force, W is the weight of 

sediment particle and B is buoyancy (B). 

 

 
Fig. 2.3: Schemes of the forces acting on a single particle on channel bed due to flow: weight of 

sediment particle (W); lift force (FL); drag force (FD); buoyancy (B); and seepage force (Se).  

(source: Armanini and Gregoretti, 2005) 

 

Aside the transport function of rivers, there is also an interaction of the water 

and sediment with biota which also creates unique ecosystems. This results in riverine 

habitats along a hydrodynamic gradient which the natural river and its floodplain 

display from the main channel to the inundation-free area (de Nooij et al., 2006). The 

diversity in the significance of the flow of rivers therefore makes fluvial hydraulics 

very important as it underlines a lot of scientific fields (Loehr, 1987; Nijssen et al., 

1997; Coe et al., 2008; Beighley et al., 2009; Dingman, 2009; Azevedo et al., 2010; 

Isaac et al., 2016; Salik et al., 2016; Bašić et al., 2017; Bussi et al., 2018; Martin et al., 

2019). 

The capacity of a river (defined as the ability of the river to carry a specified 

load at a specific point) and its competence (the largest sized particle the flow can 

support at a specific point) are two important determinants of the sediment dynamics 

of a river. As illustrated by Hjulström (1935), the ability of a river to erode, transport 

or deposit sediments on its bed can be schematized using the logarithmic relationship 

between stream velocity and particle size (Fig. 2.4). From the curve, higher velocities 

are generally needed to erode larger particles sizes. However, this direct relationship is 

not applicable to the smaller particles (clay and silt), as an inverse relationship exists 
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due to the strong bonding between the molecules of the small particles. At lower 

velocities which are not sufficient for erosion (below critical erosion velocity), the river 

transports and/or deposits sediments. Although this characteristic relationship has been 

found to be simplistic to some extent, it is still useful to understand the role of flow on 

the sediment transport process in fluvial systems.  

The characteristic mode of transport plays a significant role in a channel’s 

response to sediment supply, as the transport mechanism is dependent on the sediment 

particle size (Dade et al., 2011; Choi and Lee, 2015).  Sediment transport in rivers is a 

complex phenomenon (Yang (1977). It has been in the focus of research by both 

hydraulic engineers and fluvial geomorphologists due to its role in river morphology 

and critical fluvial ecosystems, sediment input into coastal systems, water quality 

changes, impact on infrastructure such as bridges, effect on navigation and reservoirs 

(Coleman, 1969; Gomez and Church, 1989; Lawler, 1993; Rosgen, 1994; Lopes et al., 

2004; Church and Hassan, 2005; Wakelin-King and Webb, 2007; Bertoldi et al., 2009; 

Keesstra et al., 2009; Dade et al., 2011; Ouyang et al., 2013; Jaeger et al., 2017; Pfeiffer 

et al., 2017; Moody, 2019). According to Church (2006), the morphology of an alluvial 

river channel is the consequence of sediment transport and sedimentation in the river; 

thus, the quality and quantity of sediments delivered by the river induces the 

morphological changes ( Petit et al., 1996; Church, 2006; Galia and Hradecký, 2014; 

López et al., 2014; Choi and Lee, 2015; Knox and Latrubesse, 2016; Yu et al., 2016).  

 

 
Fig. 2.4: The Hjulström curve used in predicting movement of sediment in a channel 

(after Hjulström, 1935) 

 

2.1.2.1 Types of sediment and sediment transport  

Although the load of a river is defined by all materials carried by flow including 

sediments and large woody debris, this section will be focused sediments. The stream 

load can be classified based on the source of the sediment or the mode of transport (Fig. 

2.5). This gives rise to different terminologies for the sediment load of a river. Based 

on the source of transported material, the sediments may be classified as either a wash 

load or bed material load (Woo et al., 1986).  
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The nutrients and minerals transported by rivers form the dissolved loads as 

they are carried in solution and have little impact on the morphological adjustment of 

the river (Fryirs and Brierley, 2012; Knighton, 2004). Large woody debris is 

transported by floating and affect channels as they contribute to both the flow and 

channel (Fetherston et al., 1995; Downs and Simon, 2001; Larson et al., 2001). The 

wash load is not derived from the channel bed but from the watershed; hence, it is not 

found in appreciable quantities on the channel bed (Biedenharn et al., 2006; van Rijn 

and Hans, 2019). It enters the river channel through overland flow, and does not 

contribute much to the in-channel sedimentation processes of a river (Yang and Simões, 

2005). Due to its fine nature, its transport through the fluvial system does not require 

any significant dissipation of energy; thus, changes in the wash load does not generate 

any appreciable changes in channel morphology (Biedenharn et al., 2006). Wash loads 

are typically transported as suspended load as the particles are small enough to be 

supported by the flow through turbulent mixing and convection. They are solid unlike 

the dissolved load; however, they are fine (usually clays and fine silts) to the supported 

by any flow, making the transport of wash load supply-limited. Suspended loads have 

higher concentrations closer to the bed, while lower concentrations occur close to the 

surface (Cheng, 2004; Fryirs and Brierley, 2012; Hugget, 2011). Furthermore, McLean 

(1992) indicated that the transport of a suspended load in a water column is as a result 

of its lift velocity being the same, or exceeding its fall velocity; while Fryirs and 

Brierley (2012) also identified that in most river systems, although sediments less than 

0.2 mm (size of find sands) are mainly carried in suspension, particles as big as 1 mm 

(size of coarse and medium sands) may as well be transported as suspended load 

depending on the flow conditions.   

 

 
 

Fig. 2.5: Source, transport mode and sediment load (including large woody debris) of natural rivers 

 

The bed material load on the contrary, is found in appreciable quantities on the 

channel-bed; and is defined as the coarsest part of the fluvial sediment load usually 

greater than 0.062mm (Gomez and Church, 1989; Slattery and Burt, 1995). The 

availability of bed material together with the flow affect channel forming processes 
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which result in different channel characteristics such as  planform: straight, meandering 

anastomosing and braiding (Hugget, 2011). 

Bedload involves the transport of sediments which moves on or just above the 

river bed (Gomez and Church, 1989; Hugget, 2011; Fryirs and Brierley, 2012). Unlike 

the suspended load, in bedload transport, the sediments maintain contact with the 

channel bed and may move through rolling, sliding or saltation (Fig. 2.6). Bedload 

movement takes place when the shear stress exceeds the critical shear stress. Depending 

on the shape of the sediment, it may move along the bed by pushing by horizontal drag; 

or through rolling (usually in gravel-bed rivers). At higher flow velocities, the 

turbulence conditions may allow for temporary lifting of sediments which fall back 

shortly afterwards, a process referred to as saltation (Gomez and Church, 1989; Fryirs 

and Brierley, 2012). This therefore makes the transport of bed-material load capacity-

limited. 

 

 

Fig. 2.6: Modes of sediment transport, indicating the types of bed load movement 

(adapted from Leeder, 1999; Dey and Ali, 2017) 

 

2.1.2.2 Measurement of bedload transport in rivers 

Bedload transport has significant effects on the function of rivers: an over-

supply of sediments may result in aggradation of the river bed; thus, it can raise the 

flood level and may result in a decrease in the river function. Conversely, an under-

supply causes degradation of the river bed endangering the natural stream installation 

such as the bank, as well as engineering constructions such as bridge piers which may 

have their foundations undermined (Choi and Lee, 2015). This makes the knowledge 

of the amounts and rates of sediment transport critical for fluvial geomorphologists, 

engineers, river managers and land-use planners among others, as it governs the 

morphological evolution and biological functioning of rivers (Einstein et al., 1940; 

Gao, 2008; Claude et al., 2012).  

Although various studies have measured bedload transport rates, there were 

wide variations in the transport rates both spatially and temporally; while it was also 

found to be difficult to measure in many locations (Ryan and Porth, 1999; Turowski et 

al., 2010; Rickenmann et al., 2012). There are various methods available for measuring 

bedload transport in rivers. According to Rickenmann et al. (2012),  sediment 
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measurement may involve a direct method involving the collection or trapping of 

moving sediment particles; or indirectly by relating the sediment transported to the 

transport intensity or concentration. Indirect sampling of bedload include the use of 

acoustics (Rennie and Millar, 2004; Kostaschuk et al., 2005; Latosinski et al., 2017); 

sonar imaging (Nittrouer et al., 2008); and impact sensors (Rickenmann and McArdell, 

2007; Raven et al., 2010; Beylich and Laute, 2014; Barrière et al., 2015; Koshiba et al., 

2018).  Conversely, direct sampling includes the use of bedload traps (Bunte et al., 

2008; Vericat and Batalla, 2010; Habersack et al., 2017); tracer techniques (Kondolf 

and Matthews, 1986; Miller and Warrick, 2012); and pressure-differential samplers 

(Ryan and Porth, 1999). The bedload across a river section is however often measured 

with pressure-differential samplers (Ryan and Porth, 1999). which include US BLH 84 

(Ryan and Porth, 1999), Elhwa (Childers et al., 2000), BTMA Arnheim (McLean et al., 

1999) and the Helley-Smith (Martín-Vide et al., 2015; Sterling and Church, 2002; 

Vericat and Batalla, 2006; Ziegler et al., 2014a). Although no single bedload sampler 

has gained universal acceptance as the standard for use in all types of streams, the 

Helley Smith sampler (Helley and Smith, 1971) has been applied in various stream 

types under varying conditions (Ryan and Porth, 1999; Sterling and Church, 2002; 

Bunte et al., 2008; Imaizumi et al., 2009; Vericat and Batalla, 2010; Claude et al., 2012; 

Beylich and Laute, 2014; López et al., 2014; Martín-Vide et al., 2015; Lemma et al., 

2019). 

  

2.1.3 Channel bed incision 

In alluvial rivers, channel incision is initiated either by sediment transport 

capacity increases or bedload deficit; thus, it is generally a product of the sediment 

transport within a river when there is an the imbalance between the sediment transport 

capacity of and the sediment supply (Galay, 1983; Harvey and Watson, 1986; Watson 

et al., 2007; Wyżga, 2007). Channel bed incision takes place when the erosive forces 

of a flow are strong enough to overcome the strength of the underlying bed material; 

hence, an imbalance of forces on the bed material due to destabilizing forces (gravity 

force and hydrodynamic forces in the flow direction) ensures that incision takes place 

by overcoming the channel’s resistance (Armanini and Gregoretti, 2005). As indicated 

by Oskin et al. (2014), the stream power (which represents the energy of the flow) is 

directly proportional to the channel bed incision; hence, an increase the stream power 

increases the incision, although the relationship is not necessarily linear (Sklar and 

Dietrich, 2001, 2004; Aubert et al., 2016). Channel bed incision has also been found to 

be aggravated by the presence of floods (Gibson and Shelley, 2019). It is a process 

which lowers the elevation of a channel’s thalweg which takes place in variable time 

spans (James, 1997).  

When a river is channelized or straightened, the shortened river length increases 

the slope; thus, the capacity of the river is increased (Parker and Andres, 1976; Simon, 

1989; Rinaldi and Simon, 1998; Wyżga, 2007). In other cases, the capacity is increased 

by increased runoff due to land cover changes or climate (Beechie et al., 2008). 

Conversely, a decrease in the sediment supply may be due to urbanization (Booth, 

1990; Whitney et al., 2015); afforestation (Lach and Wyżga, 2002; Downs and Piégay, 
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2019), in-channel sediment mining (Rinaldi et al., 2005; Wyżga, 2007; Martín-Vide et 

al., 2010; Sanchis-Ibor et al., 2017); base-level decrease (Ben Moshe et al., 2008; 

Bowman et al., 2010; Edwards et al., 2016); artificial cut-offs and channelization 

(Parker and Andres, 1976; Simon, 1989; Rinaldi and Simon, 1998; Wyżga, 2007); dam 

and reservoir construction ( Edwards et al., 2016; Zhou et al., 2018; Baena-Escudero et 

al., 2019); bank stabilization (Petit et al., 1996; Thompson et al., 2016); and subduction 

related uplifts (Righter et al., 2010). In the Wisloka, a montane river in Poland, land-

use changes caused up 2 m incision over a period of almost 60 years (Lach and Wyżga, 

2002). In two principal alluvial reaches of the Arno River in Italy (Upper Valdarno and 

Lower Valdarno), incision of up to 8 m have been reported since the start of the 20th 

century due to artificial cutoffs and channelization (Rinaldi and Simon, 1998). 

Similarly, the Russian River in the United States (a gravel-bed river) experienced bed 

lowering of up to 6 m over due to sediment mining and dam construction over more 

than 50 years (Kondolf, 1997). 

According to the stages of channel evolution (Fig. 2.7), degradation of channel 

bed is a critical channel process as a channel responds to any form of perturbation 

especially external forcing (Simon and Rinaldi, 2006). As a result, a channel re-adjusts 

to disturbance through degradation (e.g. channel bed incision) to smoothen out the 

stream gradients which in turn, reduce the stream power for any given discharge, as the 

stream power is a function of the gradient; and also to dissipate the energy of the system 

(Simon, 1992; Shields et al., 1994; Lecce, 1997; Simon and Rinaldi, 2006; Tofelde et 

al., 2019).  When channel incision takes place, channel widening is the main process 

of energy dissipation in coarse-grained systems to offset the increases in hydraulic 

depth caused by channel incision; widening is however reflected in bank collapse and 

erosion leading to an increase in channel width (Harvey and Watson, 1986; Simon, 

1992).  

According to Shields et al. (1994), the incision of a channel destabilizes the 

entire fluvial system by lowering the base level for the river and its tributaries. The 

destabilization initiates other processes within the system. Within the channel itself, 

widening through bank collapse increases the sediment input into the system which 

changes the geometry. As indicated by Simon and Rinaldi (2006), degradation will 

travel downstream if due to incision is caused by the construction of a dam. However, 

in case of either channelization or in-channel mining, the degradation travel upstream. 

In fluvial landscapes, the water table is a function of the water stage; hence, the water 

table lowers as a response to channel incision (Neal, 2009). In places with declining 

net-water table, riparian forests decline subsequent to the lowered water table (Scott et 

al., 2000); as well as the affect the stream hydrology (Shields et al., 2010). 
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Fig. 2.7: Stages of channel evolution (source: Simon and Rinaldi, 2006) 

 

2.1.4 Bank processes 

As indicated previously, channel incision creates conditions for channel 

widening which is a direct consequence of bank processes. Therefore, a destabilization 

in a river system due to channel incision, will result in accelerated bank processes. Bank 

and near-processes have been the focus of various research due to their importance in 

the shaping of fluvial landscapes (Darby, 1998; Allan, 2004; Surian et al., 2009; Davis 

and Harden, 2014; Xia et al., 2014). In alluvial rivers, they are the main processes of 

channel development (Gilvear et al., 2000; Hickin, 1974; Hickin and Nanson, 1984; 

Moody, 2019; Nanson, 1980; Nicoll and Hickin, 2010; Schuurman et al., 2016); hence, 

they are translated into width variations, and general evolution of channels across 

floodplains (Bertoldi et al., 2009; Darby, 1998; Edwards et al., 2016; Hagstrom et al., 

2018; Lewin and Manton, 1975; Thorne, 1991). Generally, floodplains may be as a 

result of sediment deposition in convex sides of meanders in form of point-bar 

development (Hickin, 1969). Conversely, bank erosion modifies floodplains through 

corrasion and slumping of bank material (Hooke, 1979; Thorne, 1991). Therefore, in a 

typical equilibrium channel, point-bar development and bank erosion complement each 

other such that,  changes in cross-sectional area and shape are negligible for a given set 

of flow conditions (Chang, 2008; Church and Rice, 2009; Hickin, 1969; Schuurman et 

al., 2016).  

The rates of deposition and bank erosion in an alluvial channel have both wide 

spatial and temporal variations (Eke et al., 2014; Lawler et al., 1997). Bank processes 

are affected by various factors including  flow/discharge (Blanckaert et al., 2012; 

Downs and Simon, 2001; Rinaldi et al., 2004), sediment transport (Prosser et al., 2000; 

Surian et al., 2009), channel geometry (De Marchis and Napoli, 2008; Millar, 2000) 

and riparian vegetation (Abernethy and Rutherfurd, 2000; Simon et al., 2007; Vargas‐

Luna et al., 2019). 
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The significance of point-bars is reflected in several studies (Clarke and Bryson, 

1959; Davies, 1966; Dietrich and Smith, 1983; Eke et al., 2014; Hodskinson and 

Ferguson, 1998; Kasvi et al., 2013; Lawler, 1993; Pyrce and Ashmore, 2005; Singh, 

1972; Wu et al., 2016). Their formation is as a result of the transportation of eroded 

sediments by secondary currents to the zone of low shear stress and velocity, at the 

convex bank where they are deposited (Dietrich and Smith, 1983; Hickin, 1974). The 

measurement of the development of point-bars include the use of  aerial photographs 

(Srisunthon and Choowong, 2019), digital terrain models (Kasvi et al., 2013), satellite 

images and laser surveys (Hagstrom et al., 2018; Kasvi et al., 2013; Srisunthon and 

Choowong, 2019) and differential Global Position Systems (Cosma et al., 2019). The 

complex interplay of flows, quality and quantity of sediments, as well the geometry of 

rivers are significant in the deposition and erosion of a point-bar, just as in many other 

fluvial processes (Galia and Hradecký, 2014; Hagstrom et al., 2018; Moody, 2019). 

The relative location of the point-bar either in the upstream or downstream section also 

affects its development (Ghinassi et al., 2016). River bank erosion remains the focus of 

a lot of research cutting across various disciplines including geomorphology, geology, 

hydrology, ecology and river engineering; although it was previously neglected 

(Blanckaert et al., 2012; Hooke, 1980; Iwasaki et al., 2016; Kesel et al., 1974; Lai and 

Greimann, 2008; Lawler et al., 1997; Luppi et al., 2009; Matsubara and Howard, 2014; 

Murgatroyd and Ternan, 1983; Nagata et al., 2014; Rinaldi et al., 2008; Rusnák et al., 

2016; Simon et al., 2000; Wallick et al., 2006). In an alluvial river, it represents the 

response of the channel to energy dissipation; and serves as the main mechanism 

through which the channel offsets increases in hydraulic depth subsequent to channel 

incision (Simon, 1992; Simon et al., 2000). It also has various effects on ecosystems, 

infrastructure, water quality and agriculture (Davis and Harden, 2014; Mutton and 

Haque, 2004; Nagata et al., 2000; Nakagawa et al., 2013; Piégay et al., 1997). River 

bank erosion has an advantage of being a relatively rapid process compared with other 

geomorphological processes, hence, making it crucial in understanding changes in the 

river’s landscape; especially, the effects of human activities on channel processes, 

which is important for river management (Hooke, 1980; Kis and Lóczy, 2018). Due to 

its critical importance, various methods have been developed to measure it. This 

includes erosion pins (Couper et al., 2002; Couper and Maddock, 2001; Lawler et al., 

1997), satellite images and historical maps (Khan and Islam, 2003; Micheli and 

Kirchner, 2002), terrestrial laser scanning and photogrammetry (Lawler, 1992; Micheli 

and Kirchner, 2002; Mitchell et al., 1999; O’Neal and Pizzuto, 2011), and models 

(Darby et al., 2002, 2002; Matsubara and Howard, 2014; Mosselman, 1995). 

Although bank erosion is described as either through corrasion or mass 

movement (Hooke, 1979), it is controlled by subaerial processes that loosen the 

sediments (Prosser et al., 2000). This is highlighted by (Couper and Maddock, 2001) 

who indicated the three mechanisms of bank erosion as mass failure, fluvial 

entrainment and sub-aerial weakening and weathering. This is reiterated by Fryirs and 

Brierley (2012) who indicated that hydraulic action processes (fluid corrasion and sub-

aerial processes) and mass wasting processes (slab failure, rotational slip, fall, sliding 



22 

 

and slump) are responsible for bank erosion. However, they included these processes 

in a pseudo-cyclic process which controls bank morphology (Fig. 2.8). 

 

Fig. 2.8: The cycle of bank erosion cycle showing the influences of hydraulic action and mass wasting 

at various stages of the cycle (source: Fryirs and Brierley, 2012) 

 

2.1.5 Meanders and channel migration 

River channel movement is a key process by which floodplains are formed, 

developed or renewed (Hooke, 1980). Meandering is a feature of alluvial channels and 

is a product of the interplay of deposition in convex banks and erosion on concave 

banks, where the banks consist of material fine enough to be eroded and transported 

but have enough cohesive strength to maintain firm banks (Hickin, 1969; Langbein and 

Leopold, 1964; Leopold and Langbein, 1966). They are modified as banks fail through 

erosion and mass wasting, while flow supports the deposition in the convex banks 

(Lanzoni and Seminara, 2006; Motta et al., 2014). This  is supported by various 

literature which explained meandering to be the result of sediment, water and channel 

interactions through sediment supply rate, bed sediment size, bank cohesion, 

longitudinal slope and water flow (Bogoni et al., 2017; Gaurav et al., 2017; Güneralp 

et al., 2012; Konsoer et al., 2016; Robert, 2003; Wang et al., 2019; Zen et al., 2016). A 

meander generally forms due to the differences in the energy distribution of flow in the 

concave and convex bends (Leopold and Wolman, 1960).  

Meanders and meandering in rivers remains a well-researched field (Güneralp 

and Rhoads, 2011; Hey, 1976; Hooke, 1984; Parker and Andres, 1976; Schwenk et al., 

2015; Tubino and Seminara, 1990; Wang et al., 2019; Weisscher et al., 2019; Williams, 

1986; Zen et al., 2016; Zolezzi et al., 2012), cutting across various disciplines including 

geomorphology, ecology, geology and river engineering (Blettler et al., 2012; 
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Camporeale and Ridolfi, 2010; Iwata et al., 2003; Langbein and Leopold, 1964; Yang, 

1971). In a typical fluvial system, meander studies are significant in infrastructure 

planning and disaster prevention since the movement of meanders across the floodplain 

is associated with loss of land (Matsubara and Howard, 2014). While meandering 

increases the length, thereby reducing the slope in a channel, the complex morphology 

of meanders also affect flow in channels (De Marchis and Napoli, 2008; Lofthouse and 

Robert, 2008). This creates complex flow profiles in meander bend (Engel and Rhoads, 

2017; Posner and Duan, 2012). River flow in meanders are highly three dimensional; 

with the primary flow in the flow direction, and the secondary flow in transverse and 

vertical directions (Liu and Bai, 2014; Stoesser et al., 2010). Due to the morphology of 

meanders, the main secondary current developed induces shear stresses and consequent 

erosion on the outer bank, while another secondary current moves the eroded sediment 

through convection to the convex banks (Chen and Tang, 2012; Engel and Rhoads, 

2017; Sankalp et al., 2015; Stoesser et al., 2010). 

The degree of meandering of  a river may be measured with sinuosity which is 

a ratio of the channel length to the valley length (Ferguson, 1977). Sinuosity is usually 

measured between 1 and 4, and indicates the characteristic plan form of a river which 

is dependent on the length and amplitude of a meander (Leopold et al., 1964). 

 

2.2 Human impacts on river systems 

Alluvial river systems, just like other river systems in their natural states are considered 

to be in a state of equilibrium. Due to the various benefits of rivers in human 

civilizations, they have been modified in several ways by humans. In a typical 

equilibrium channel, although various bed and bank processes are present, the changes 

in cross-sectional area and shape are negligible for the given set of flow conditions 

(Hickin, 1969). This character of the river termed dynamic equilibrium is such that, the 

river continuously makes adjustment to maintain an approximate state by balancing 

processes and form; hence, it will change due to altered boundary conditions by 

adjusting flow and sediment fluxes (Fryirs and Brierley, 2012; Knighton, 2004). A 

river, like many geomorphic systems metamorphosizes into a disequilibrium when 

subjected to modifications beyond a certain magnitude and frequency depending on the 

sensitivity and resilience of the river system (Slaymaker et al., 2009). However, human 

interventions do not change the fundamental hydraulic and geomorphic processes of 

rivers, but rather affect the spatial distribution and rates of these processes which results 

in changes in channel morphology (Fryirs and Brierley, 2012). Thus, they occur 

through alterations in the flow fluxes and sediment fluxes; and also, the distribution of 

resistance elements such as vegetation (Fryirs and Brierley, 2012; Wohl et al., 2015). 

 

2.2.1 Direct and indirect types of human interventions on river systems 

The human interventions on river systems can be termed as direct or indirect 

human interventions. Direct human interventions refer to modifications that are 

planned and directly modify the river form and/or affect the river’s behavior. They are 

usually localized and influence a rapid response from the river (Fryirs and Brierley, 

2012). Examples include the construction of dams/reservoirs (Nelson et al., 2013; Piqué 
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et al., 2016; Topping et al., 2018; Vericat and Batalla, 2006; Williams and Wolman, 

1984; Xia et al., 2014; Yang et al., 2019; Zhou et al., 2018; Ziegler et al., 2014b), 

sand/gravel mining (Martín-Vide et al., 2010; Petit et al., 1996; Picco et al., 2017; 

Rinaldi et al., 2005; Sanchis-Ibor et al., 2017), water extraction or diversion (Petts and 

Gurnell, 2013; Wang and Xu, 2016), removal of riparian vegetation (Domer et al., 

2019; Macfarlane et al., 2017), channelization, artificial cutoffs and channel 

straightening (Baena-Escudero et al., 2019; Li and Gao, 2019; Roberge, 2002; Smith 

and Winkley, 1996; Tiron Dutu et al., 2019), construction of bank stabilization 

structures including revetment and groynes , in-channel infrastructure such as bridge 

piers (Roberge, 2002; Trueheart et al., 2020; Wang et al., 2018), and construction of 

embankments (Earchi et al., 1995; Lehotský et al., 2010; Provansal et al., 2014; 

Vázquez-Tarrío and Menéndez-Duarte, 2014).  

The indirect human interventions on the other hand, refer to activities, which 

although not directly on the channel, alter boundary conditions of the river system 

resulting in changes in the flow and sediment fluxes, which also influence the processes 

and form of the river (Fryirs and Brierley, 2012; Goudie, 2013). They usually involve 

catchment-scale land cover changes including afforestation (Huang et al., 2018; Meng 

et al., 2019; Provansal et al., 2014; Wang et al., 2007), deforestation (Latrubesse et al., 

2009; Panday et al., 2015; Restrepo et al., 2015), changes in agricultural practices 

(Dewan et al., 2017; Morais et al., 2016); urbanization and construction of 

infrastructure (Morais et al., 2016; Yu et al., 2016). 

 

2.2.2 Response of river systems to direct human interventions 

As dynamic as river systems are, it is important to distinguish between human-

induced and natural changes in the processes and forms of rivers since it is important 

in effective management of rivers due to the diverse range of management strategies 

(Wohl et al., 2015). The beds of rivers are usually very sensitive to any modification of 

discharge and sediment supply both in the catchment. Therefore, any human impact 

which alters these effects changes in the channel. Due to the differences in direct and 

indirect interventions on river systems, their impacts also differ in rate and extent. River 

response to indirect human interventions are influenced usually by the type of 

landscape (Fryirs and Brierley, 2012). These indirect interventions just like climate 

change alter the hydrology of the catchment which affect the runoff. Certain 

agricultural practices expose the land surface which increases the erosion form the 

catchment; while deforestation increases the runoff and sediment yield through erosion 

due to reduced infiltration while afforestation results in the reverse (Restrepo et al., 

2015). Urbanization generally results in land cover use changes with hard surfaces 

reducing infiltration and increasing surface runoff.  

As direct interventions alter the water flow and sediment transport, the hungry 

river water (due to excess energy) generally incise and erode banks downstream 

(Kondolf, 1997). Human interventions such as artificial cutoffs and straightening 

increase the slope of the channel, thereby increasing flow. The increased flow reduces 

or eliminates the interaction of the flow with groundwater flow and adjacent 

floodplains. The straightening also destroys valuable ecosystems which were created 
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in the meander bends. It also affects riparian vegetation, as the straightened channel 

reduces nutrient input.  As indicated by Schumm (1963), sinuosity is positively 

correlated with the weighted percent of silt/clay in the channel. The disconnection of 

floodplains as a result of the construction of levees will therefore affect the sinuosity 

as the needed silt/clay content are reduced. Although direct interventions have 

implications downstream, artificial cutoffs have been found to have an upstream 

incision migration with rates of up to 0.6 m/y, while aggradation rates of up 0.12 m/y 

occurred downstream (Simon, 1989; Baena-Escudero et al., 2019). In the long-term 

however, both upstream and downstream sections experienced aggradation. 

Bank and bed stabilization measures also cut the channel off from its floodplain and 

increase flow velocities due to the reduced friction. Riparian vegetation have 

detrimental effects on rivers as they support vital ecosystems,  influence floods by 

increasing resistance to flow as well as contributing to bank stability (Croke et al., 2017; 

Krzeminska et al., 2019; Yu et al., 2020). Dams and reservoir are one of the commonest 

interventions in rivers, and they directly change the flow and sediment regime through 

the barrier created by the dam (Fryirs and Brierley, 2012; Goudie, 2013). This creates 

sedimentation upstream and incision downstream due to altered flow and sediment 

regime with added implications for ecosystems (Costa et al., 2015; Kingsford and 

Thomas, 2004; Kondolf, 1997; Petts and Gurnell, 2013). While the diversion and/or 

extraction of water from the channel induce aggradation, bank stabilization 

constructions increase flow velocity and induce scouring (Landon et al., 1998; Gregory, 

2006; Huang et al., 2014, Vázquez-Tarrío et al., 2019).Instream mining creates an 

imbalance between the sediment supply and the sediment transport capacity (Fryirs and 

Brierley, 2012; Petit et al., 1996). The deficiency in the sediment supply allows the 

river to use excess energy to incise its bed and erode its banks (Martín-Vide et al., 2010; 

Petit et al., 1996; Picco et al., 2017). Aside this, instream mining also causes channels 

to lose bed amouring which creates scouring on the channel beds (Arróspide et al., 

2018). In spite of these, the lowering of the channel bed allows for channel capacity, 

increasing the channel’s ability to conduct floods; hence, lesser resulting in lesser 

floods (Martín-Vide et al., 2010). 

The evolution of river systems will ideally follow their natural patterns in the 

absence of human interventions which serve as stressors.  However, river systems like 

most geomorphic systems can never be free of human interventions due to the 

increasing interdependence between humans and the river systems (Slaymaker et al., 

2009). Although attempts to restore some rivers to their natural states may yield 

positive results, certain thresholds serve as controls depending on the vulnerability of 

the system (Fryirs and Brierley, 2012; Slaymaker et al., 2009).  

 

2.3 Modelling of river systems 

Fluvial morphometry encompasses various methods (Goudie, 2003). The 

conventional methods of fluvial geomorphology have been observation-based 

including laboratory analyses and field measurements (Coulthard and Van De Wiel, 

2012). However, advances in fluvial geomorphology, some problems require solutions 

beyond the available these conventional methods; requiring more advanced techniques 
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as a result of the complexity and/or volume of variables required, or at times, their 

inadequacy (Coulthard and Van De Wiel, 2012). To overcome this deficiency, models 

are applied to various aspects of the fluvial system (Fig. 2.9). 

 

 
 
Fig. 2.9: Schematic view of different model types for simulating river systems. (a) landscape evolution; 

(b) reach-scale cellular automaton; (c) reach-scale CFD; (d) alluvial stratigraphy; (e) meandering 

(source: Coulthard and Van De Wiel, 2012) 

 

According to Coulthard and Van De Wiel (2012), numerical models applied in 

fluvial morphology may be one of three: black box models, stochastic models and 

process-based models. Black box models do not necessarily replicate the fluvial 

processes under consideration; hence, the model does not have previous knowledge of 

the process to be modelled. Therefore, the model does not display the basis for 

providing solutions although it links inputs to outputs although it is relevant for many 

empirical relationships. It provides good results on the basis of the data used in 

producing the model although different data sets do not. Statistical and regression 

models fall under this type of model. Stochastic models attempt to replicate the natural 

processes although random elements are always present in the models such as in 

probability models. Process-based models attempt to simulate the actual physical 

processes within a system. It simulates individual processes and integrates their 

interactions to produce results. A typical example is the layer-based hydro-

morphodynamic model (LHMM) which has a hydrodynamic model, sediment transport 

model, bank failure model, bed deformation model, and vegetation model (Guan and 

Liang, 2017). Although process-based models give a good impression of the processes 

in a system, the complexities of systems make them difficult to validate in several 

situations. Models are therefore a hybrid of the various types. 
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To be able to predict the processes within a river, a process-based model must 

be able to simulate reality through the simulated results (Coulthard and Van De Wiel, 

2012; Guan and Liang, 2017). In certain cases, the boundary initial conditions of the 

river not be complete or unavailable altogether. This implies simulated input values 

based on stochastic models may as well be used in the process-based model. The advent 

of more advanced computer technology has allowed simulations to be closer to reality. 

Several problems in river morphology have been solved using models (Choi and Kang, 

2006; Costabile and Macchione, 2015; Crosato and Saleh, 2011; De Vriend, 1977; 

Meert et al., 2018; Schielen and Blom, 2018). However, quantitative analysis has to be 

carried out with caution as some inputs and processes are still random, therefore not 

reflective of the reality. Notable process-based models with wide applications include 

the MIKE11 suite from Danish Hydraulics Institute (DHI), Denmark and the Delft3D 

suite from Deltares (formerly, Delft Hydraulics) in The Netherlands. 

In most process-based models such as the Delft3D and MIKE modelling suite, 

bedload transport models are incorporated in the sediment transport modules of the 

models. There are however other models used in various bedload studies (Aubert et al., 

2016; Pizzuto, 2016; Sun et al., 2001). Sediment transport models and upscaling in 

modelling vary based on the underlying processes. They provide solutions to complex 

problems which cannot be solved with conventional methods. However, disadvantages 

include coarse results due to scales, varying levels of accuracy, the heterogeneity of 

channels and catchments make representation in models more complicated, and the 

need for data for calibration and validation are sometimes difficult to obtain (Anderson 

et al., 2003; Coulthard and Van De Wiel, 2012). 
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3. THE STUDY AREA 

The research covered study locations mainly on the Tisza River. However, 

bedload sediment sampling was carried out on the Maros River which is a tributary of 

the Tisza. Hence, although description of the characteristics of the sampling site on the 

Maros is made, the focus of this chapter is generally on the Tisza River and its 

catchment. 

 

3.1 The Physical setting of the Tisza and Maros Rivers 

The Tisza River is the longest tributary with one of the largest sub-catchments 

(19.5%) of the Danube; with a length of 966 km and a catchment area of 157186 km2 

(ICPDR, 2008). The Maros (length: 750 km; area of catchment: 30000 km2) is a 

tributary of the Tisza, and one of the most dynamic rivers in the Carpathian Basin. The 

whole Tisza catchment was under the management of the Astro-Hungarian Empire 

before the first world war. However, after the I. World War, the basin was split between 

five countries: Slovakia (then part of the Czechoslovakia), Ukraine (then part of the 

USSR), Serbia (then part of Yugoslavia), Hungary and Romania (Fig. 3.1). The split 

resulted in a shared management of the Tisza catchment. 

 

 
Fig. 3.1: The countries sharing the Tisza catchment; with the size of catchmentt in each country  

The Tisza River rises from the Máramaros Mountains (North-eastern 

Carpathians) and drains the eastern parts of the Carpathian Basin by flowing through 

the Great Hungarian Plain and joins the Danube in Serbia (Lóczy et al., 2009). The 

catchment of the Tisza has an annual mean precipitation of 744 mm/y, and the mean 

run-off is 177 mm/y (mean discharge at Szeged: 830 m3/s; ICPDR, 2008). There are 

usually two major floods on the Tisza: the first flood (March-April) is caused by snow 

melt, and if the snowmelt is combined with rainfall, extremely large floods could 

develop; the second flood occurs during the summer (June), induced by the early 

summer rainfall.  As the lowland section of the river is long, and its slope is small, this 



29 

 

summer flood sometimes superimposes on the preceding spring flood; thus, record high 

floods can develop (Mezősi, 2009). Floods on the Maros occur as that on the Tisza; 

although they rise relatively quickly and last for only a short time (2 days/year in 

average). Very often, the floods of the Tisza and of its tributaries occur at the same 

time; thus, extreme high impounded floods can develop. Along the Tisza River, the 

mean river discharge is 208 m3/s at Tiszabecs on the Upper Tisza, 551 m3/s at Szolnok 

in the Middle Tisza, and 830 m3/s at Szeged on the Lower Tisza (Lóczy et al., 2009). 

The water stage within these gauge stations, increased by 181 cm, 228 cm and 349 cm 

respectively from 1876 to 2006 (Szlávik, 2001). The mean slope of the Tisza before the 

regulation works was 3.7 cm/km, although this almost doubled after the regulations 

(Mezősi, 1986). 

The Tisza displays the character of a typical lowland river by transporting large 

amounts of fine grained sandy and silty suspended sediment, and has a clayey bed 

material (Lászlóffy, 1982; Mezősi, 2017; Kasse et al., 2010). The mean suspended 

sediment concentration in the upper, middle and lower Tisza measured between 1970-

2000 are 3187 g/m3, 1200 g/m3, and 1880 g/m3 respectively; with the increase in the 

Lower Tisza due to the relatively higher sediment concentration of the Maros (10,000 

g/m3) at its confluence with the Tisza (Lóczy et al., 2009). 

 

3.2 The regulation works 

The regulation works (catchment-scale engineering interventions) on the Tisza 

River was conceived and begun when the Tisza basin was under common management 

to rid the vast lowland sections of the Great Hungarian Plain of inundations; and to 

make them suitable for agriculture and related development (Ihrig, 1973). Before the 

regulation works, the large floodplains along the lowland sections were frequently 

inundated; thus, there was a high flood risk as the river was highly sinuous (with up to 

17.5 sinuosity), with extensive back swamps behind wide belts of natural levees of 4-5 

m relative height stretching along meander loops and oxbows (Lóczy et al, 2009).  

The regulation works began in the mid-19th century with the construction of 

flood control levees (2940 km in length) close to the river to disconnect the Tisza from 

its alluvial wetlands to prevent inundations (Szlávik, 2000; Pinke, 2014); and to provide 

safe areas for agriculture  

It also involved artificial meander cutoffs to decrease the duration of floods 

(Table 3; Dunka et al., 1996; Schweitzer, 2009). In all, 114 artificial meander cutoffs 

were made which shortened the length of the Tisza by 32% leading to an increase in 

the average river slope (gradient) from 3.7 to 6.0 (Mezősi, 1986). On the lowland 

section of the Maros, 33 cutoffs were made which reduced its length from 260 km to 

170 km and also doubled its slope (Laczay, 1975; Török, 1977). The cutoffs were made 

by creating smaller pilot channels, and allowing the increased stream power of the river 

to reshape the channel. This increased the sediment discharge, and with the reduction 

of the floodplain of up to 70-80% in some cases, there was accelerated deposition of 

up to 1.3 cm/y (1838-1957) along the Tisza on these confined active floodplains; with 

even higher values of up to 10 cm/y (1976-1983) on the natural levees and point-bars  

of the Middle and Lower Tisza (Károlyi, 1960; Szlávik, 2001; Kiss et al., 2011; Nagy 
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et al., 2017).  Along the Lower Tisza, deposition of 0.6 cm/y on point-bars and 0.2 cm/y 

on floodplains have been reported for the period 1856-2005 (Kiss and Sandor, 2009). 

On the Maros, sedimentation was 0.9-2.0 cm/y; with the greatest rates of sedimentation 

immediately after the cutoffs (Kiss et al., 2011). As a result of the cutoffs, flood hazards 

were reduced by improving the drainage of flood waters. The meandering equilibrium 

river was transformed into an in-growing meandering one, as its slope almost doubled 

(Sipos et al., 2007).  

 

Table 3 : Main data on the regulation of the Tisza River (Mezősi, 1986 after Somogyi, 1979) 

River Section 

Length (km) Length of 

cut off 

meander 

(km) 

Length 

of 

artificial 

channel 

(km) 

Shortening 

(%) 

River gradient 

(cm/km) 

Initial Final Initial Final 

Source-Tiszabecs 208 208 - - - - - 

Tiszabecs-Tokaj 335 208 169 42 38.0 7.5 12.2 

Tokaj-Tiszafüred 205 117 113 25 43.0 3.0 5.2 

Tiszafüred-

Csongrád 
326 191 160 25 41.4 2.1 3.7 

Csongrád-Szeged 100 67 46 13 33.0 2.5 3.8 

Szeged-National 

border 
28 17 19 8 39.3 - - 

National border-

confluence 
217 158 82 23 27.0 1.9 2.7 

Total 1419 966 589 136 32.0 3.7 6.0 

 

In the 20th century, revetments were constructed to stop the lateral erosion of 

bends which migrated too close to artificial levees, and groynes were built to facilitate 

shipping by tightening wide sections and to train sharp bends in order to improve the 

flood conductivity of the river channel. In total 44% of the banks of the Tisza River 

were stabilized, mainly between the 1930s and 1960s. However, these works started in 

1886, whilst the latest revetment was built in 2016. Within the lower Tisza, most of the 

revetment are the placed-rock type which were constructed by placing basalt blocks 

between the mean stage (ca. 200 cm) and the bottom of the side-slope of the river bed. 

A toe was created for the revetments using the same material, using a 1:1.5 slope 

(Csoma, 1973) 

The second half of the 20th century was the period of dam constructions on Tisza 

and its tributaries. Although several dams were built on the tributaries of the Tisza, on 

the Tisza itself, only three dams (which operate as locks) were built (Fig. 3.2; Bezdán, 

2010). The locks were built to impound the water during low stages; thus, water 

withdrawal for irrigation could be secured, but they also produce hydropower and aid 

navigation. Although they are opened during floods, the retention of sediments by the 

dams create temporal sediment deficit downstream which induces incision (Kiss et al., 

2008; Lóczy et al., 2009).  
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3.3 The Lower Tisza and the studied locations 

The studied Hungarian section of the Lower Tisza River (see Fig. 3.2) is the 

final lowland section of the Tisza in Hungary, stretching from upstream of Csongrád 

(255 f.km) to the Hungarian-Serbian border (166 f.km). The mean discharge of the river 

is 830 m3/s at Szeged, while the maximum discharge and minimum discharge are 4348 

m3/s (1932) and 58 m3/s (2013) respectively (Kasse et al., 2010; Kiss, 2014). Based on 

the centurial water level data at the major gauge stations on the Lower Tisza at 

Csongrád (Tisza, 246.2 f.km) and Szeged (Tisza, 173.6 f.km), the absolute changes in 

water stages ever recorded are 1394 cm at Csongrád (highest stage measured in 2006: 

1037 cm; lowest stage measured in 1968: -357 cm), and 1259 cm at Szeged (highest 

stage measured in 2006: 1009 cm; lowest stage measured in 1968: -250 cm). A gauging 

station was also built on the Maros at Makó (Maros, 24.5 f.km). According to Sipos et 

al. (2007), at Makó, the mean river discharge is 161 m3/s; the greatest flood occurred 

in 1979 (2420 m3/s), while the least discharge in 2012 (30 m3/s). The absolute change 

in water stages of the Maros is much lower (738 cm), that of the Tisza. At Makó the 

highest stage was measured in 1975: 625 cm; whilst the lowest stage was measured in 

2012: -113 cm.1  

 

 
Fig. 3.2: Main tributaries and Hungarian dams/barrages of the Tisza’s catchment. The studied, lower 

section of the Tisza is also indicated (outlined in red).  

(The data of gauging stations at Csongrád, Szeged and Makó were used). 

 

Along the Lower Tisza, the channel regulations started in 1855, shortening the 

originally 131 km long studied river section by more than 40 km, cutting off 12 

meanders, increasing the pre-regulation slope (2.2 cm/km) to 2.9 cm/km. The Maros 

River, which is the major tributary of the Tisza joins the Lower Tisza close to Szeged 

                                                           
1 http://www.vizugy.hu 
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and has a higher slope (13 cm/km) in its lowland section; thus, downstream of their 

confluence at Szeged the slope of the Tisza increases to 6 cm/km (Kiss et al., 2008; 

Mezősi, 2009). The originally 6–8 km wide natural floodplain was reduced to 1 km 

averagely as the result of artificial levee constructions. At Szeged however, the 

floodplain is just 400 m wide; thus, the artificial levees constricted the floodplain at 

some sections quite drastically, thereby reducing its flood conductivity and increasing 

the flood risk. Therefore, the height of embanked levees was increased several times, 

keeping up with the increasing height of floods. Thus, they were originally just 2.3–3.0 

m high; but nowadays, their height is 7.0 m. They could therefore provide safety despite 

of the increasing flood levels (Sipos et al., 2007; Kiss et al., 2008; Lóczy et al., 2009; 

Schweitzer, 2009).  

On the Lower Tisza, various studies have highlighted the changes of the river 

channel as well as the hydrological conditions due to the alterations from the regulation 

works. However, these have covered short sections of the river which are 

discontinuous, making it difficult to assess connections between various morphological 

units of the river which could be revealed by using longer sections of the river. 

As indicated by Török (1977), the regulation of the lowland section of the 

Maros (Lipova -Szeged) began with the construction of levees, followed by 33 artificial 

meander cutoffs which shortened the river by 90 km and channel training. The effect 

was a doubling of the river’s slope from 14 cm/km to 28 cm/km and incisions of up to 

1 m (Laczay, 1975). With the increased energy of the river, there was bank erosion and 

an increased sediment load which led to the development of large sand bars in some 

sections of the river (Kiss et al., 2011). Accumulation within the floodplains ranges 

between 0.2-0.6 cm/y (Kiss et al., 2011). In the latter part of the 19th century, parts of 

the river banks were stabilized with stone revetments and in some cases, brushwood 

groynes (Urdea et al., 2012).  Due to the non-uniformity of the regulation works, some 

freely developing sections have been used in studying the quasi-natural processes and 

evolution of the river from human impacts (Sipos et al., 2012). Although a framework 

for measurements and monitoring have been established for the river, the measurement 

of the short-term sediment delivery, the overall sediment budget and the use of models 

are important in the sustainable management of the river.  

The sediment transport of the Tisza and Maros rivers differ due to the relative 

differences in the geology of the catchment and slope. Although the Maros has a larger 

sediment concentration (500 g/m3) compared to the Tisza (340 g/m3), due to the larger 

mean water discharge of the Tisza (830 m3/s) compared with that of the Maros (161 

m3/s), the Tisza has a larger suspended load (Kiss et al., 2011). However, the Maros 

transports more than 3 times the bedload of the Tisza. The Maros transports a large 

volume of bedload with movement in the form of bars and dunes playing a key role in 

the stability and morphology of the river, as part of the river’s energy is expended in 

the transportation and reallocation of these forms (Sipos et al., 2012). In the lowland 

sections, while the bedload transport of the Maros is 28,000 t/y, the Tisza transports 

9000 t/y (Bogárdi, 1974; Sipos et al., 2007).  
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3.3.1 Study sites for the centurial changes in channel morphology 

To assess the long-term evolution of the Lower Tisza River, the studied section 

was divided into three reaches (upper reach, middle reach and lower reach) based on 

the degree of human impact and the morphological characteristics (Fig. 3.3).  

 

 

Fig 3.3: The changes in channel cross-sections (VO) along the Lower Tisza River were studied in 

detail. The location of cross-sections (VO) and the artificial cutoffs are indicated on the map. The 

following reaches were used in the long-term analyses: 1-upper reach, 2-middle reach, and 3-lower 

reach. 

 

Along the Lower Tisza, the spatial distribution of the various engineering 

constructions is not even. At the upper reach (255-238 f.km), the mean width of the 

floodplain is 350 m (maximum: 1060 m and minimum: 365 m), with a total revetment 

length of 10.92 km (density 0.64 km/km); the middle reach (238-194 f.km) has a mean 

floodplain width of 1000 m (maximum: 3200 m and minimum: 560 m) and a total 

revetment length of 17.53 km (density 0.39 km/km); while the lower reach (194-166 

f.km) has a mean floodplain width of 380 m (maximum: 975 m and minimum: 380 m) 

and a total revetment length of 17.53 km (density 0.54 km/km).  

The long-term changes in channel were assessed using 36 fixed cross-sections 

(7 on the upper reach; 18 on the middle reach; and 11 on the lower reach) on the Lower 

Tisza River located at approximately 2.5 km intervals (see Fig. 3.3). To incorporate the 

effects of planform and the impact of various human interventions and on each cross-

section, the location of each cross-section was classified based on the sinuosity of the 
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channel (location in meanders or bends) and type of human intervention (artificial 

cutoffs, revetments and groynes) directly affecting the cross-sectional profile (Fig. 3.4).  

 

 
Fig. 3.4: The main morphological characteristics of the studied cross-sections. The VO refers to the 

registered number of the cross-section 

 

3.3.2 Study sites for detailed channel morphology and flow velocity  

To understand the influence of the planform of the river and state of revetment 

on flow characteristics, four sites within the middle reach were selected (Fig. 3.5). The 

selected sites represented typical sections of the Lower Tisza which were subjected to 

direct human impacts (first three sites were revetted), or freely developing (last site). 

In the case of the revetted sites, the type and condition of revetment differed, allowing 

for a comparison of the impact of the type as well as the condition of the revetment on 

in-channel processes. 

These sites differ in the channel form and age of revetment constructions. The 

northernmost site is at Csanytelek North (CN: 227.4-226.6 f.km). It is located at a 

slightly sinuous section. After an artificial cut-off upstream of the site, bank erosion 

accelerated here, thus a 1080 m long stone revetment was built in 1966 along the 

western bank. The study site includes the downstream end (300 m long) of the 

revetment and also a non-revetted section. The downstream end of the revetment (ca. 

along a 110 m) have already collapsed into the pool of the channel and intensive (1.2 

m/y) lateral erosion had started endangering the artificial levee just ca. 25 m from the 

bank line.  

The next site is Csanytelek South (CS: 224.7–224.1 f.km), which is located in 

a meandering section. Though the revetment at this site was constructed in 1940, it is 

still intact, probably due to its different design (stepped-block revetment). The 

following site at Mindszent (M: 215.6–214.8 f.km) is also located in a bend; and here, 

the revetment was constructed in 1910. The revetment started eroding due to landslides 

along its middle part (200 m length), though not in an extent that the river could erode 

the banks behind.  The evolution of these revetted sections were compared to the 

evolution of a free meander at Ányás (A: 212.2-210.8 f.km), which was never trained, 

thus the channel freely translates (1.7 m/y) downstream (Kiss et al., 2013). 
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Fig 3.5: Four sites within middle reach were selected, where ADCP measurements were carried out 

along transects. Study sites: A – Csanytelek North (CN); B - Csanytelek South (CS); C – Mindszent 

(M); and D – Ányás (A). The state of revetment within every location is also indicated. 

 

3.3.3 Study sites for changes point-bar evolution and bank erosion  

The short-term channel evolution was analyzed based on measurements of 

point-bar elevation changes and bank erosion at selected sites (Fig. 3.6). In its natural 

state, before the regulations, the sinuosity of the channel was high (with up to 30 

meander bends), point-bars appeared in every bend, and the channel was relatively 

shallow (6-8 m; Kiss et al., 2019). Along the entire Lower Tisza in the late 19th, 47 

point-bars existed (in 52.3 km length), but nowadays, their number (20) and total length 

(4.7 km) is reduced considerably (Kiss et al., 2019). For this study, point-bars which 

were not dredged, and develop in a quasi-natural way were selected. The upstream 

point-bar (Csongrád: 244.1-243.6 f.km) developed at a confluence; thus, it could also 

be considered as a confluence bar. Its opposite bank is revetted, thus, it might influence 

the evolution of the point-bar. However, the studied downstream point-bar evolved in 

a natural, but sharp meander without direct human impact (Ányás: 211.8-211.5 f.km). 

Here, the bank erosion on the opposite bank was also measured. 

To quantify and understand bank erosion of the Lower Tisza River, three 

eroding sections along the western bank within the middle reach were selected (Fig. 

3.5). The upstream 0.8 km and 0.6 km long sections represent banks with revetments 

(Csanytelek North: 227.4–226.6 f.km, and Csanytelek South: 224.7–224.1 f.km), while 

the 1.1 km long downstream study area is free of any direct human impacts at Ányás 

(212.2–211.1 f.km). The locations of the studied eroding banks were selected to 

represent erosion within revetted sections (Csanytelek), as well as a freely developing 
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meander (Ányás). The locations were also the subject of ADCP measurements 

described in the previous section. 

 

 

Fig 3.6: Locations of point-bar (2 locations) and bank erosion (3 locations) measurements. On the 

point-bar surfaces, longitudinal profiles (A-C) and transverse profiles (I-VIII) were analyzed 

 

3.3.4 Study site of sediment transport on the Maros  

To ascertain the bedload transport of the Maros river, the gauging station at 

Makó was used as the study location (Fig. 3.2). The selection was due to the lowland 

character of the section of the river, as well as fulfilling the condition of a good bedload 

sampling site (van Rijn, 1986): the study location is in a stable reach of the river, 

sufficiently deep for sampling, and normal to flow direction. At Makó, the Maros river 

has a mean width and depth of 140 m and 3.6 m respectively, and a cross-sectional area 

of 500 m2 (Kiss et al., 2012). In this straightened section of the river, it was stabilized 

on both sides mostly with stone revetments to aid in navigation as part of the lowland 

section of the river in Hungary. 
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4. DATA AND METHODS 

4.1 Centurial channel changes in the Lower Tisza River 

To analyze the centurial channel changes, I employed a dataset of hydrological 

surveys including some data on revetments and cutoffs of the Lower Tisza, provided 

by the Lower Tisza Hydrological Directorate (ATIVIZIG). The Hydrological Atlas of 

the Lower Tisza (1976) provided the plan-form of the river showing the banklines in 

1891, 1931 and 1976, the locations of cross-sections (VO), artificial cutoffs and 

revetments. The cross-sectional data covered 1891, 1931, 1961, 1976, 1999 and 2017. 

The cross-sections were surveyed using fixed geodetic points (referred to as VO points) 

located at approximately 2.5 km intervals along the Tisza. For each cross-section, the 

elevations (for the near-bank area) and depth measurements (for wetted channel) were 

made at 5 m intervals.  The cross-sections were repeatedly surveyed and were used in 

assessing the centurial changes in the channel. 

Based on the cross-sectional survey data, elements of a typical channel cross-

section measured from the bankfull level were used in analyzing the characteristics of 

the channel development (Fig. 4.1).  

 
Fig. 4.1: A typical channel cross-section showing the analyzed vertical channel parameters  

 

The bankfull level was determined as lowest point of the bankline. The 

following cross-sectional channel parameters were measured and calculated: 

i. thalweg depth: deepest point measured from the bankfull level;  

ii. mean depth: arithmetic mean of all measured depths of cross-section at 

5 m intervals;  

iii. cross-sectional area: area of cross-section up to the bankfull level 

obtained by the total sum of the areas of segments derived from the 

product of the intervals (5 m) and the measured depths; 

iv. bankfull width: measured channel width at the bankfull level; 

v. mean width: ratio of cross-sectional area to thalweg depth.  

 

To assess the influence of planform, the entire length of the river was dissected 

into bends and meanders (Chapter 3.3.1) based on Laczay’s classification (Laczay, 

1982), for which the sinuosity of every segment was calculated between two inflection 

points (midpoint of straight sections) as the ratio of the bend length of the segment to 
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the chord length, the straight line joining inflection points (Fig 4.2). All segments with 

sinuosity values below 1.1 were classified as bends while those with sinuosity values 

greater than 1.1 were classified as meanders.  

 

 
Fig. 4.2: Inflection points, chord length and bend length of a river section 

 

4.2 Detailed channel morphology and flow velocity of the Lower Tisza  

The short-term channel changes at four selected sections (i.e. Csanytelek North, 

Csanytelek South, Mindszent and Ányás) involved detailed channel and flow velocity 

surveys which were made at low stage (24/10/2017: -119 cm stage). The survey was 

supported by ATIVIZIG and were performed along transects spaced (40-105 m), 

approximately half of the channel width at each surveyed location. Surveys were also 

made along the longitudinal direction. The study employed a boat mounted River Ray 

ADCP (by Teledyne RD Instruments) with a GPS device. The obtained field data were 

analyzed by using WinRiver II software. Based on the field measurements, the 

measured wetted width at the actual water level and the mean discharge were 

determined for each cross-section. The mean velocity for the transects were calculated 

from the arithmetic mean of velocity fields of bins. The specific stream power (stream 

power per specific width) was calculated by dividing the product of the discharge, local 

slope within study site, density of water and gravitational acceleration by the width of 

channel section for each transect.  

The channel morphology of the selected sites was studied along the transects of 

the velocity measurements based on a DEM database created and owned by ATIVIZIG. 

The digital elevation model created from a survey of the entire Lower Tisza channel at 

approximately 100-m intervals using a Sonar Mite Echo Sounder (by Ohmex 

Instruments), (in 2017) and merging this dataset with a DEM of the floodplain based 

on airborne LiDAR survey (made in 2014) with a ±10 cm vertical resolution .Based on 

the DEM, the bankfull level of the channel cross-sections was determined, and from 

this elevation the maximum channel depth (m) and bankfull width (m) were calculated 

for each cross-section where our own velocity measurements were made. 

 

4.3 Changes in point-bar evolution and bank erosion 

Point-bar development and bank erosion are key processes in the morphological 

evolution of the Lower Tisza River; therefore, these processes were studied in detail at 
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selected sites. The point-bar elevation was surveyed annually at Csongrád and Ányás, 

while the bankline changes were also measured at Csanytelek and Ányás.  

The recent evolution of point-bars was monitored also with the Topcon GNSS 

RTK Hiper Pro system (Fig. 4.3). The measurements started in 2012 (vertical accuracy: 

±1 cm). The surveys were performed along cross-sectional profiles, surveying 850-

1600 points at each location with an average interval of 4 m between successive points 

in the transverse direction and 10 m in the longitudinal direction. Based on the data, 

digital elevation models (DEM) were created (ArcGIS 10.3) using the Kriging 

interpolation method at a resolution of 1 m. The volume of the bar at a given survey 

was measured from 73.5 m a.s.l (lowest elevation of the DEM) at Csongrád while at 

Ányás, it was measured from 74 m a.s.l (lowest elevation of the DEM). To evaluate the 

changes in sediment dynamics, the subsequent DEMs were extracted from each other, 

and longitudinal and cross-sectional profiles were analyzed. 

The bank erosion was monitored by measuring the bank-line changes with 

Topcon GNSS RTK Hiper Pro system. The measurements started in 2011 at Ányás, 

while that at Csanytelek began in 2013 (horizontal accuracy: ±1 cm). The data were 

analyzed using ArcGIS 10.3. The mean bank erosional rate was calculated based on the 

mean width of the polygon between two bank-lines. 

 

Fig. 4.3: Measuring the point-bar elevation at Csongrád 

 

4.4 Modelling the morphological changes of the Lower Tisza 

The Delft3D model used in the hydrological and morphological modelling of 

the Lower Tisza was a 2DH model with an open source license from Deltares (The 

Netherlands). Although the Delft3D suite has various components (Flow, MOR, Wave, 

WAQ), the DELFT3D-FLOW stand-alone module was applied for my research which 

has sediment transport and morphological updating fully integrated.  

The model calculates the three-dimensional transport of sediment is calculated 

by solving the three-dimensional advection-diffusion (mass-balance) equation for the 

suspended sediment. The bedload on the other hand, utilizes the method of van Rijn 

(1993). The use of the bedload option caused the bed-load transport vector to be 

computed for all the computational points at each time step. The result of this is the 

erosion and accretion of the channel bed and this causes adjustments to the longitudinal 

and transverse bed slopes. The exchange between the suspended sediment of the flow 
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and the bedload transport is used by the model to update the bed level for each 

computational time step of the flow simulation. The sediment transport however 

depends on the sediment layers which are indicated in the model and the bedload 

transport is reduced as the sediment layer is reduced. 

 

Model input 

The model covered the entire length of the Lower Tisza River and the grid of the model 

(Fig. 4.4) consisted of 7967 cells in the M direction (size: 3-30 m) and 137 cells in the 

N direction (size: 6-30 m). The bathymetry for the model was developed from the 2017 

DEM of the Lower Tisza created and owed by the ATIVIZIG and was created from the 

2017 hydrological survey of the river. Samples were generated in ArcGIS 10.3 and 

interpolated to obtain the bathymetry of the channel (Fig. 4.5). 

 

 
Fig. 4.4: The grid used in th Delft3D model showing the details at the Ányás bend 

 

  
Fig. 4.5: The bathymetry of the Lower Tisza used in the model showing the Ányás bend 
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The input parameters used in the model include a time step of 0.1 min. The open 

boundaries had discharge as the forcing except the downstrean boundary which had 

water level (Table 4.1). 

 

Table 4.1: Input parameters of the Delft3D model of the Lower Tisza 

Parameter Value Remarks 

Gravitational acceleration  9.81 m3/s Default 

Water density 1000 kg/m3 Default 

Density of bedload sediments 2650 kg/m3 Default 

Initial sediment thickness 2 m Based on measurements 

from previous studies 

(Fiala et al., 2007) 

Median sediment size 200 μm Calibration 

Chezy’s roughness 

coefficient 

65 Default 

Time step 0.1 min Courant number criterion 

Open boundaries 

Upstream Discharge: 800 m3/s Bankfull in upper reaches 

Körös Discharge: 100 m3/s Mean discharge 

Maros  Discharge: 161 m3/s Mean discharge 

Downstream Water level: 300 cm Mean stage  

 

4.5 Bedload discharge measurement of the Maros  

Bedload measurements were made only on the Maros, as there is a wired 

monitoring section with a monitoring station operated by the ATIVIZIG. The 

monitoring station is equipped with an electric engine moving the applied equipment 

along the same cross-section, which enabled us to do the measurements exactly at the 

same points (with given distance from the bank). The measurements at the Makó 

gauging station were conducted 8 times labelled by year and sampling campaign within 

year (2015/01, 2016/01, 2016/02, 2016/03, 2016/04, 2016/05, 2016/06 and 2017/01 

respectively). During the sampling periods, water stages of the Maros were below 

bankfull level and close to the mean annual stage, which enabled a good comparison of 

the bedload measurements due to their similar hydrological conditions. To understand 

the bedload transport, basic actual data including channel width, flow velocity, water 

depth at the gauge station, discharge, bedload discharge and bedload grain-size 

distribution were measured and analyzed. Bedload and flow velocity were sampled and 

measured across the wired monitoring section, which is equipped with an electric 

engine moving the applied equipment along the same cross-section, which enabled us 

to do the measurements exactly at the same points (with given distance from the bank). 

Bedload sediments were collected at eight locations at 10 m intervals across the channel 

cross-section at the Makó gauge station (Fig. 4.6) using a Helley-Smith bedload 

sampler. The sampler consists of an entrance nozzle (0.76 mm × 0.76 mm); a sample 

bag (made up of 250 µm-mesh polyester) and a frame.  The 250 µm mesh allows to 

trap medium sand or greater grain-size samples based on the Wentworth Scale 
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(Wentworth, 1922). Sampling was done applying 30 s, 60 s and 90 s sampling 

durations. An Acoustic Doppler Current Profiler (ADCP) was also used across the 

transect to measure the mean velocity and water depth for the sampling campaigns. For 

each sampling day, the water stage was also recorded. 

 

 

Fig. 4.6: Approximate locations of points used for sampling along channel transect at Makó gauging 

station.  

 

The collected samples were dried and weighed (in gram). The bedload transport 

rate was determined as the quotients of using the sampling times as divisors to the 

bedload masses. The bedload rates were then compared both spatially and temporally 

by using simple bar charts, scatter plots and line graphs. The grain size distribution for 

the initial sampling (2015/01) were also determined to assess the changes in grain sizes 

across the cross-section as well temporally. 

The hydrological conditions at the gauge station were represented by the water 

stage for the period of the sampling campaigns (Fig. 4.7). The water stage ranges from 

-24 cm to 81 cm over the studied period with the timing of the various measurement 

campaigns also indicated. 

 

 

Fig. 4.7: Water stage at Mako for the sampling period, with the sampling days indicated. 
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The bedload measurements at Mako involved sampling campaigns to assess the 

bedload transport of the Maros at the gauging station. However, to set up a framework 

for future measurement campaigns, the sampling duration was also assessed. The 

campaigns therefore covered bedload measurements to determine the bedload transport 

and the effect of sampling time on masses recovered (Table 4.2). 

 

Table 4.2: Summary of bedload sampling at Makó 

Sample 

ID 
ADCP 

Sampling of 

cross-section 

(No. of 

samples per 

point) 

Other measurements 

 
Aim of 

measurement 
Location 

from right 

bank (m) 

No. of 

samples 

per point 

2015/01 - 1 10 9 Initial sampling/ 

Sampling time 

2016/01 YES 3 20/50 4 Sampling time 

2016/02 YES 3 20/50 4 Sampling time 

2016/03 YES 3 20/50 4 Sampling time 

2016/04 - 7 - - Morphology 

2016/05 - - 10/50 15 Morphology 

2016/06 YES 1 10/50 2 Morphology 

2017/01 - 1 20/50 5 Morphology 

 

4.6 Estimation of the bedload transport of the Maros 

To be able to predict the bedload transport of the Maros at Makó, six formulae 

were used to estimate the bedload transport rates. These formulae were made by Meyer-

Peter and Muller (1948), Einstein-Brown (Brown 1950), Rottner (1959), Bagnold 

(1980), Wong and Parker (2006) and Bathurst (2007). The formulae have had relatively 

different successes when applied to different rivers, but this may be attributed to the 

different theories and applicable conditions for the different formulae (Table 4.3). 

 

Table 4.3: Formulae used in bedload transport estimation 

Equation Theory Applicable range 

Meyer-Peter Muller (1948) Shear stress 

0.38 mm <Dm< 28.65 

mm 

0.040% < S < 2% 

Einstein-Brown (Brown 1950) Probabilistic 0.3 mm < D50< 28.6 mm 

Rottner (1959) Regression 0.31 mm <Dm< 15.5 mm 

Bagnold (1980) Stream power 0.3 mm < D50< 300 mm 

Wong and Parker (2006) Shear stress 
3.17 mm < D50< 

28.65mm 

Bathurst (2007) Discharge 
12 mm < D50< 140 mm 

0.048% < S < 4.8% 

(Dm is the arithmetic mean diameter; S is the slope of the channel, and D50 is the median particle size) 
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Although these formulae were developed using setup conditions in a laboratory, 

a few including Bathurst’s and Rottner’s were developed using field measurements 

(Lopez et al, 2014). The details of the applied equations are indicated as follows. 

 

(a) Meyer-Peter Muller (1948) 

[
𝑞𝑠(𝛾𝑠 −  𝛾)

𝛾𝑠
]

2
3⁄

[
𝛾

𝑔
]

1
3⁄ 0.25

(𝛾𝑠 − 𝛾)𝐷𝑚
=
(𝑘/𝑘′)

3
2⁄  𝛾𝑅𝑆

(𝛾𝑠 − 𝛾)𝐷𝑚
− 0.047 

 

where qs is the bedload discharge (N/s/m); 𝛾𝑠 is the specific weight of the sediment 

(N/m3); 𝛾 is the specific weight of water (N/m3); g is the gravitational acceleration 

(m/s2); k is the Manning coefficient of roughness associated with skin friction only; k’ 

is the Manning coefficient of total roughness; R is the hydraulic radius (m); S is the 

slope (m/m); and Dm is the arithmetic mean diameter of sediment (m). 

 

(b) Einstein-Brown, Brown (1950) 

𝑞𝑠𝑣 = 𝑞∗𝐹1√((𝛾𝑠/𝛾) − 1)𝑔𝐷50
3  
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2
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𝑞∗ = 2.15 exp (−0.0470 𝜏∗⁄ ) ; if 𝜏 < 0.09 

𝑞∗ = 40 𝜏∗
3 ; if 𝜏 > 0.09 

𝜏∗ =
𝛾RS

(𝛾𝑠 − 𝛾)𝐷50
 

 

where qsv is the bedload discharge (m3/s/m); q* is the dimensionless volumetric bedload 

transport rate per unit width; F1 is the parameter of fall velocity; 𝛾𝑠 is the specific weight 

of sediment (N/m3); and 𝛾 is the specific weight of water (N/m3); g is the gravitational 

acceleration (m/s2); D50 is the median diameter of sediment (m); υ is the kinematic 

viscosity of water; τ* is the Shield’s stress; R is the hydraulic radius (m); and S is the 

slope (m/m). 

 

 (c) Rottner (1959) 

𝑞𝑠 = 𝛾𝑠√𝑔 [
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where qs is the bedload discharge in weight per unit width (N/s/m); 𝛾𝑠 is the specific 

weight of sediment (N/m3); 𝛾 is the specific weight of water (N/m3); g is the 

gravitational acceleration (m/s2); D50 is the median diameter of sediment (m); and y is 

the depth of flow (m); and V is the mean flow velocity (m/s). 
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(d) Bagnold (1980) 
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where qsm is the bedload discharge in mass per unit width (kg/s/m) ; 𝜌𝑠 is the density of 

sediment (kg/m3); and 𝜌 is the density of water (kg/m3); qsr is the reference value of qsm 

(kg/s/m; 𝜔 is the stream power per unit bed area (kg/s/m); 𝜔𝑐is the critical stream power 

per unit bed area (kg/s/m); (𝜔 − 𝜔𝑐)𝑟 is the reference value of excess stream power 

(kg/s/m) ); y is the depth of flow (m); yr is a reference depth of flow (m); D50 is the 

median diameter of sediment (m); D50r is the reference value of D50 (m); R is the 

hydraulic radius (m); S is the slope (m/m); V is the mean flow velocity (m/s); and g is 

the gravitational acceleration (m/s2). 

 

(e) Wong and Parker (2006) 

𝑞𝑠𝑣 = 𝑞∗√((𝛾𝑠 /𝛾) − 1)𝑔𝐷𝑚 𝐷𝑚 

𝑞∗ = 4.93(𝜏∗ − 0.0470)
1.60 

𝜏∗ =
𝛾RS

(𝛾𝑠 − 𝛾)𝐷𝑚
 

 

where qsv is the bedload discharge in weight per unit width (N/s/m); q⁎ is the 

dimensionless volumetric bedload transport rate per unit width; 𝛾𝑠 is the specific weight 

of sediment (N/m3); and 𝛾 is the specific weight of water (N/m3); g is the gravitational 

acceleration (m/s2); Dm is the median diameter of sediment (m); τ* is the Shield’s stress; 

R is the hydraulic radius (m); and S is the slope (m/m). 

 

(f) Bathurst (2007) 

𝑞𝑠𝑚 = 𝑎 𝜌 (𝑞 −  𝑞𝑐2) 

𝑎 = 29.2 𝑆1.5  (
𝐷50

𝐷50𝑠
⁄ )−3.30 

𝑞𝑐2 = 0.5(0.0513𝑔
0.5 𝐷50

1.5 𝑆−1.20 + 0.0133𝑔0.5𝐷84
1.5 𝑆−1.23) 

 

where qsm is the bedload discharge in mass per unit width (kg/s/m); a is a dimensionless 

coefficient that represent the rate of change of bedload discharge with water mass 

discharge; 𝜌 is the density of water (m3/s); q is the water discharge per unit width 

(kg/s/m); 𝑞𝑐2is critical or threshold water discharge per unit width for transport of 

material as the amour layer breaks up; S is the slope (m/m); D50 is the median diameter 

(m); D50s is the median diameter of subsurface material (m); g is the gravitational 

acceleration (m/s2); and D84 is the particle size of 84 percentile of surface layer material 

(m). 
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Input data 

The input data for the estimation of the bedload included the discharge and 

absolute elevation of water stage, which enabled the computation of water depth and 

slope of the flow (Table 4.4). The slope of each sampling day finding the ratio of the 

water elevation difference between Apátfalva (32.15 f.km) and Makó (24.5 f.km) to the 

horizontal distance between Apátfalva and Makó along the river (7650 m). 

  

Table 4.4: Input data used in bedload estimation 

Sampling 

ID 

Discharge 

at Makó 

(m3/s) 

Absolute water stage 

elevation (m a.s.l.) Slope (m/m) 

Apátfalva Makó 

2015/01 156 81.13 79.58 2.03 × 10-4 

2016/01 194 81.46 79.93 2.00 × 10-4 

2016/02 199 81.54 80.01 2.00 × 10-4 

2016/03 212 81.56 80.05 1.97 × 10-4 

2016/04 240 81.71 80.24 1.92 × 10-4 

2016/05 210 81.46 80.00 1.91 × 10-4 

2016/06 110 80.71 79.27 1.88 × 10-4 

2017/01 167 81.24 79.72 1.99 × 10-4 

 

The depth of flow (y) was determined from the difference between the measured 

absolute water stage and the mean absolute elevation of the fixed bottom of the river 

(77.31 m a.s.l.). The cross-sectional area of the Makó cross section is trapezoidal; 

hence, wetted perimeter (P) was determined for each flow cross section by the sum of 

the fixed bottom width (82 m), and twice the side length which is dependent on the 

flow depth and side slope (1/8).  The cross-sectional area was determined from the area 

of a trapezium for any given flow depth. The hydraulic radius (R) was obtained from 

the ration of the flow area to the wetted perimeter. The mean flow velocity was 

determined from the measured water discharge by applying the continuity equation. 

The constants applied in the estimation included the gravitational acceleration, density 

and size of sediment particle (table 4.5). 

 

Table 4.5: Input data used in bedload estimation 

Name  Symbol Applied value 

Gravitational acceleration  g 9.81 m3/s 

Density of water 𝜌 1000 kg/m3 

Density of sediment 𝜌𝑠 2650 kg/m3 

Mean sediment diameter D50 300 μm 

Mean sediment diameter od subsurface material D50s 300 μm 

Particle size of 84 percentile of surface layer 

material 
D84 500 μm 
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5. RESULTS AND DISCUSSION 

This chapter presents the results of the PhD research, discusses these results in 

the context of related literature and its implication for the management of the Lower 

Tisza River channel specifically and for other engineered large alluvial rivers generally. 

 

5.1 Centurial changes in the Lower Tisza Channel 

5.1.1 General changes in vertical channel parameters 

The mean cross-sectional area of the Lower Tisza channel increased from 1528 

m2 in 1891 to 1703 m2 in 2017 representing an increase of 11.4% over the studied 

period (Fig. 5.1). However, the temporal changes in cross-sectional area were not 

uniform during this period. The mean cross-sectional area increased from the preceding 

(1891) survey year by 9.5% in 1931, and by a further 1.1% in 1961. By the 1976 survey, 

the direction of channel development changed, as this period was characterized by an 

8% cross-sectional area decrease. However, the subsequent years, 1999 and 2017 also 

experienced increases (by 1.9% and 7.4% respectively). The spatial changes in mean 

cross-sectional area in the reaches were not uniform. Similar changes occurred within 

the upper and lower reaches, although the magnitudes of change differed. However, in 

the middle reach, the trend in changes over the survey years differed. Although there 

was an increase too from 1891 to 1931, the period of mean cross-sectional area decrease 

started earlier (1931-1976). From 1976 to 2017, there were increases as was the case in 

the upper and lower reaches.  

 

 

Fig. 5.1: Characteristic cross-sectional area values of the studied Lower Tisza for the entire 

studied channel section (A), for the upper reach (B), middle reach (C), and lower reach (D) based on 

the channel surveys made in 1891, 1931, 1961, 1976, 1999 and 2017. 

 

The maximum and minimum cross-sectional areas for the studied river section 

differed spatially. At the beginning, the VO cross-sections with the lowest area (1891: 

620 m2; 1931: 1269 m2; 1961: 1220 m2) were located in the middle reach. From 1976 

to 1999, it was located in the upper reach (1976: 1168 m2; 1999: 1194 m2), while in 

2017, it was in the lower reach (1205 m2). However, the maximum cross-sectional areas 
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(1891: 2177 m2; 1931: 2176 m2; 1961: 2372 m2; 1976: 1990 m2; 1999: 1936 m2; 2017: 

2352 m2) were always located in the lower reach. The temporal changes of the 

maximum and minimum cross-sectional areas had different trends both for the entire 

section and within the reaches. There was a drastic increase in the minimum cross-

sectional area from 1891 to 1931(105%) in the entire channel, with a similar trend in 

the upper and middle reaches. Between 1931 and 1976, the minimum cross-sectional 

area decreased by 8.0% and but increased again by 3.2% from 1976 to 2017. The 

maximum cross-sectional area on the other hand, increased for the period 1891-1961 

(9.0%), decreased for the period 1961-1999 (18.4%), and increased again for the period 

1999-2017 (21.5%). 

The spatial, downstream changes in the cross-sectional area of the individual 

VO sections revealed high variability (Fig. 5.2). Generally, in the case of two-thirds of 

them, the cross-sectional areas increased for the period 1891-2017; while about a third 

of them decreased over the period, with most of these (75% of them) occurring in the 

middle section.  In some of the cross-sections, the changes were marginal as in the case 

of VO 216 which experienced only 0.7% change (which is probably within the 

measurement errors). Others had very large increases, e.g. VO 221 which had a change 

of 166.4%. The cross-sections with the least and highest variation in cross-sectional 

area all occurred in the middle reach as well, where the greatest variation in cross-

sectional areas occurred. There is also a general increasing trend downstream. For 

instance, the cross-sectional areas were generally less than 1500 m2 in the upper reach 

while those in the lower reach were above 1500 m2. In spite of this, abrupt changes in 

cross-sectional area within survey sites were common for all survey years, referring to 

local influencing factors. 

 
Fig. 5.2: Variation of cross-sectional area along the Lower Tisza for 1891, 1931, 1961, 1976,  

1999 and 2017. 

 

The changes in cross-sectional areas may be influenced by the changes in depth 

and width conditions of the channel (Figs 5.3-5.6). The studied Lower Tisza channel 

generally incised from 1891 to 2017 (Fig. 5.3-5.4). During these years, the mean 

thalweg depth of the entire section increased by 15% from 12.2 m to 14.0 m. In between 

these years however, the thalweg of the channel alternated between incision and 

aggradation: there was incision from 1891 to 1961 (1.6 m), aggradation from 1961 to 
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1976 (0.3 m), incision from 1976 to 1999 (0.6 m), and finally an aggradation from 1999 

to 2017 (0.1 m).  

The mean channel depth also increased by 20% from 8.2 m to 9.8 m (1.3 cm/y), 

showing continuous increase during the studied period. Although no clear downstream 

trend was observed for the depth conditions of the channel, the maximum thalweg depth 

occurred in the lower reach for most of the surveyed years (1891: 22.4 m; 1961: 20.6 

m; 1976: 21.3 m; 1999: 21.6 m; and 2017: 21.1 m) except for 1931 when it occurred in 

the upper reach (1931: 22.8 m) which was the highest recorded thalweg depth for the 

channel. At the beginning of the studied period, the channel incision was very high, 

especially in the upper reach where it was 31.3 cm/y in 1891-1931. Later, though the 

incision rate became lower, the most incising sections were located in the lower reach 

in 1931-1961 (13.3 cm/y). Finally, the middle reach experienced the most intensive 

incision for the periods 1961-1976 (9.0 cm/y), 1976-1999 (9.3 cm/y), and 1999-2017 

(11.9 cm/y). Similarly, the highest aggradation rates occurred in the lower reach in 

1891-1931 (11.8 cm/y: VO 228); later in the upper reach in 1931-1961 (20.4 cm/y: VO 

200); middle reach for the periods 1961-1976 (14.5 cm/y: VO 210); 1976-1999 (11.4 

cm/y: VO 211); and 1999-2017 (16.8 cm/y: VO 215). Conversely, the least changes in 

thalweg depth occurred mostly in the middle and lower reaches where there was 

virtually no change in thalweg as the changes were less 1 cm/y: 1891-1931 (VO 208, 

VO 215, VO 216, VO 227 and VO 233); 1931-1961 (VO 206, VO 214, VO 219, VO 

220 and VO 231); 1961-1976 (VO 227); 1976-1999 (VO 216, VO 221, VO 222, VO 

223 and VO 234); and 1999-2017 (VO 209, VO 220 and VO 222). 

 

 
Fig. 5.3: Variation of thalweg depth along the Lower Tisza for 1891, 1931, 1961, 1976, 1999 and 2017. 

 

Along the studied section of the Tisza river, the bankfull width continuously 

decreased from 1891 to 2017 (Fig. 5.5). The mean bankfull width of the entire section 

in 1891 (203 m) decreased by 42 m (a narrowing of 33.3 cm/y) to 161 m in 2017, 

representing a 20.7% change over the period. In between surveys, the rate of narrowing 

of the bankfull width was similar for the most of the periods (13-20 cm/y), although the 

period 1961-1976 was characterized by a narrowing of 173 cm/y. The greatest changes 

in bankfull width characterized the upper reach (41% narrowing – VO202 and VO 207; 

39% widening – VO205; 67% widening – VO206), and the middle sections and 
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downstream end of the middle reach (49% narrowing – VO214; 48% narrowing VO 

215; 128% narrowing – VO221; 47% narrowing – VO223). 

 

 
Fig. 5.4: Variation of mean depth along the Lower Tisza for 1891, 1931, 1961, 1976, 1999 and 2017. 

 

 
Fig. 5.5: Variation of bankfull width along the Lower Tisza for 1891, 1931, 1961, 1976,  

1999 and 2017. 

 

Although there were wide variations in the bankfull width over the studied 

period, the mean width did not display such pronounced changes (Fig. 5.6). From 1891 

to 2017, the mean width decreased by 8% from 134 m to 126 m. The greatest change 

was however from 1891 to 1999 (14.1%), while the period 1999-2017 was 

characterized by widening (10%). 

 
Fig. 5.6: Variation of mean width along the Lower Tisza for 1891, 1931, 1961, 1976, 1999 and 2017. 
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5.1.2 Effect of sinuosity on vertical channel parameters 

The VO cross-sections were classified based on the sinuosity of the channel as 

slightly sinuous bends or sinuous meanders (described in Chapter 4) to assess their role 

in the morphological evolution of the Lower Tisza channel (Fig. 5.7). Although the 

mean cross-sectional area of the bends (1524 m2) was slightly lesser than in the 

meanders (1541 m2) in 1891, by 2017, it increased to 1767 m2 (by 15.9%) in case of 

bends; while in the meanders, it increased to 1623 m2 (by 5.3%). In between surveys, 

the cross-sectional areas within bends increased by 14.8% from 1891 to 1961, while 

the change in the meanders was 6.4%. Later, the cross-sectional area decreased in the 

bends from 1961 to 1999 (by 8.6%) and increased from 1999 to 2017 (by 10.5%). The 

meandering sections also decreased but only from 1961 to 1976 (by 7.8%), and later 

increased from 1976 to 2017 (by 7.4%). 

 

 

Fig. 5.7: Variation in mean cross-sectional area of the entire studied section of the river within bends 

and meanders for the surveyed years 

 

In between surveys, the changes are well reflected in the yearly rate of change 

in the cross-sectional area (Fig. 5.8). In the bends, the period 1891-1931 was 

characterized by a high rate of increase (4.80 m2/y). The following period had a slower 

rate of increase (1931-1961: 1.10 m2/y), about a quarter of the rate within the first 

period. The next period was marked by reduction in the cross-sectional area of the 

bends (1961-1976: 9.34 m2/y). There was a near termination in the evolution of the 

cross-sectional area in the bends for the period 1976-1999. Although there was a 

reduction, the rate of change was very low (0.46 m2/y). The final period (1999-2017) 

was marked by the greatest rate of change (increase rate: 7.29 m2/y). In the meanders, 

the channel had increasing rates for most of the periods (1891-1931: 1.49 m2/y; 1931-

1961: 1.27 m2/y; 1976-1999: 4.49 m2/y; and 1999-2017: 0.41 m2/y) except for 1961-

1976, which had a reducing rate, as well as the greatest rate of change (8.55 m2/y). 

In the bends, although the mean cross-sectional area increased from 1891-2017 

for all reaches, the rates of change for the reaches differed. The bends in the upper 

reach had a similar trend as the entire section, although the magnitudes were generally 

higher for all periods. The bends in the middle reach were characterized by a reducing 

rate of change over longer periods; while in the lower reach, the rate was relatively 

similar for the different periods (3.5-5.0 m2/y), although the period 1961-1976 was 
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different as was in the case for all other reaches. The least change in the reaches 

occurred in the middle reach (13.5%), while the upper reach had the greatest change 

(23.7%). The greatest rates of increase and decrease within the reaches all occurred in 

the upper reach for the period 1999-2017 (16.14 m2/y) and 1961-1976 (-16.76 m2/y) 

respectively. Likewise, in the meanders, the upper reach had a similar trend as the 

section, as well as having the greatest rates of increase and decrease in 1891-1931 (9.38 

m2/y) and 1961-1976 (-19.27 m2/y) respectively. Unlike in the bends, the mean cross-

sectional area of reaches increased only in the upper reach from 1891-2017 (23.5%); 

with the middle and lower reaches being characterized by slight decreases (2.9% and 

4.4% respectively).  

 

Fig. 5.8: Yearly change in cross-sectional area within (A) bends and (B) meanders for the entire 

studied river section and the three reaches 

  

The changes in the cross-sectional area were further highlighted by the changes 

in the thalweg depth and mean depth (Fig. 5.9), and the bankfull width and mean width 

(Fig. 5.10). Within the bends and meanders, the pattern of thalweg depth increases was 

similar to the cross-sectional area increases. The thalweg depth increased by 12.9% and 

2.1% in the bends and meanders respectively over the studied period. The mean depth 

also had a similar increase as the thalweg in the bends (24.9%) but a slightly more 

pronounced increase in the meanders (8.4%). Within the reaches, the patterns of change 

in thalweg depth were similar, although the greatest differences were generally between 

1961-1999 where the evolution patterns differed.  

The greatest rates of change in depth were however within the upper reach (for 

bends) and lower reach (for meanders). The bankfull depth decreased over the studied 

period by 15.3% in bends and 12.6% in meanders. The mean width of the channel also 

decreased (8.1%) in the bends, but there was almost no change in the mean width of 

the meandering sections (an increase of 0.4% over the 126-year period). In spite of 

these, the meanders recorded the greatest differences in width in-between survey years, 

with no defined trends in bankfull and mean width except the bankfull width of the 

bends. The width variations in the reaches also had no clear trends especially in the 

meanders. However, the greatest variations occurred from 1891 till 1999 where the 

width generally decreased referring to channel narrowing in all reaches. Nevertheless, 

the differences in the reaches became smaller by the end of the studied period, referring 

to more uniform channel conditions. 
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Fig. 5.9: Yearly change in thalweg depth within (A) bends and (B) meanders; and yearly change in 

mean depth within (C) bends and (D) meanders for the entire studied river section and the three 

reaches. 

 

 

Fig. 5.10: Yearly change in bankfull width within (A) bends and (B) meanders; and yearly change in 

mean width within (C) bends and (D) meanders for the entire studied river section and the three 

reaches. 
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5.1.3 Effect of artificial cutoffs on vertical channel parameters 

The downstream variations of cross-sectional parameters can only be partly 

explained by the various sinuosity conditions at the surveyed profiles, as the vertical 

parameters of the channel were altered by direct engineering works. The studied river 

channel had 12 VO cross-sections directly affected by artificial cutoffs, as they were 

located in artificially straightened channel sections. 

The mean cross-sectional area increased by 26.4% (1891-2017) in the 

straightened channel sections, while in those not affected directly by cutoffs (non-

straightened channel sections), it increased slightly (by 5.9%). The cross-sectional area 

of the straightened sections however increased considerably soon after the cutoffs 

(1891-1931: by 22%); with the non-straightened sections also experiencing increased 

cross-sectional areas (by 4.9%), compared to the overall change over the studied period 

(Fig. 5.11). Although the increase in cross-sectional area continued in both the 

straightened and non-straightened channel sections (Fig. 5.12), their rates of increase 

became similar (0.6 m2/y). Between 1961 and 1999, there was a decrease in the cross-

sectional area in the straightened channel sections, although the rate slowed down 

(1961-1976: 8.21 m2/y; 1976-1999: 2.96 m2/y). The non-straightened sections also 

experienced a reduction in the cross-sectional area, but it was over a shorter period and 

at a higher rate (1961-1976: 9.25 m2/y). It increased again from 1976-2017 (1976-1999: 

3.12 m2/y; 1999-2017: 2.74 m2/y). The cross-sectional area of the straightened sections 

also increased with the highest rate of change (13.02 m2/y) from 1999-2017. Although 

the rates of change were relatively uniform in 1999 for the entire channel, the period 

between 1999 to 2017 was marked by a return to wide differences in the rates. Within 

the reaches of the straightened section, the upper and middle reaches had similar trends 

as the entire river section, but the lower reach had a different pattern of change. 

Although the lower reach had the highest rate of change in the first period, it had the 

least rate of change in the final period. The pattern in the non-straightened sections was 

similar for the reaches; however, the upper reach had the highest rate of change (1961-

1976: 23.55 m2/y) although decreasing.  

 

 

Fig. 5.11: Variation in cross-sectional area for the straightened and non-straightened segments of the 

entire studied section of the river within the surveyed years 
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Fig. 5.12: Yearly change in cross-sectional area for (A) straightened segments and (B) non-

straightened segments for the entire studied river section and the three reaches.  

 

The changes in the thalweg depth and mean depth indicated that the channel 

incised rapidly from 1891 to 1931; characterized by aggradation from 1931-1999, but 

degraded again from 1999 to 2017 (Fig. 5.13). Although the thalweg depth increased 

by 1.4 m (11.2%) over the studied period in the straightened sections, and by 2.0 m 

(16.6%) in the non-straightened sections; the greatest change (1.7 m; by 16.6%) 

occurred in the period 1891-1931 in the straightened sections, and by 1.7 m (21.3%) in 

the non-straightened sections between 1891 and 1999. In the straightened sections, the 

thalweg depth decreased from 1931 to 1999 but increased again from 1999 to 2017. In 

the non-straightened sections however, the increase covered the period 1891 to 1999 

with the decrease from 1999 to 2017. The trends within the reaches were similar for 

both straightened and non-straightened sections; although the lower reach was 

characterized by different patterns in the initial period (1891-1931), and the final period 

(1999-2017) within the straightened sections. The greatest changes within the reaches 

occurred within the upper reach for both straightened and non-straightened sections. 

The bankfull width and the mean width changes had similar patterns, although 

there were sharp differences in the rate of change for both the straightened and non-

straightened sections (Fig. 5.14). The mean bankfull width in the straightened sections 

was narrower than in the non-straightened sections in 1891 (175.3 m and 213.8 m 

respectively); although by 2017, the straightened sections had a wider channel than the 

non-straightened sections (168.0 m and 157.7 m respectively). The mean width did not 

however display such wide variations in either case. In the straightened sections, the 

bankfull width decreased by 7.3 m (4.2%) over the entire studied period, although not 

temporally uniformly. It increased between 1891-1961 (by 4.1%), decreased between 

1961 and 1999 (by 9.7%), and increased again for the period 1999-2017 (by 1.9%).  

The greatest change was a narrowing of 15.7 m (1961-1976) characterized by 

an annual decrease in bankfull width of 1.05 m/y. The change in the non-straightened 

sections showed a greater change, as the channel narrowed by 26.2% during the 126-

year long period. Unlike in the straightened sections, the non-straightened sections 

narrowed for each surveyed period although the greatest narrowing also occurred from 

1961 to 1976 (2.07 m/y). 
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Fig. 5.13: Yearly change in thalweg depth for (A) straightened segments and (B) non-straightened 

segments; and yearly change in mean depth for (C) straightened segments and (D) non-straightened 

segments for the entire studied river section and the three reaches 

 

 

Fig. 5.14: Yearly change in bankfull width for (A) straightened segments and (B) non-straightened 

segments; and yearly change in mean width for (C) straightened segments and (D) non-straightened 

segments for the entire studied river section and the three reaches. 
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In the final period, the channel width was more uniform. The patterns within 

the reaches were similar to the entire channel section for both straightened and non-

straightened channel sections. The greatest change in the straightened sections was in 

the lower reach (1891-1931: a decrease of 2.78 m/y), while that of the non-straightened 

sections was in the upper reach (1961-1976: a decrease of 4.07 m/y). 

 

5.1.4 Effects of revetments and groynes on vertical channel parameters 

The effects of bank stabilization (revetment and groynes) on vertical channel 

parameters were also evaluated. The construction of revetments and groynes were 

mainly after 1931; thus, their effect on the channel vertical parameters were expected 

after this period. Moreover, these direct constructions were localized and affected only 

a low number of cross-sections (see Fig 3.4). Again, the groynes were located three 

cross-sections in the upstream end of the upper reach which also had revetment; 

therefore, the analyses were done mainly for the revetments. 

The mean cross-sectional area for the revetted and non-revetted sections in 

1891 (1591.2 m2 and 1484.7 m2 respectively) increased similarly (by 12.8% and by 

10.8% respectively) over the 126-year period (Fig. 5.15). The period 1891-1961 (50 

years) was characterized by an increase in the cross-sectional area for both the revetted 

sections (by 6.5%) and the non-revetted sections (by 13.8%) with actual change in non-

revetted sections being almost double that in the revetted section (103.4 m in revetted 

sections; and 204.3 m in non-revetted sections). Between 1961 and 1976, the cross-

sectional area of the channel decreased in both revetted and non-revetted sections 

(10.5% and 6.5% respectively). Although the next period (1976-1999) was marked by 

increases in cross-sectional areas, the change in the non-revetted sections was just 0.5% 

while in the revetted section, it was 4.3%. This increasing trend continued for the last 

period (1999-2017) for both revetted and non-revetted sections (13.4% and 3.6% 

respectively). 

The difference in the change in cross-sectional area for the revetted and non-

revetted was emphasized by the rate of change in in between survey years with the 

revetted sections marked by wide variations, while the non-revetted sections were not 

(Fig. 5.16). The reaches generally followed similar trends as the entire section in both 

revetted and non-revetted sections. However, in the revetted sections, the initial period 

of decrease was shorter in the middle reach (1891-1961), while the greatest change rate 

was within the upper reach between 1976 and 2017. In the non-revetted sections, the 

initial period and final period within the lower reach was different from the general 

trend, with the greatest rate of change occurring in the lower reach between 1961 and 

1976. 

The depth had a positive correlation with the changes in the cross-sectional area 

(Fig. 5.17). For both the entire section and within the reaches, the thalweg depth had 

similar trends as the changes in the cross-sectional areas within both the revetted and 

non-revetted sections. Although the thalweg was 12.2 m in both revetted and non-

revetted sections in 1891, they increased by 15.4% and 12.1% respectively over the 

studied period. The rate of change in the channel was less than 5 cm/y in both the 

revetted in non-revetted sections. Although the channel incised generally, there was 



58 

 

aggradation in both the revetted and non-revetted sections from 1961 to 1976 and again 

from 1999 to 2017, indicated by the decreasing rates of change in both periods. While 

the greatest rate of change occurred in the upper reach in the revetted sections (26.5 

cm/y), in the non-revetted sections, it occurred in the lower reach (7.4 cm/y). 

 

 

Fig. 5.15: Variation in cross-sectional area of the river within revetted segments and non-revetted 

segments for the surveyed years 

 

 

Fig. 5.16: Yearly change in cross-sectional area for (A) revetted segments and (B) non-revetted 

segments for the entire studied river section and the three reaches. 

 

The changes in cross-sectional area were further highlighted by the changes that 

occurred in the bankfull width and mean width in the whole studied section, and within 

the reaches (Fig. 5.18). Over the 126-year studied period, the bankfull width narrowed 

by 18.7% and 14.7% in the revetted and non-revetted sections respectively. However, 

not all surveyed periods were characterized by narrowing. In the revetted sections, 

although narrowing occurred for most of the time (1891-1999), the last period (1999-

2017) had widening. In the non-revetted sections, a similar trend occurred; however, 

1931-1961 was also marked by channel widening. The channel was generally 

characterized by narrowing, with the greatest rate of narrowing between 1961 and 1976 

(1.70 m/y for revetted sections; and 1.74 m/y for non-revetted sections). The reaches 

had trends similar to the section although the changes in the middle reach was more 

conspicuous. The greatest rate of change in the reaches also occurred for the period 

1961-1976 within the upper reach for both revetted and non-revetted sections (2.85 m/y 

and 2.96 m/y respectively).  
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Fig. 5.17: Yearly change in thalweg depth for (A) revetted segments and (B) non-revetted segments; 

and yearly change in mean depth for (C) revetted segments and (D) non-revetted segments for the 

entire studied river sections and the three reaches. 

 

Fig. 5.18: Yearly change in bankfull width for (A) revetted segments and (B) non-revetted segments; 

and yearly change in mean width for (C) revetted segments and (D) non-revetted segments for the 

entire studied river section and the three reaches.  
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5.1.5 Discussion on the centurial evolution of the Lower Tisza channel 

Based on the results, it became clear, that the changes in vertical channel 

parameters (indicated by the cross-sectional area, channel depth and width) were 

influenced by channel planform and engineering constructions. The centurial data 

covering the studied Lower Tisza allowed for a chronological analysis of the changes 

in the channel. The changes in the cross-sectional area were due mainly to a general 

incision of the channel, which partly compensated the channel narrowing. The incision 

can be related to the increased stream power as a result of the shortened channel length 

and increased channel gradient due to the artificial cutoffs (Laczay, 1977; Mezősi, 

1986). The incision of river channels due to this type of human intervention is widely 

reported on rivers all over the world (Chang, 1986; Simon, 1989; Hooke, 1995; Smith 

and Winkley, 1996; Rinaldi and Simon, 1998; Surian and Rinaldi, 2003; Kiss et al., 

2008; Czerkész-Nagy et al.,2010; Baena-Esudero et al., 2019). 

The correlation between the cross-sectional area with the depth and width (Fig. 

5.19) explains the variations that existed in the vertical channel parameters for the 

various surveyed years. As indicated, the channel had very wide variations in the 

vertical channel parameters at the initial survey (1891). The subsequent surveys showed 

that the changes in the cross-sections were towards a more uniform channel although 

the channel started to exhibit wide variations by 1961. The period between 1961 and 

2017 was again characterized by an evolution towards a uniform channel morphology. 

However, the channel again showed wide variations in vertical channel parameters by 

2017.  

 

 

Fig. 5.19: Correlation of the cross-sectional area with the thalweg depth (A); mean depth (B);  

bankfull width (C); and mean width (D) for the Lower Tisza over all surveyed years  

 

Generally, the channel developed according to the channel evolution model of 

Simon and Rinaldi (2006); with an increase in cross-sectional area over the studied 

period, and a decreasing downstream trend. As indicated by a conceptual model of the 

morphological evolution of the Lower Tisza channel (Fig. 5.20), the cross-sectional 

area increased over two distinct periods, 1891-1961 and 1976-2017. The depth and 
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width responded differently: while the width decreased over the studied period, the 

depth increased. This trend is further indicated by the correlation of the width and depth 

with the cross-sectional area for the various surveyed years (Fig. 5.19). This meant that 

the width changed similarly to the cross-sectional area, while the depth an inverse 

relationship with the cross-sectional area. 

 

 

Fig. 5.20: Conceptual model of the morphological evolution of the Lower Tisza River (1891-2017). 

 

In the initial period (1891-1931), the cutoffs which began on the Tisza in the 

mid-19th century were mainly responsible for the changes that occurred in the channel 

before 1961, although the changes were the most pronounced immediately after the 

cutoffs (i.e. 1891-1931: 7.67 m2/y) and experienced very little change in the next period 

up to 1961 (0.60 m2/y). As the consequence of cutoffs is usually incision due to 

increased stream power, the straightened channel sections incised, although the non-

straightened sections also developed similarly. This is probably attributed to the spatial 

distribution of the cutoffs (see Fig. 3.4) which allowed for upward migration of the 

incision as was indicated by Simon (1989); thus, the non-straightened sections also 

incised. The straightened artificial channels were mainly narrow pilot channels created 

from the cutoffs and made to evolve by utilizing the increased energy of the river. Thus, 

they incised and widened in response to the changes in the flow and sediment regime 

of the river. With the artificial meander cutoffs mainly resulting in bends, 48.7% of the 

bends were straightened sections. This meant the evolution of the bends were 

influenced partly by the straightened sections. Thus, the effect of the cutoffs is showed 
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in the evolution of the bends and meanders. With similar cross-sectional areas in 1891 

(1524 m2 for bends; and 1541 m2 for meanders); the bends increased by 193 m2 (12.6%) 

by 1931 while the increase in meanders was only 60 m2 (3.9%.). Although the widths 

were similar, the smaller width in the bends were as a result of the pilot channels which 

were created due to the artificial meander cutoffs to create the bends. Generally, the 

entire Lower Tisza channel was narrowing after cutoffs between 1891 and 1931 (by ca. 

3.2% for both bankfull width and mean width); However, some sections of the channel 

underwent rapid widening as indicated by the bankfull width: VO 206 (50.6%), VO 

223 (26.8%) and VO 228 (23.8%), VO 235 (93.1%), while some sections (VO 201, VO 

221) experienced widening of more than 100%. The widening sections were generally 

located within or close to straightened sections of the channel; which suggests they 

were either pilot channels, or their proximity to the pilot channels influenced their 

development. This is however expected in the evolution of a channel undergoing 

incision, as bank failure will be initiated when the critical height and angle of the bank 

material reaches a certain threshold (Simon, 1989). Therefore, the temporal and spatial 

changes in the cross-sectional area of the channel within the period suggest that the 

channel generally increased its cross-section and depth to adjust to the change from the 

original larger meandering sections to the new smaller straightened sections although 

the width decreased. Thus, the cutoffs initiated a channel development towards an 

equilibrium with increases in cross-sectional area in all morphological settings: both at 

straightened and non-straightened sections, and at bend and meanders. 

Between 1931 and 1961, although the channel generally continued to increase 

its vertical cross-sectional parameters, the change in cross-sectional area for the 

straightened and non-straightened sections, as well as the annual rate of increase 

became similar (by 1.2%; 0.61 m2/y). The increase in the cross-sectional area was 

mainly due to an increase in the depth as the width of the channel continued to reduce 

generally. In the bends and meanders, an annual increase in cross-sectional area of 1.10-

1.30 m2/y translated into increases of 1.1% and 2.4% respectively. This indicates that, 

the artificial cutoffs were no longer dominant in controlling the morphological 

evolution of the channel, although the channel continued its adjustment to a new 

equilibrium. However, this adjustment could not be completed when the next set of 

engineering interventions started in the Lower Tisza with the construction of groynes 

and revetment, which impeded the morphological evolution and began another phase 

of disequilibrium. The localized widening of the channel continued in some sections of 

the river with 20-40 m changes in width (VO 200, VO 205, VO 206, VO 223 and VO 

229). This localized widening was enough reason for the construction of groynes and 

revetments, as they threatened the artificial levee system meant to offer flood 

protection. 

In the next period (1961-1976), the river gave a clear fluvial response to the 

construction of revetments, as there was a drastic reduction in the cross-sectional area 

of the channel. The impact is better understood when compared to the response of the 

channel in the initial (1891-1931) period due to the cutoffs. While the entire channel 

increased its cross-sectional area by 145 m2 over a 40-year due to the cutoffs, it reduced 

it by 134 m2 in just 15 years as a result of the revetments. This relative change is even 
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more dramatic in the revetted sections: cross-sectional area reduction by 103 m2 (1891-

1931) and 177 m2 (1961-1976), thus it decreased below the pre-1891 value (1891: 

1591.2 m2; 1976: 1517.1 m2). By 1976, the entire Lower Tisza channel had started to 

respond to the construction of the revetment. Thus, the Lower Tisza channel began 

another phase of evolution towards a new equilibrium as most revetments in the studied 

river section were constructed before the 1976 survey. The response of the channel to 

the revetment construction transformed the channel from a widening channel to a deep 

and narrower channel as the thalweg depth increased while the bankfull width reduced 

relatively due to the bank stabilization. Generally, within the reaches, there was 

intensive bank aggradation and reduction of bankfull width within the upper reach 

compared to the other reaches. This may be attributed to the groynes which are located 

mostly within the upper reach and induced aggradation along the banks resulting in 

narrowing. The cross-sectional area in the upper reach therefore experienced very 

significant reductions. Within the lower reach, the ponding effect of the Danube on the 

Tisza (Vágás, 1982) coupled with the stabilization of the channel resulted in a relatively 

stable reach. 

By the period 1976-1999, the channel began to establish a new equilibrium as 

the cross-sectional area of Lower Tisza channel began to increase. However, in the 

bends, the increase was delayed as the period was still marked by decreasing cross-

sectional area mainly because the there was no further incision in the bends as in the 

case of the rest of the channel.  

Within the last period (1999-2017), the new equilibrium path was further 

entrenched when the cross-sectional area increased to 1961 values generally by 2017; 

although in the non-straightened sections, the cross-sectional areas were still lower. 

Within the period, the channel incision stopped as the mean depth recorded no change 

although there was an aggradation of 0.1 m for the mean thalweg depth. The entire 

channel began to widen, with the rate of change being lower than only for the 1961-

1976 narrowing. Based on the changes in the channel, a conceptual model was 

developed to represent the morphological evolution of the entire Lower Tisza River 

channel (Fig. 5.20). 

The changes in the channel due to the bends and meanders are related to the 

artificial meander cutoffs as the cutoffs resulted in bends although not all bends were 

as a result of cutoffs. This meant the changes in the straightened sections directly 

affected the bends. While the channel generally increased its cross-section through 

incision with narrowing, the changes in the bends and meanders were similar. However, 

while the bends had incision rates similar to the entire channel, the meanders had 

relatively lower changes with aggradation even in the last period. The revetted and 

non-revetted sections of the channel followed different patterns of change; although 

over the 126-year period, they all increased their cross-section, incised and experienced 

a channel narrowing. While the changes in the cross-sectional area for the revetted 

sections and non-revetted sections were similar over the entire studied period, the 

influence of the revetment is shown in the different patterns of their evolution. 

Although the non-revetted sections had a mean cross-sectional area which was 7.1% 

less than the revetted sections in 1891, the development of the channel after the cutoffs 
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towards an equilibrium meant the difference had reduced to 0.3% by 1961 which is 

insignificant due to the possible errors in the measurements. However, between 1961 

and 1976, although the whole channel had a similar mean cross-sectional area, the 

revetted section reduced by 10.5% while the non-revetted section reduced by a smaller 

margin (6.5%). The channel after this experienced an increase in cross-sectional area 

although the change in the revetted sections was more than four times that of the non-

revetted sections (277.6 m2 and 64.5 m2 respectively). The relative changes in the 

revetted and non-revetted sections can be seen from the evolution of their thalweg depth 

and bankfull width. The bankfull width were uniform in 1961 due to the quasi-

equilibrium development of the channel, and the initial response (1961-1976) was also 

similar as the entire channel narrowed. However, the period 1976-2017 was 

characterized by a further narrowing of the non-revetted sections, although marginal 

(1.4 m). In the revetted sections however, there was a widening of the channel (9 m) 

suggesting a collapse of revetments in some sections which is studied in detail in 

Chapter 5. 2. 

The construction of the revetments was such that similar proportions of the 

bends and meanders were revetted (ca. 39%). However, the bends and meanders had 

different responses to the construction of the revetments. While the greatest incision in 

the bends occurred between 1891-1931 (2.3 m) due to the influence of the cutoffs, the 

incision in the bends after the construction of the revetments (1961-1976) was only 0.5 

m. In the meanders however, there was aggradation (0.8 m) after the cutoffs, while the 

channel responded to the construction of the revetment by an initial termination of the 

aggradation. In the next period (1978-1999), the meanders experienced an incision of 

1.5 m. This suggests the relative higher influence of the artificial meander cutoffs to 

the development of the bends as compared to the construction of the revetment. 

 

  

5.2 Detailed channel morphology and flow velocity of the Lower Tisza 

As described in the previous section (Chapter 5.1), the revetments 

fundamentally influence the active channel evolution (contemporarily). Therefore, to 

have a detailed assessment of their effects on the channel, four sites located within the 

middle reach of the Lower Tisza which are characterized by revetted sections in 

different states were selected. The revetted sections were compared with a freely 

developing meander which is free from any human intervention.  

 

5.2.1 Cross-sectional and longitudinal profiles of studied sites 

a) Csanytelek North (CN) 

The 0.8 km long channel at the Csanytelek North study site (Fig. 5.21) was 

stabilized by a revetment on its western bank along 0.3 km (at cross sections CN1-6) 

in 1966. Based on our recent survey (made in 2018), the downstream end of the 

revetment had already collapsed (along 110 m at CN5-6). The downstream cross-

sections (CN7-12) represented the channel without revetment, but with intensive bank 

erosion along its western bank. 
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Fig. 5.21: Cross-sectional channel profiles (A) and longitudinal thalweg profile (B)  

at Csanytelek North study site. 

 

The first four cross-sections (CN1-4) had a similar shape and width (140-150 

m), as the revetment kept the western bank stable; and on the eastern bank, a side-bar 

developed. The channel gradually became deeper (16.2-18.3 m) and the bottom of the 

channel became wider downstream (CN1: 19 m thalweg width compared to CN4: 40 

m). The thalweg is located ca. 45 m from the western bank at each cross-section, with 

a gentle sloping (0.8 cm/m) longitudinal profile downstream. The cross-sectional 

parameters of the channel at the collapsed revetment (CN5-6) were quite different. 

Here, the channel depth increased to 18.5-21.0 m (by 14 %), while the bankfull width 

also increased to 167-173 m (by 15 %). The thalweg was ca. 65 m from the bank, but 

as the channel became deeper its bottom became wider too (50-60 m). Between the two 

cross-sections, a large pool developed, with a possible increased channel depth. The 

thalweg sharply sloped (3.2 cm/m) towards the pool. However, at CN6, the thalweg 

ascended (6.3 cm/m). The channel downstream of the collapsed revetments (CN7-12) 

gradually became shallower (max. bankfull depth: 13.4-17.5 m) and narrower (140-160 

m) than it was at the pool. The changes in width were related to the active bank forming 

processes, as the greater width was related to bank failures and slides. The channel 

became the widest (170 m) and shallowest (15.3 m) at the last cross-section (CN12). 

The thalweg gradually shifted to the middle of the channel, and the channel shape 

became more symmetrical. However, the thalweg became shallower by 7.2 m (average 

slope: 1.6 cm/m), referring to the development of a riffle downstream. 
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b) Csanytelek South (CS) 

The next study area (ca. 600 m long) is located in a meander where the 

revetment was built in 1940 along its entire concave western bank (Fig. 5.22). A point-

bar developed along the convex eastern bank, downstream of the apex of the meander. 

Landslides had already eroded the point-bar surface.  

 

Fig. 5.22: Cross-sectional channel profiles (A) and longitudinal thalweg profile (B) at Csanytelek 

South study site. 

 

The first channel cross-section (CS1) was the shallowest (bankfull depth: 17.8 

m) cross-section of the study site despite its location in a pool, as from here the channel 

became even deeper. Though this is cross-section located at the apex of the meander 

where the point-bar is located, it had a unique cross-sectional shape: the point-bar on 

the eastern side was sliding; thus, instead of having a gentle slope an almost 

perpendicular wall developed, representing the front of the slumped material. Here, the 

channel was 147 m wide, and the thalweg located 50 m from the western bank with a 

high slope (ca. 6 cm/m). The erosion of the point-bar was the most intensive at the next 

cross-section (CS2), where the channel was the widest (173 m) and deepest (22 m) in 

the study site. The thalweg was farthest (ca. 70 m) from the western bank and its slope 

was 9 cm/m. The following downstream cross-sections (CS3-5) referred to a more 

uniform channel (bankfull width: 130-132 m; bankfull depth: 18.3-19.2 m). The 

thalweg migrated towards the western bank (50 m from the bank) and it had a gentler 

slope (ca. 2 cm/m). 

 

c) Mindszent (MT) 

At the Mindszent study site (Fig. 5.23), the revetment was built in 1910 along 

the entire length of the western bank, but have already started to collapse by sliding. 
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On the opposite, convex bank a point-bar exists. Here, the cross-sections are very 

similar to each other: the thalweg is skewed towards the revetted western bank (ca. 50 

m). The first two cross-sections (MT1-2), upstream of the point-bar were the narrowest 

although their bankfull width increased downstream (139 m and 155 m respectively). 

Likewise, the bankfull depth increased downstream (15.2 m and 16.0 m, respectively). 

The middle cross-sections (MT3-6) crossing the point-bar along the eastern bank, had 

similar parameters (bankfull width: 174-181 m, and bankfull depth: 15.2-16.5 m). The 

point-bar on the eastern bank had similar a brink-line height (above 81 m a.s.l) as the 

opposite bank; but, while the concave bank had a high slope (ca. 45º), the point-bar had 

a considerably lower slope (14º). Downstream of the point-bar, the channel (MT7-8) 

became narrower (165 m and 175 m respectively) and shallower (14.8 m and 14.3 m 

respectively) than all other transects within the study site. 

 

 

Fig. 5.23 Cross-sectional channel profiles (A) and longitudinal thalweg profile (B) at Mindszent study 

site. 

 

d) Ányás (AY) 

The Ányás study site is located in a 1.4 km long freely translating meander 

without any direct human intervention. Thus, all cross-sections (AY1-15) showed the 

natural channel morphology representing a complex pattern of lateral erosion and 

active accumulation (Fig. 5.24).  

The first four cross-sections (AY1-4) represented a riffle located at the 

inflection zone between two meanders. Along this section on the western bank, the 

formation of a side-bar indicates that aggradation dominates, while on the eastern bank, 

active erosion by slides took place. The channel had relatively symmetrical cross-

sections, though the bankfull width (153-203 m) and bankfull depth (10.3-11.8 m) 

varied. Within this section, the thalweg was located in the middle of the channel; and 
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the shallowest of the entire study site due to the development of a riffle. The slope of 

the thalweg here was 0.3 cm/m.  

 

 

Fig. 5.24: Cross-sectional channel profiles (A) and longitudinal thalweg profile (B) at Ányás study site. 

 

Downstream of the riffle a sharp transition into to a pool was observed. Within 

this pool, the cross-sections (AY5-7) remained symmetrical; but, their bankfull width 

(200-240 m) and bankfull depth (12-15 m) increased. Here, the thalweg was slightly 

skewed to the western bank (ca. 80 m from the bank), although the bottom of the 

channel remained quite uniform. The slope of the thalweg in this pool increased (3 

cm/m) having a knick-point upstream of cross-section AY5 (ca. 85 m). The slope 

conditions on the upstream and downstream sides of the pool were however similar.  

Downstream of the pool, another riffle developed (AY8-11). Here, the channel 

gradually became narrower (bankfull width: 187-170 m) and shallower (bankfull depth: 

13.5-11.0 m). The cross-section AY8 represented a transitional character between the 

pool and the next 400 m long riffle (bankfull width: 188 m; and bankfull depth: 13.5 

m). On the western (concave) bank of this pool, the previous surveys (see chapter 5.3; 

Kiss et al., 2013) indicated the highest rate of bank erosion (ca. 1.2 m/y) at the study 

site with increasing intensity downstream as the land-slides were replaced by total bank 

collapse. The point-bar on the opposite eastern bank actively accumulated 

compensating for the erosion along the concave bank; thus, keeping the channel size 

relatively unchanged. There was a gradual thalweg shift towards the eastern bank in 

this riffle section, while at the same time the thalweg elevation increased by 1.2 m 

(average slope: 0.4 cm/m).  

Downstream of this riffle, another pool developed (AY12-15) with a relatively 

narrow bankfull width (135-175 m) and deeper channel (bankfull depth: 13.7-15.2 m). 
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The thalweg migrated towards the western bank within this pool and had a relatively 

gentle slope (1.4 cm/m) compared to the larger upstream pool. 

 

5.2.2 Flow conditions at the studied sites 

a) Velocity fields at the sites 

The mean velocities measured at each of the four selected sites indicated 

variations both for the sites, and the individual transects within the sites (Fig. 5.25). 

The mean velocities measured at the Csanytelek North (0.33 m/s) and Csanytelek South 

(0.31 m/s) study sites were similar due to their close proximity, which resulted in 

similar flow conditions, although Csanytelek South was characterized by the lowest 

mean velocity of all four sites. At Mindszent, the mean velocity was 0.35 m/s, while 

the free meander at Ányás had the highest mean velocity (0.41 m/s) of all the sites.  

 

 
Fig. 5.25: Mean velocity at each study site; and mean velocity for each transect within the study sites. 

 

Within the individual sites, the mean velocities of transects at Mindszent had 

the least range (6.3 % and 0.02 m/s) in comparison to the other transects (CN: 14.1 % 

and 0.05 m/s; CS: 13.1 % and 0.04 m/s; AY: 55.7 % and 0.18 m/s). At Csanytelek 

North, the mean velocity within the intact revetted section differed only by 3%, while 

along the collapsed revetted section the variation was 6%. The non-revetted section on 

the other hand had a variation of up to 13%. Although the Csanytelek South site is fully 

revetted, the mean velocity differed by up to 13% with the CS1 transect accounting for 

more than half of the variation. At Mindszent, the velocity variations were similar 

(6.3%), although the middle four transects (at the point-bar and the sliding revetment) 

had the highest mean velocities (0.35-0.36 m/s) within the site. The highest mean 

velocities of all study sites were measured at the Ányás site where 10 out of 15 transects 

had mean velocities higher than 0.40 m/s and only one transect had similar velocity 

(≤0.35 m/s) as of the other three sites. 

Within the cross-section of each transect, the areal distribution of velocity fields 

was studied in detail (Fig. 5.26). The most common velocity field (0.2-0.4 m/s) 

occupied two-third of the wetted channel area at the revetted study sites (CN: 67%; CS: 
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66.3%; and M: 66.7%); however, at the freely meandering Ányás site, two-thirds (64%) 

of the velocity fields belonged to a higher range (0.3-0.6 m/s), and even much higher 

values (≥0.6 m/s: 6%) appeared.  

 

Fig. 5.26: Areal distribution (%) of velocity field categories at the surveyed transects within study sites. 

 

At Csanytelek North, the upstream transects (CN1-4) by the intact revetment 

were characterized by relatively similar velocity distributions, where ca. 90% of the 

wetted area had velocities between 0.2 m/s and 0.5 m/s. In the section with collapsed 

revetment and its immediate downstream sections (CN5-7), velocity fields were 

similar, but less than 80% of the wetted area’s velocity was within the same range (0.2-

0.5 m/s), and the area of the very low (≤0.2 m/s) velocity field increased. Downstream 

of the collapsed revetment (CN8-12) the area of 0.2-0.5 m/s velocity fields gradually 

increased (84-93%).  

At Csanytelek South, with the exception of the apex of the meander (CS1) 

which exhibited a different velocity distribution (69% within 0.2-0.5 m/s; and 30% 

below 0.2 m/s), there was a gradual increase in the 0.2-0.5 m/s velocity fields 

downstream (from 60% to 91%).  

Although the Mindszent site had collapsed revetment and a point-bar within its 

middle section, the distribution of the velocity fields was fairly uniform throughout the 

studied section (ca. 90% within 0.2-0.5 m/s).  

At the Ányás site, the velocity conditions were very variable and related to the 

series of alternating pools and riffles. Within the first riffle section (AY1-4), unlike for 

the other study sites, the 0.4-0.5 m/s velocity field had the highest frequency (20-32 

%). At the next pool section (AY5-6), lower velocity fields (0.2-0.3 m/s) occupied the 

highest area (28-35 %). Very high velocity fields (>0.6 m/s) were recorded in the 
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second riffle section (4-23%) and these high velocity fields remained even in the last 

pool section (2-12%). 

 

b) Discharge conditions 

The study sites exhibited varying wetted width, discharge and stream power 

conditions (Fig. 5.27). The Csanytelek North and Csanytelek South sites are located 

close to each other (ca. 2 km apart), therefore they had similar discharge conditions 

(184.5-216.0 m3/s), although their wetted widths differed (CN: 82.2-125.1 m; CS: 87.4-

98.6 m). At Csanytelek North, the data of the transects at the revetted section showed 

an increase in discharge with increased wetted width. The highest value was recorded 

at the end of the collapsed revetment (CN5).  

 
Fig. 5.27: Correlation between measured discharge and wetted channel width of transects at the at the 

various study sites: A) Csanytelek North B) Csanytelek South C) Mindszent and, D) Ányás 

 

At Csanytelek South, the wetted widths were similar due to the existence of a 

revetment, but the discharge values varied relating to the morphological conditions. 

While CS3 which is at the end of the point-bar recorded the minimum discharge (185.2 

m3/s), CS5 recorded the highest discharge (215 m3/s) within the study site. At 

Mindszent, although part of the revetment along the western bank collapsed, the wetted 

width differences were independent of the state of the revetment (95.8-120.2 m). The 

discharge characteristics of the transects were very similar (204.7-214.3 m3/s), having 

the lowest range for all studied sites. The Ányás site had the most variable parameters, 

characterized by high ranges in both wetted width (89.5-154.6 m) and discharge (192.8-

230.2 m3/s). 

Although the measurements were carried out at low stage and discharge values 

were generally similar, the specific stream power were generally higher in the non-

meandering study sites (Csanytelek north and Mindszent), while the revetted sections 

were also generally higher than non-revetted sections (Fig. 5.28). 
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Fig. 5.28: Variation of discharge and specific stream power values along studied sections. 

 

5.2.3 Influence of morphology and the revetment on velocity profiles 

a) Csanytelek North (CN) 

The velocity distribution of the flow closely related to channel morphology and 

bank characteristics. The upper transects (CN1-4) along the intact revetment had 

similar morphological characteristics, however the velocity distribution of the last 

(CN4) transect was different (Fig. 5.29). The CN1-4 transects had relatively high mean 

velocities (0.34-0.35 m/s). The lowest flow velocity was measured above the side-bar, 

whilst the highest velocity fields (0.4-0.6 m/s) developed between the thalweg and the 

intact revetment along the western bank within a ca. 40 m-wide zone. At the CN4 

transect, the highest velocity fields 

(0.4-0.6 m/s) occupied a wider zone 

(ca. 50 m) and near to the bottom 

relatively high velocities (0.6 m/s) 

developed.  

 In the frontal pool during 

the measurement at low stage, the 

flow velocity dropped almost to 0 

m/s. Thus, the mean velocity of 

these transects dropped to 0.32 m/s 

(by 8.5%), in connection with the 

increase of the wetted area as the 

result of bank failures and the 

development of the deep pool. 

These data characterize not just the 

collapsed revetment (CN5-6), but a 

short section downstream of it 

(CN7).  
Fig. 5.29: Velocity fields of some typical 

transects at Csanytelek North 

 



73 

 

In the downstream transects (CN8-12) the mean velocity increased gradually from 0.32 

m/s to 0.34 m/s as a response to decreasing width and wetted area. At the end of the 

study site, at the top of the riffle the velocity distribution of the channel became be 

more uniform in the symmetrical channel. 

 

 b) Csanytelek South 

The Csanytelek South study 

site had the lowest mean velocity 

(0.31 m/s) among all study sites, 

however with marked differences 

(Fig. 5.30). At the apex of meander 

(CS1) the highest flow velocity 

within the site developed. although 

almost 0 m/s velocity fields 

developed along both banks and at 

the thalweg, high velocities 

developed in the middle of the 

channel. The following downstream 

transects (CS2-3) had relatively high 

velocities at the western (revetted) 

bank, and low velocity fields 

appeared in the pool and above the 

point-bar. The last two transects 

(CS4-5) downstream differed from 

the upstream transects exhibiting 

uniform mean velocities. 

 

c) Mindszent 

The flow velocity distribution in 

the Mindszent study site was mostly 

uniform (Fig. 5.31). The lowest velocity 

fields were located at the eastern bank 

along the point-bar. Although the depth 

and width conditions of the transects 

differed for the sections with intact and 

slipped revetment, it did not affect 

considerably the velocity fields. At the 

western bank, the middle transects 

(MT3-6) along the slipped revetment 

had similar velocity fields as the intact 

sections (MT1-2 and MT7-8). 

 

 

Fig. 5.30: Velocity fields of some typical 

transects at Csanytelek South. 

Fig. 5.31: Velocity fields of some typical transects at 

Mindszent  
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d) Ányás 

 

At this free meander, the 

alternating riffle-pool sequence and 

the various bank processes had 

considerable effect on flow velocity 

distribution (Fig. 5.32). The 0.4-0.5 

m/s velocity was dominant in the 

riffle sections, and in the relatively 

shallower downstream pool. In the 

upstream pool however, low velocity 

fields (0.3-0.4 m/s) were dominant.  

Within the upstream riffle (AY1-3) 

the high velocity fields (0.5-0.7 m/s) 

skewed towards the eastern bank, thus 

it eroded intensively (1.3 m/y; see 

Chapter 5.3), while along the western 

bank, a side-bar developed under the 

lower velocity fields. Although 

transect AY4 was located within this 

riffle, its close proximity to the pool 

section meant it was influenced by the 

velocity fields of the pool although it retained 

the morphology of the riffle.  

 

In the pool section, the first transect (AY5) had very low velocities along its 

banks, but other parts of the pool were characterized by higher velocities (0.4-0.6 m/s) 

due to the development of a large whirlpool.  At the exit of the pool (AY6-7) the flow 

distribution became uniform, and high velocity fields (0.5-0.7 m/s) developed in the 

thalweg zone.  

As the pool transitioned into the next riffle, velocities increased as the channel 

area reduced. The downstream riffle (AY8-11) had high velocity fields (0.5-0.6 m/s) 

close to the western bank. This increased velocity fields continued into the last pool 

section (AY12-15) which was however shallower than the upstream pool was. Here, in 

front of the western bank, high flow velocity fields (0.5-0.8 m/s) evolved, supporting 

intensive lateral erosion (1.2 m/y). The velocity fields at the western bank reduced at 

the last two transects (AY14-15) as the high velocity fields shifted towards the middle 

of the channel. 

 

5.2.4 Discussion on detailed channel morphology and flow velocity  

Within the Lower Tisza, the incision and the accelerated bank erosion started 

immediately after channel regulations (Kiss et al., 2008). Therefore, revetments were 

built to protect the artificial levees. Along the Lower Tisza channel, revetments were 

constructed along 60% of the western bank and 40% of eastern bank. They were mostly 

Fig. 5.32: Velocity fields of some typical 

 transects at Ányás. 
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built before 1960 (82% of revetments). Afterwards, the active bank erosion terminated 

or slowed down; and as was presented in Chapter 5.1, on some sections, the channel 

became even narrower. However, incision became more intensive as the channel began 

to adjust itself to the construction of revetments (Kiss et al., 2008; Amissah et al., 2018). 

The density of revetments (mean: 0.50 km/km) however, was not uniform within the 

Lower Tisza. The middle and more sinuous reach had a lower revetment density (0.39 

km/km). Along this reach, more revetments started to collapse (Kiss et al., 2019) 

because the high sinuosity provided favourable conditions for channel adjustments; 

thus, the erosion of revetments 

Based on the research, it became apparent that several factors contribute to the 

collapse of revetment. Primarily, the type of revetment is a significant factor: most of 

the collapsed revetments are placed-rock revetments (CN and MT sites), thus, the 

incision of the channel can initiate the displacement of the stones one-by-one. On the 

contrary, in the revetment with the stepped-block design (within a concrete frame, 

stones were placed), it can prevent the erosion of single rocks longer (CS site). 

However, for these revetments, the energy of the flow is deflected away from the 

revetted bank to the opposite bank, initiating the erosion of point-bars, though low flow 

velocities and energy should be characteristic under natural conditions (Klingemann et 

al., 1984).  

The placed-rock revetments erode in two different ways as indicated by my 

conceptual model of bank erosion and revetment collapse in the Lower Tisza (Fig. 

5.33). High velocities generated near the revetment along the concave bank accelerates 

vertical erosion. Thus, since the regulations, the channel became deeper by 1-2 m 

(Amissah et al., 2018). This provides favourable conditions for landslides along longer 

revetted sections (as was detected at MT), or the collapse of the stones one-by-one 

(observed at CN). In the latter case, the downstream end of placed-rock revetments 

erodes first, as a result of the co-existence of the following factors: (1) the thalweg is 

skewed close to the revetted bank, (2) the smooth upstream revetment section has 

velocity acceleration, thus (3) the flow has higher erodibility. Due to this, although the 

revetment protects the bank from lateral erosion, immediately at its end, the flow has 

high erosivity, enhancing vertical and lateral channel erosion. Therefore, downstream 

of the revetment, failures and slides with high intensity develop on the non-revetted 

bank and also, a deep pool is created. However, the erosional front migrates upstream. 

Initially, probably because the skewed thalweg increases the size of the pool providing 

suitable conditions for collapse of the revetment’s rocks one-by-one. Subsequently, the 

rocks fall into the deep pool, allowing intensive lateral erosion of the formerly protected 

bank. Based on the longitudinal profile of the channel bottom and the bankline, a knick-

point could be identified: downstream of this knick-point both the vertical and lateral 

erosion accelerates creating a small pool at the end of the revetment. This knick-point 

propagates upstream, and newer parts of the revetment will collapse until the entire 

revetment is destroyed. 
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Fig. 5.33: Conceptual model of revetment collapse based on the case studies in the Lower Tisza 

 

The rate of bank erosion along the collapsed revetments could be as high as 1.12 

m/y (Chapter 5.3). Therefore, the artificial levee sections within 25-50 m distance will 

be endangered by lateral erosion within the next 8-15 years, directly risking altogether 

7.7 km long levee sections in the Lower Tisza Region. The western artificial levee is 

in greater risk, as the levee is closer to the active channel: within a 50-100 m distance 

from the channel, 25.3 km long levee sections are located, with only 9.1 km on the 

eastern side. Moreover, on the western protected floodplain, the settlements are located 

closer to the artificial levee and the river, which further increases the hazard. 

The survey proved that the construction of revetments simplifies the 

morphology and unifies the flow conditions of the channel while they are intact. The 

studied non-revetted section (AY) of the Lower Tisza displayed the most variability in 

flow velocity, morphological processes and forms. The riffle-pool series was combined 

with the development of various bars and active bank erosion processes. At the riffles, 

high velocity fields developed, whilst lowest velocities developed in the pools as was 

expected in a riffle-pool sequence (Somogyi, 1983; Robert, 1997; Thompson, 2018). 

High velocity fields skewed to the bank resulting in active bank erosional processes. 

The comparison of the riffles in the revetted (CN and CS) and in the freely meandering 

section (AY) reflects, that at in the revetted channel the riffles are deeper and narrower, 

therefore lower velocity fields developed.  

The future development of the studied sections could be predicted from the 

specific stream power calculated for the study areas. The freely developing meander 

(AY) has the lowest value (11.0-17.0 W/m), the intact, well-designed revetment with 

intensively eroding point-bar (CS) has slightly higher values (18.8-23.0 W/m), high 

specific stream power (28.5-36.8 W/m) is at the sliding revetment with non-eroding 

banklines (MT), and the highest values (35.4-46.2 W/m) are at the intensively eroding 

revetment with very intensive propagating bank erosion (CN). This sequence of values 

suggests that the erosion will go on along the already eroding revetments, whilst at the 

other sites, the energy of the flow is dissipated by the channel forms and active 

processes along the non-revetted banks (Czech et al., 2016). 
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5.3 Changes in point-bar evolution and bank erosion 

5.3.1 Hydrological changes of the studied period 

The hydrology of a river is one of the main driving factors of active near-bank 

processes (Simon et al., 2000), therefore the water stages from the Csongrád gauge 

station (Fig. 5.34) were used to highlight the hydrological conditions of the studied 

sections of the Lower Tisza within the studied period. The survey period (2011-2019) 

was characterized by mainly low stages (< 0 cm), which occurred in 53% of the record 

(Table 1). 

 

Fig. 5.34: Daily water stages (2010-2019) measured at the Csongrád gauge station. The survey times of 

point-bar (PB) and banklines (BL) are indicated. Water stages (dashed lines) when the point-bars at 

Csongrád (CHP) and Ányás (AHP) are submerged are represented. 

 

Table 5.1: Frequency of low stages (< 0 cm), overbank stages (≥550 cm), and inundation of point-bars 

(130-450 cm) between 2011 and 2019 at the Csongrád gauging station. 

Year 

Annual duration (days) 

Low 

stages 

Overbank stages Inundation of point-

bar 

Csanytelek Ányás Csongrád Ányás 

2011 167 33 32 131 42 

2012 256 0 0 60 0 

2013 187 51 45 110 57 

2014 229 0 0 29 0 

2015 204 0 0 71 0 

2016 144 24 14 101 32 

2017 178 0 0 104 13 

2018 197 28 9 101 39 

2019 154 12 5 78 18 

 

The measured eroding banks had a mean elevation of 81.5 m a.s.l at Csanytelek 

North and South, and 82 m a.s.l at Ányás. Due to the similarity in elevation of the 

banks, we assumed that similar hydrological conditions influenced their evolution. At 

Csanytelek North and South banks bankfull stages were reached only within five out 

of nine years over the studied period for 2-7 weeks. The bank monitored at Ányás on 
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the other hand, experienced shorter overbank stages by 1-6 weeks, because the bankline 

of this site is much higher due to the development of a natural levee. 

Based on the hydrological data over the studied period, the Csongrád point-bar 

is usually submerged for 2-3 months. During the studied period this point-bar was 

inundated for the longest time in 2011 (131 days), while in 2014 it was submerged only 

for 29 days. On the contrary, the point-bar at Ányás is totally submerged just for shorter 

periods (0.5-2 months), it experienced the longest inundation (57 days) in 2013, while 

water could cover its entire surface just for 13 days in 2017. 

 

5.3.2 Point-bar evolution at Csongrád and Ányás 

The point-bar at Csongrád is quite flat (Fig. 5.35), as its elevation was between 

73.5 m a.s.l and 77.5 m a.s.l during the studied period. Both the temporal changes in 

the elevation of the bar surface and its volume reflects the dominance of erosion (Figs. 

5.35-5.37). The volume of the point-bar (above 73.5 m) ranged between 40-47 thousand 

m3 (Fig. 5.37).  

 

 

Fig. 5.35: The DEM of the point-bar at 

Csongrád for the surveyed years 

Figure 5.36: Elevation changes of the surface of the 

point-bar at Csongrád. (Negative values refer to 

erosion, while positive ones to accumulation). 

 

 
Fig 5.37: Sediment volume (above 73.5 m a.s.l.) of the  

Csongrád point-bar in the surveyed years 
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The point-bar generally eroded since the first survey in 2012 to 2019; thus, the 

changes in sediment volume refers to net erosion by 9.6 %, as the volume of sediment 

decreased by 4260 m3. However, there was net accumulation between 2012 and 2016 

(gain: 2338 m3), and again a slight aggradation (87 m3) from 2018 to 2019. However, 

in-between these years, the volume of the bar decreased by 3929 m3 (2016-2017) and 

later by 2755 m3 (2017-2018). The changes in the sediment volume were translated into 

changes in the mean elevation of the point-bar (Fig. 5.36). In the first period (2012-

2016), the aggradation increased the mean elevation of the bar by 0.11 m, especially in 

the downstream half of the bar, reflecting its slight migration, However, in the 

subsequent years, the bar became lower by 0.16 m (2016-2017) and further by 0.19 m 

(2017-2018). Almost the entire area of the bar was eroding, but especially the low-lying 

areas located close to the wetted channel. Finally, there was a minor increase in the 

mean elevation (<0.01 m) of the point-bar from 2018 until 2019. At this time, the higher 

surfaces gained some sediment and the area close to the wetted channel eroded further 

on. 

The spatial and temporal variations of the point-bar at Csongrád were also 

indicated by the longitudinal and transverse profiles (Figs. 5.38 - 5.39). The 

longitudinal profiles showed that the lower zone (<75.5 m a.s.l.) of the bar had a convex 

shape, while the middle part had the highest elevation (Fig. 5.38, section A).  

 

 

Fig. 5.38: Spatial and temporal variation of longitudinal 

profiles (A-B) of the Csongrád point-bar 
Fig. 5.39: Spatial and temporal variation 

of the transverse profiles (I-IV) of the 

Csongrád point-bar  

 

The bar surface had quite smooth upstream part, but ripples developed on its 

downstream part. On both areas, there was generally an even erosion, though in the 

period of 2016-2018 an erosion of almost 1 m took place on the lower regions of the 

bar. The bar surface was higher (>75.5 m a.s.l.) along the bankline (Fig. 5.38, section 

A). Here, the bar had quite smooth surface, with maximum erosion being generally less 
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than 0.40 m. The greatest erosion was measured on the upstream end, reflecting 

downstream bar migration. The downstream end had less changes but remained higher 

than the upstream end, although there were fluctuations over the studied period.  

The transverse profiles reflect that the higher zone of the bar has generally 

convex slopes (Fig. 5.39), however the low-lying parts have various slope profiles. 

While the upstream profile has straight slope (Fig. 5.39, Section I), the downstream 

profiles (Section II-IV) show convex shape reflecting aggradation processes. The 

gradual downstream migration of the bar is well visible on these profiles, as Section II. 

had originally convex profile, but it became straightened, while the further downstream 

profiles have increasingly convex shape. 

The downstream point-bar at Ányás stretches from 74.0 m a.s.l. to 86.0 m a.s.l. 

(Fig. 5.40). The volume of the point-bar (measured above 74.0 m a.s.l.) ranged between 

10.5-13.3 thousand m3 (Fig. 5.41); thus, its volume was just 20-33% of the point-bar at 

Csongrád, because it was shorter and narrower than its upstream counterpart. High 

volumes were measured in 2013 (11747 m3) and in 2018 (13232 m3); though in 2017 

and 2019, the volume of the bar decreased to 10517 m3 and 10818 m3 respectively.  

 

 
Fig. 5.40: The DEM of the point-bar at Ányás for the surveyed years 

 

Therefore, the point-bar lost 1230 m3 (2017) and 2414 m3 (2019) of sediments 

respectively, which means ca. 20% volume loss compared to the previous period. 

However, in the period of 2017-2018, a similar rate of sediment gain was detected 

(2715 m3). The changes in sediment volume was also shown by the pattern of net 

erosion and net deposition (changes in elevation) between the survey years (Fig. 5.42).  

 

 
Fig 5.41: Sediment volume (above 74 m a.s.l.) of the 

Ányás point-bar in the surveyed years. 
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Fig. 5.42: Elevation changes of the surface of the point-bar at Ányás.  

(Negative values refer to erosion while positive ones refer to accumulation) 

 

Between 2013 and 2017 the mean height decreased by 0.35 m, especially in some areas; 

in the near-to-the-bankline zone and in the middle of the bar, though slight 

accumulation was detected in its downstream end. The surface became higher by 0.76 

m in 2017-2018, especially the in the upstream parts and close to the water. Finally, the 

bar’s surface became lower by 0.69 m (2018-2019), indicating cyclic erosional-

depositional pattern. The changes in the height of the bar are further highlighted by the 

longitudinal and transverse profiles (Fig. 5.43 -5.44).  

 

 

Fig. 5.43: Spatial and temporal variation of longitudinal profiles (A-C) of the Ányás point-bar  

 

The cyclic erosion and aggradation of the point-bar involves ca. 1 m change in 

elevation. The point-bar referred general erosion over the period 2013-2019 especially 
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in its lower zone (<76 m a.s.l.), having a gradual downstream shift in the highest point 

of the zone (Fig 5.43: section C). The middle zone (76-78 m a.s.l.) is also characterized 

by erosion, however there was a slight net aggradation at the downstream end of the 

bar, and its higher central region also migrated downstream (Fig 5.43: section B). The 

upper surfaces (>78 m a.s.l.) had aggradation at both the downstream and upstream 

ends of the point-bar (Fig 5.43: section A). 

The transverse profiles reflect deposition on the downstream ends of the point-

bar even more visibly (Fig. 5.44). The upstream profiles (I-IV) had very characteristic 

concave slopes on the middle zone of the bar, especially at the time of the first survey 

(2012). Later this area started to accumulate, thus straight slopes evolved, though the 

highest zone still faced erosion. Later (2017-2018), although there was aggradation 

over the whole point-bar, the highest gains were at the upstream end, and in the lower 

zone of the bar. Erosion again characterized the period 2018-2019 but more uniformly 

than the period 2013-2017. The downstream transverse profiles (V-VIII) had mainly 

straight slopes, however they turned into convex ones until 2019, referring to 

accumulation after an erosional period. Nowadays (2019), the lower zone has a mix of 

concave and convex profiles, while the higher elevations have straight or convex ones, 

referring to erosion in the lower zone and accumulation in the upper one. 

 

 

Fig. 5.44: Spatial and temporal variation of the transverse profiles (I-VIII) of the Ányás point-bar  
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5.3.3 Bank erosion at Csanytelek and Ányás 

The bank erosion of the monitored sections of the Lower Tisza River differed 

both in extent and magnitude (Fig 5.45). The bankline experienced minimal erosion 

(within measurement errors) at Csanytelek South because of the existence of a 

revetment; but, there was a medium erosion rate at Csanytelek North (mean: 0.79 m/y), 

and a high bank retreat was measured at the freely meandering Ányás bend (mean: 1.29 

m/y).  

The erosion rates at Csanytelek North and Ányás differed both in magnitude 

and temporality (Fig. 5.45-5.46). The erosion rate gradually increased at Csanytelek 

North; thus, compared to the first period (2015-2017) when the mean erosion rate was 

0.56 m/y, it doubled to 1.12 m/y in 2018-2019. The erosion rate (0.67 m/y) in the 

intermediate period (2017-2018) showed only a slight increase (ca. 20%) compared to 

the first period. At Ányás, the bank erosion rate had an inverse trend. Between 2011 

and 2013 the bank eroded by a high rate (2.75 m/y), the next period (2013-2018) was 

characterized by 82% reduction in the rate to 0.51 m/y. Between 2018 and 2019 

however, there was a 20% increase in the rate (0.61 m/y). 

Spatially, the erosion rate was quite uniform both at Csanytelek North and 

Ányás, though some sections were more affected by erosion (E1-4) than the others (Fig 

5.45). Intense erosion (1.2 m/y) at Csanytelek North occurred at two locations. At E1, 

bank erosion was initiated by the collapse of the downstream end of the placed-rock 

revetment. The exposed and steep (ca. 30o) bank then failed through bank scouring, and 

a mix of failure and slips. At E2, the bank is gentler (ca. 20o) and erosion takes place 

in the form of scouring and creeping.  

At Ányás bend also, the downstream section (E3 and E4) of the monitored bank 

had intense erosion (2.4 m/y). Here the bank was steeper (ca. 50o) and the bank failed 

mainly through slips with trees on the slumped material. In the steepest locations 

toppling failure occurred with fallen trees which collapsed into the channel with the 

bank material. 

 

Fig. 5.45: Changes in banklines at the monitored river sections 
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Fig. 5.46: Annual mean bank erosion rates (m/y) measured at Csanytelek North and Ányás bend. 

 

5.3.4 Discussion on changes in point-bar evolution and bank erosion 

The Csongrád point-bar has a lower-lying flat surface just like confluence bars; 

while the point-bar at Ányás is much higher and steeper, stretching up to the bank-line. 

Therefore, the point-bar at Csongrád was entirely inundated for 16-36% of the periods, 

while at Ányás, the total inundation of the point-bar was much shorter (0-16%). The 

erosion-dominant nature of the point-bar’s sediment dynamics is reflected by the 

elevation decrease of their surfaces and by loss of their net volume, although their 

magnitudes differed. At Csongrád, the mean bar elevation was reduced by 0.20 m 

(2012-2019) while at Ányás it was reduced by 0.28 m. As the relative height of the 

point-bar at Csongrád is only 2 m (at Ányás it is 11.5 m), the erosion here is most 

spectacular, as the bar surface became inundated more often, causing problems for the 

tourists (smaller sandy beach, deeper water). The changes in elevation at the point-bar 

of Csongrád were relatively higher in the years in which erosion was dominant (0.19 

m and 0.13 m for 2016-2017 and 2017-2018 respectively). While the yearly changes 

between 2012 and 2016 were not studied, the period was characterized by net 

aggradation (0.11 m). This means that, the erosional period of 2016-2018 was 

characterized by serious loss (32 cm) in bar elevation, which was only marginally 

compensated (< 2%) by the slight aggradation in 2018-2019. This relates to the 

hydrological characteristics, as in the erosional period, the duration of low water stages 

increased and that of the high stages decreased. The importance of low stages in the 

erosion of the bar is well reflected by the pattern of the elevation changes, as always, 

the lower lying zone of the point-bar experienced greater erosion. In contrast, Ányás 

had an alternating erosion-accumulation sequence. In this case, clear correlation with 

low and high stages could not be found. 

Direct and indirect human impact influences the development of the studied 

bars. Both studied point-bars are within the upstream sinuous section of the Lower 

Tisza River. The higher sinuosity of this section of the river accounts for the presence 

of more active bank processes (Kiss et al., 2019), as the thalweg runs close to the 

concave bank, thereby creating favourable conditions for bank erosion and point-bar 

formation on the opposite bank. However, the opposite bank of the point-bar at 

Csongrád was revetted in 2014, while the point-bar at Ányás is without direct human 

impact, and the opposite bank is intensively eroding, as it was presented previously. 

The point-bar in the free meander (at Ányás) reflects the existence of erosional and 

depositional cycles, regardless of hydrological changes. It can be explained by the fact, 
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that the erosion of the concave bank created favourable conditions (wide channel) for 

the development of the bar on the convex bank which translates and migrates 

downstream. On the contrary, at the revetted section at Csongrád, the point-bar 

develops in a confined channel, which is characterized by incision (Amissah et al., 

2017, 2018). This incision also affects the point-bar’s surface, lowering it, though 

smaller in-channel flood waves might deposit some material on the surface. At 

Csongrád, the river was heavily constrained by cut-offs and bank stabilization, which 

began in the late 19th century. The construction of revetment along the concave bank 

close to the confluence with the Körös River and the presence of the confluence seem 

to have affected the morphodynamics of this river section. With river confluences 

known to be geomorphological nodes which play an important role in the river’s 

morphological evolution (Dixon et al., 2018), it may have contributed to the sediment 

dynamics both on the bar and downstream of the bar thus, distorting the natural 

evolution of the point-bar. 

The bank erosion at Csanytelek North and Ányás were different, although they 

had similar hydrological conditions. The two sites had comparable bankfull stages both 

in magnitude and their durations. The bank erosion rate at Csanytelek North increased 

from 2013 to 2019, although the stages did not commensurate with it. This suggests 

that the processes of erosion within this section was not necessarily controlled only by 

the hydrological regime, although according to Hickin (1974) floods control most 

channel forming processes including bank erosion. The erosion within this section was 

probably controlled by high flow energy generated from high velocities due to the 

revetment, which was even distinguishable at low stage (Chapter 5.2, Kiss et al., 2019). 

This increased flow energy was transferred to the downstream end of the revetted 

section where it was dissipated. It seems, that at Csanytelek North, the moderate stages 

were more suited to the erosion of the revetment and subsequent lateral erosion. As 

highlighted by Luppi et al. (2009), as moderate flow is a conducive hydrologic 

condition for this type of failure, the annual rates of erosion at Csanytelek North 

increased over the period 2015-2019, as greater and greater proportions of the 

revetment became mobilized.  

At Ányás, the high and near-vertical banks failed mainly through circular slips 

and toppling failure (Kiss et al., 2019). This is usually through saturation of the bank 

material which lowers its angle of repose, and eventually failing through slip failure 

and toppling (Department of Natural Resources and Water, 2006). This mode of 

collapse was mostly accelerated with bankfull stages. High water stages therefore 

create perfect conditions for the initiation of failure in these high vertical banks as 

indicated by Luppi et al. (2009). The yearly rates of erosion decreased from 2011 to 

2019 probably as a response to the reduction in the bankfull stages which occurred 

within the period. In spite of this, medium stages still created favourable conditions for 

the erosion through scouring of the toe of the banks, and eventually the bank collapsing 

into the channel. That notwithstanding, the absence of the bankfull stages affected the 

magnitudes of the erosion. 

The human impacts at the three study areas are quite different. Although the 

western bank of the sections of the Lower Tisza at Csanytelek North and Csanytelek 
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South are both revetted, the results indicated erosion at Csanytelek North while 

virtually no bank erosion was recorded at Csanytelek South. This indicates differences 

in the effectiveness of the bank stabilization at the two revetted sections. As indicated 

by the conceptual model of bank erosion and revetment collapse in the Lower Tisza 

River (Chapter 5.2, Kiss et al., 2019), the construction of revetments along the banks 

of the Lower Tisza River increased flow velocities and as a result, high erosivity of 

flow. At Csanytelek South, the stepped-block revetment design deflected the flow 

energy resulting in no bank erosion. This was not the case at Csanytelek North however. 

The high erosivity initiated the collapse of the individual stones at the end of the placed-

rock revetment within this river section. This collapse enhanced the lateral and vertical 

erosion of the exposed river bank with a new of the revetment formed. The process is 

repeated at the new end with an upstream propagation. While this process takes place, 

lateral and vertical erosion of the initial ends also continue thereby creating a three-

dimensional erosional front: lateral (into floodplain towards levees), vertical (incision 

into channel bed thereby creating a local scour, and forming a pool together with the 

lateral erosion); and longitudinal (in the upstream direction, enhanced by the pool 

formed and eroding the revetment further). Although the construction of the revetment 

transferred stream power to the downstream end of the revetted sections, the placed-

rock revetment at Csanytelek North failed due to the possibility of the rocks of the 

revetment to be eroded one by one. Currently, the bank erodes by 0.79 m/y in average 

(max 1.16 m/y). As the artificial levee is just 25-50 m distance from the eroding bank, 

it will be vulnerable in 20-40 years. Previous studies however suggested as high as 3-6 

m/y erosion rates at banks with collapsed revetment along the Lower Tisza, making 

artificial levees vulnerable within just 8-15 years (Kiss et al., 2013, 2019). Downstream 

of the collapsed revetment, erosion was initiated by the increased flow velocities. The 

erosional processes within this section was mainly through direct corrosion which is 

controlled mainly by the flow conditions (Hooke, 1979). 

The meander at Ányás is without direct human impact, thus, the process of bank 

erosion is different. With high and steep banks on the concave outer bank, circular slips 

are mainly responsible for the great erosion rate (1.29 m/y in average, max 2.75 m/y). 

The high banks with the steep slopes (ca. 50°) create the necessary conditions for the 

slips and toppling into the channel. This is mainly through thalweg incision as a result 

of the channel response to the various human interventions in the Lower Tisza (Chapter 

5.1; Amissah et al., 2017), thus, though this study area is not directly influenced by 

human impact, the propagating effects of the engineering works influence the processes 

here as well. The high erosion rates create failure blocks and slump debris in front of 

the eroding bank. The high flow velocities and the local turbulence are responsible for 

the erosion of sediment slump debris (Thorne, 1991). Thus, at low stages, the energy 

of the flow attacks the slumped material to satisfy the sediment transport capacity of 

the river. This reduces the actual energy available for bank and bed corrasion thereby 

reducing bank and bed erosion rates. 
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5.4 Modelling of the Lower Tisza morphology 

5.4.1 Results of the morphological modelling of the Lower Tisza 

The model was setup with four open boundaries: upstream of Csongrád, 

confluence with Körös, confluence with Maros and downstream of Szeged. Except the 

downstream boundary, external forcing was applied by using mean water discharge at 

the other boundaries. To understand the changes in the morphology of the Lower Tisza, 

the sections of the river at Csongrád (site of point-bar elevation changes study), 

Csanytelek North (site of bank erosion and flow conditions study), Csanytelek South 

(site of bank erosion and flow conditions study), and Ányás (site of flow conditions, 

point-bar elevation changes and bank erosion study) were selected for detailed analysis. 

Although the complexity of the revetments could not be modelled, the thickness of the 

sediment bed was set relatively high (2 m) and the mean sediment size was fixed at 0.2 

mm to allow for trends in morphological changes to be well established.  

The results showed in-channel bed incision (up to 2 m) and bank sedimentation 

generally for all selected sections (Fig. 5.47). At Csongrád (Fig. 5.47 A), the confluence 

was characterized by aggradation and thus, increasing channel-bed level, although all 

other parts of the in-channel bed incised. At Csanytelek North and South (Fig. 5.47 B-

C), the trend followed that of the entire channel with in-channel incision and 

sedimentation along the banks. However, even on this model the former point-bar at 

Csanytelek North is not aggrading any more, reflecting the continuation of the general 

incision trend. At Ányás however, there was sedimentation within the axis of the 

meander, approximately in the same zone where a riffle exists. Downstream of this 

sedimentation zone is a pool which is incised in the model. The riffle-pool sequence at 

Ányás is thus reflected in the sedimentation erosion pattern of the model. The convex 

bank at Ányás also marked by sedimentation representing accumulation on the existing 

point-bar. However, as indicated in the other locations, the channel bottom is eroding 

in most of the study at Ányás.  

 
Fig. 5.47: Model results of the cumulative erosion and sedimentation at selected sections of the Lower 

Tisza at A) Csongrád, B) Csanytelek North, C) Csanytelek South, and D) Ányás 

 

To understand the controlling factors of the patterns of erosion and 

sedimentation, the shear stresses (Fig. 5.48) and the depth-averaged velocity (Fig. 5.49) 
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for the four selected sections were analyzed too. The velocity and shear stress 

distributions were low along the banks which creates the necessary conditions for 

sedimentation. However, at the entrance and exits of the meanders, the velocities and 

shear stresses were high but sedimentation still occurred. The shear stresses from the 

model were generally low along the banks with values close or equal to zero. Within 

the meanders, very low shear stresses were also indicated near the apex especially at 

the Csanytelek South site. The depth-averaged velocities had similar patterns to the 

shear stresses.  At the Csanytelek North section, the velocity distribution was more 

uniform in comparison to the meandering sections which had a characteristic high-low 

velocity distribution along the channel. However, the zones of high velocities covered 

longer sections than the shear stresses. At the Ányás meander, the high velocities 

extended into the pool. 

 

 
Fig. 5.48: Model results of the shear stresses at selected sections of the Lower Tisza at  

A) Csongrád, B) Csanytelek North, C) Csanytelek South, and D) Ányás 

 

 
Fig. 5.49: Model results of the depth-averaged velocities at selected sections of the Lower Tisza at 

A) Csongrád, B) Csanytelek North, C) Csanytelek South, and D) Ányás 

 

5.4.2 Discussion on the morphological modelling 

The Delft3D model of the Lower Tisza was setup to establish the ability of 

numerical models to help understand the complex channel development of the Lower 
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Tisza. However, this initial model was restricted to the evolution of the river without 

bank stabilization. This initial model therefore had inputs which were kept constant to 

enable trends to be established in the evolution of the river. Comparing the shear stress 

and depth-averaged velocities to the cumulative erosion and sedimentation, it is evident 

that the sedimentation along the banks are due to the lower velocities and shear stresses. 

The high shear stresses were generated within the transition zones between pools and 

riffles. However, at the entrance of the meander bends especially, the high velocities 

and shear stresses do not support the deposition of sediments which occurred in the 

model. At the end of the high shear zones, the model results showed sedimentation 

which is an indication of the appearance of riffles. However, although the changes in 

the channel indicated by erosion and sedimentation are exaggerated, this can be 

attributed to the use of the morphological acceleration factor (MorFac) in the model. 

The MorFac used in the model (value=10) magnified the erosion and/or sedimentation 

after each time step by 10 accounting for the exaggerated sedimentation.  

The model was restricted to constant forcing at the boundaries although in 

reality, the discharge on the river varies with time. Although the constant discharge 

may affect the magnitude of changes as indicated by the model results, the trend of the 

changes is validated by the evolution pattern established by my conceptual model of 

evolution of the Lower Tisza (Fig. 5.20). Thus, the river follows the post-cutoff 

evolution pattern of the Lower Tisza which is characterized by in-channel incision and 

bank narrowing which is the effect of sedimentation along the banks.  

 

 

5.5 Bedload transport on the Maros River 

The bedload transport was measured on the Maros at Makó as part of the in-

channel processes which drive morphological changes. However, as indicated in 

Chapter 1; due to the difficulty in measuring the bedload on the Lower Tisza, the Maros 

was used as it had a high bedload transport. Moreover, the data from the sampling were 

used to validate the bedload estimation. 

 

5.5.1 Initial bedload measurements  

Since no bedload measurements had been documented prior to the sampling 

campaign at the study site, the first sampling campaign (2015/01) was used to 

determine approximate amounts of trapped sediment by the Helley-Smith bedload 

sampler (Fig. 5.50) to serve as preliminary results of the amounts of sediments collected 

at the eight points of the channel bed.  

Most of the high masses recovered were from the right bank up to the 40 m 

point which had the maximum mass (420 g). The least masses recovered were between 

50 m and 80 m (with each mass being less than 25 % of the maximum recovered mass 

at the 40 m point). It also served as a basis to select the 10 m, 20 m and 50 m points for 

further sampling due to the relative differences in the masses obtained at these points; 

and their locations in or close to the channel thalweg, and mid-channel bar. 
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Fig. 5.50: Masses of samples obtained during the first field campaign (2015/01) 

 

5.5.2 Effect of sampling time on bedload measurements/temporal variation 

To understand the variations in the measured masses with respect to time, 

repeated measurements with different sampling durations (30 s, 60 s and 90 s) were 

used to assess the effect of sampling time. This was also to ensure the reproducibility 

of the bedload measurements which are critical to the further study. Thus, the need for 

the optimum sampling time to ensure adequate sediments are recovered while at the 

same time minimizing oversampling. The absolute maximum and minimum masses 

and the standard error (ratio of standard deviation to square root of number of samples), 

as well as the mean mass and the bedload transport rate were determined (Fig. 5.51) of 

the masses of sediments obtained.  

 

 

Fig. 5.51: Mean, maximum and minimum masses of bedload, standard error, and the bedload transport 

rate using the different sampling durations at the 10 m point for 2015/01  

 

From the results, the 90 s sampling time resulted in the highest absolute 

sediment yield (835.4 g). The standard errors for the measured masses suggest the 60 s 

sampling time resulted in sediment yields with the least errors.  This is also supported 
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by the low range (difference between absolute maximum and minimum masses) of the 

masses obtained from the 60 s sampling time.  The 90 s sampling time had the highest 

error among the three sampling times. A further analysis of the bedload transport rate 

for each of the sampling durations however shows that the 90 s duration had the least 

bedload transport rate (5.3 g/s) with the 60 s having the highest rate (Fig. 5.51). This 

showed either an underestimation (30 s) or an overestimation (60 s and 90 s) when the 

absolute masses are used.  

The comparison of the bedload mass and transport rates for the three sampling 

durations (Fig. 5.51) represent just one sampling point (10 m from the right bank of the 

channel), but similar measurements were done on other parts of the channel profile 

during three subsequent field campaigns. Three sampling durations (30 s, 60 s and 90 

s) were applied to the 2016/01, 2016/02 and 2016/03 sampling campaigns. For each 

day, four samples were recovered using each of the three sampling durations at the 20 

m location (Fig. 5.52) and the 50 m location (Fig. 5.53).  

 

 

Fig. 5.52: Bedload transport rates for 2016/01, 2016/02 and 2016/03 using 30s, 60 s and 90s sampling 

durations at the 20 m sampling location 

 

 

Fig. 5.53: Bedload transport rates for 2016/01, 2016/02 and 2016/03 using 30s, 60 s and 90s sampling 

durations at the 50 m sampling location 
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As expected from the preliminary measurements, irrespective of location, the 

30 s yielded the least masses generally, followed by the 60 s, with the 90 s yielding the 

highest masses. However, the rates of transport (bedload transport rates) at the locations 

showed different trends. At the 20 m sampling location, the 60 s duration had the least 

variation for 2016/01 and 2016/02, although it had the highest variation for 2016/03. 

The reverse was true for the 30 s sampling duration. It had the highest variation for 

2016/01 and 2016/02 but the highest variation for 2016/03. The 90 s duration yielded 

a variation between the two sampling durations. For the 50 m sampling location, the 

trends were different.  The 60 s sampling duration had the highest variation for only 

2016/01 while it had the least for the 2016/02 and 2016/03. The variation for the 90 s 

was least for 2016/01, although it had similar high variations as the 30 s for 2016/02 

and 2016.03. Although these variations existed, the 60 s had the least error for the three 

sampling times. 

To understand the temporal variation of the bedload, masses recovered at the 

10 m, 20 m and 50 m points for sampling days 2016/01, 2016/02, 2016/03, 2016/04 

and 2016/06 were used (Fig. 5.54). From the results at the 10 m point, there was a 

reduction of 33% of the mass recovered over a period of one day (2016/01 to 2016/02) 

although there was only 3 cm increase in the water stage over the period. It reduced 

again from sampling day 2016/02 to 2016/03 by 99% over a three-day period although 

the was a 10 cm increase in the water stage. By the next sampling day which was over 

a five-week period, the mass recovered had increased by more than 100% to 842 g 

accompanied by a 30 cm increase in water stage. This however reduced again by sample 

day 2016/06 (covering fourteen weeks) by 98% although the reduction in the stage was 

more than a meter (105 cm).  

At the 20 m point however, there was an increase in the masses obtained from 

2016/01 to 2016/03 (150% over four days). There was a steep decrease resulting in a 

change of 67% by 2016/04 and a further decrease of 33% from 2016/04 to 2016/06. 

The 50 m point showed a total change of 35% between 2016/01 to 2016/03 although 

the absolute bedload masses were the least for the period compared to the 10 m and 20 

m sampling locations. However, the bedload mass doubled from 2016/03 to 2016/04, 

and decreased by 80% from 2016/04 to 2016/06. 

 

 

Fig. 5.54: Temporal variation of bedload at three sampling locations: 10 m, 20 m and 50  

from the right bank 
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5.5.3 Channel morphology and spatial variation of bedload yield 

The influence of channel morphology on bedload transport was also studied in 

detail. In sand-bedded rivers like the Maros, the cross-section can change quite rapidly, 

as it was observed during the same sampling day or between the different sampling 

days. The mobility of the channel bed is well represented by two separate runs within 

the same day. For example, during sampling day 2016/06, along most of the cross-

section, the bed level changed in less than an hour of measurement. The bed elevation 

had changed by ca.10 cm on the mid-channel bars (approximately at 40 m, 50 m and 

60 m points), and up to 30 cm on the lateral bar approximately at the 70 m and 80 m 

points (Fig. 5.55). The changes in the bed within the same sampling day refer to ripple 

mark and sand-bar migration, though the shape of the channel bed and the location of 

thalweg remained the same. In between sampling days, maximum changes of up to 50 

cm occurred at the thalweg position, 10-40 cm on the mid-channel bars and 60-90 cm 

on the lateral bars.as indicated by the surveys for 2016/01, 2016/03 and 2016/06 (Fig. 

5.56), the river bed aggraded by 0.5 m in average, although its maximum was more 

than 1 m at some locations (from 80 m from the bankline). 

 

 
Fig. 5.55: Changes in channel bed topography at the gauging station within a day (2016/06) 

 

 
Fig. 5.56: Mean depth of studied river bed for 2016/01, 2016/03 and 2016/06  

showing the changes in the bed in between surveys 

 

The daily and long-term channel bed variations influence the spatial variation 

of masses collected by the bedload sampler across the section. To present the spatial 

changes the results of 2016/04 sampling campaign were used, when up to seven 

samples at each sampling points were collected applying the 60 s sampling time (Fig. 

5.57). Although the 20 m sampling point was expected to have a high sediment yield 

based on previous sampling campaigns, the bedload transport had a relatively low yield 
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(max: 1271.8 g) with a corresponding low standard error. The highest yield was 

recovered at the 70 m location (max: 2444.1 g). 

A further comparison of masses from a thalweg sampling point (10 m) and a 

mid-channel bar sampling point (50 m) were made using the 2016/05 sampling results 

which showed similar characteristics (Fig 5.58). There were comparable mean masses 

of 390 g and 330 g respectively for the thalweg and mid-channel bar. While the range 

of masses were higher within the mid-channel bar, it had a relatively lower standard 

error.  

 

 

Fig. 5.57: Variation of sampled masses along section for 2016/04 

 

 

 
     Fig. 5.58: Variation of sampled masses from thalweg and mid-channel bar for 2016/05 

 

To better understand the connection between morphological changes and 

bedload transport, the grain-size distribution of collected sediment was also analyzed. 

Sediment recovered for various sampling campaigns at the 10 m point and the average 

for all eight sampling points across the channel are used (Fig. 5.59). The sediments 

recovered showed generally poor gradation. The range of D50 for the samples obtained 

at the 10 m point was 0.18 mm - 0.40 mm. The average range of D50 for the section was 
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0.16 mm - 0.34 mm. While the average D50 for the 10 m point was 0.25 mm, the grading 

for the samples from the 10 m point showed that there were wide variations in the 

sediments recovered at a point. While the lateral bar yielded the least sediment D50, the 

highest D50 values occurred on the mid-channel bars which also had the highest average 

range of D50 pointing to an active mid-channel bar. 

 

 
Fig. 5.59: Grading curves of samples obtained at (A) the 10 m point; (B) different sampling location 

across channel 

 

5.5.4 Effect of water depth and velocity 

Although the water stages at the Makó gauging station was low for all 

measuring campaigns, the mean masses recovered were compared with the water stages 

based on their location on either the falling limb or rising limb of the stage hydrograph 

(Fig. 5.60). The results showed a strong correlation between the water stage and the 

mean mass of sediments recovered. The lowest mean masses recovered on 2015/01 and 

2016/06 which had the lowest stages coupled with their location on rising stages of the 

hydrograph. The sampling of the masses during falling stages occurred within 

autumn/winter. 

 

 

Fig. 5.60: Water stage and corresponding mean masses for all sampling days  

showing the samples recovered at falling and rising stages 
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The influence of the water depth and velocity were also highlighted and their 

roles in the sediment yields. The mean water velocities for 2016/01, 2016.03 and 

2016.06 using an average water depth for each of the eight-sampling location were 

determined (Fig. 5.61). From the results, the highest velocities were recorded mostly 

on the bars (mid-channel and lateral) although the 70 m point recorded some of the 

lowest velocities similar to the main thalweg at 10 m. Although the 70 m point has no 

well-defined thalweg, the velocity distribution gives it a similar characteristic as the 

thalweg. There was also no clear correlation between the water depth and the mean 

water velocity although the least velocity distribution occurred for 2016/06 which had 

a comparatively lower stage. While the thalweg being the deepest had velocities 

between 0.4 – 0.6 m/s, relatively shallower points such as the 70 m point had similar 

velocities and, in some cases, lower velocities. 

 

Fig. 5.61: Mean velocity at sampling location and mean water depth for 2016/01, 2016/03 and 2016/06 

 

To highlight the influence of the water velocity and depth on the bedload, the 

masses recovered on the sampling days 2016/01, 2016/02 and 2016/03 were used (Fig. 

5.62).  

 

Fig. 5.62: Mean masses of sediment recovered across channel section for 2016/01, 2016/02 and 

2016/03 
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Again, no clear relationships could be established. Masses were high in cases of low 

velocities (10 m and 40 0m) while high velocity points (30 m and 80 m) yielded low 

masses. However, the 20 m and 70 m points which had relatively high and low 

velocities respectively, had corresponding high and low masses. 

 

5.5.5 Bedload transport rating curve at the Makó gauge station  

Although mean water stages at the Makó gauging station were low for all 

measuring campaigns, the mean masses recovered were used in creating the sediment 

rating curve for the Maros at Makó (Fig. 5.63). The results showed strong correlation 

between the time-normalized masses and the discharge (R2=0.7305). It should however 

be noted that this sediment rating curve is valid for water discharges which are less than 

300 m3/s. 

 

Fig. 5.63: Bedload rating curve of the Maros at the Makó gauge station 

 

5.5.6 Discussion on bedload transport at Makó 

In this study of the bedload discharge of the Maros at Makó, three different 

sampling durations (30 s, 60 s and 90 s) were tested. During the 90 s sampling duration, 

the greatest amount of bed-load sediment was trapped. It also had the highest standard 

error and highest range of time-normalized mass. The rates of bedload transport 

however showed that the 90 s sampling time had the least mean mass per unit time. 

This may be explained by the “overload” of the trap, i.e. after a certain duration, the 

sampler is saturated, and does not effectively recover any sediment during the 

remaining time. The longer sampling duration may also result in a bed-scour at the 

entrance and the immediate environs of the sampler (Potyondy et al., 2010) which 

invariably distorts the type and quantity of sampled material, especially in our case, 

where the river has easily erodable sandy bed. Thus, our results corresponds with the 

results of Haschenburger (2016), who suggested that only 30 s and 60 s sampling 

durations were the most suitable for the Helley-Smith bedload sampler, the possibility 

of the the rate of recovery of sediments diminishing with increasing time beyond the 

60 s duration is highly probable. Further sampling coroborated  the suitability of the 30 

s and 60 s sampling durations for the Helley-Smith bedload sampler for sand-bedded 
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rivers. However, based on our results, we suggest that in sand-beddeed rivers, the 

optimum sampling time should be 60 s.  

There was high temporal variability of bedload for all sampled points as shown 

by the results. Although not a direct consequence of the sampling time, other factors 

including the in-bed morphology and the changing bed-form may be responsible as 

explained subsequently. However, one possible source of bedload variability in the 

results is the position of the Helley-Smith sampler during sediment sampling due to the 

variability of the channel bed (Fig. 5.64). There will be under recovery in the first 

scenario where the nozzle of the sampler lies on dune. Conversely, with the nozzle 

embedded in the dune (second scenario), there is the possibility of over-sampling due 

to the sediments from the dune being trapped into the sampler. However, as indicated 

by third scenario, the ideal placement of the nozzle of the sampler to flush with the 

channel bed eliminates this instrument error. 

 

 

Fig. 5.64: Positioning of Helley-Smith on channel bed as  

a possible source of error during bedload sampling 

 

With a highly variable bed as indicated by the changes in the in-channel bed, 

the high variability has direct implications for both the quantity and quality of 

sediments reaching various points across the section, and the orientation of the Helley-

Smith bedload sampler during sampler. While the variability of the quantity of bedload 

across the section have been shown in the results, this has also been hypothesized by 

Gran and Czuba (2017) that sand-bedded channels are likely to experience translational 

sediment pulses, while storages significantly alter rates of bedload transport.  Sipos and 

Kiss (2004) also  indicated that in the Maros, there is a high variability of sediment 

transport due to its dynamic nature with frequent thalweg shifts and sediments carried 

in high dunes. With the quality of sediments, although the sediments recovered are 

generally poorly graded sands, there was a high content of sediment (up to 20% in some 

cases) less than the size of the mesh of the sampler bag (0.25 mm) as indicated by the 

grain-size distributions (Fig. 5.59). This suggests that there is a probability of a loss of 

some sediments passing through the mesh. At some locations: 50 m, 60 m, 70 m and 

80 m especially, they had up to 40% of sediment sizes similar or less than the size of 



99 

 

the mesh of the sampler bag. This is possibility is further highlighted by Emmett (1980, 

1981) who explained that when sediments have their diameters close to that of the mesh 

of the sample bag, there is a resultant unpredictable decrease in hydraulic efficiency 

and ultimately, loss of sample. The in-channel bed morphology also had implications 

for the sampler in both the longitudinal and transverse directions. While the nozzle of 

the sampler may make an angle relative to the direction of flow thereby reducing the 

effective area of the nozzle, the location of the nozzle on or below a ripple and/or bar 

may introduce interferences for the sampling. These scenarios were stressed by Vericat 

et al. (2006) who indicated that the angle the nozzle makes with the river bed in the 

direction of flow serve as sources of interference during sampling. 

From the results, the rising stages were associated with low sediment yields and 

the falling stages having high sediment yields. However, neither the rising stage nor 

low yields were necessarily associated with low mean velocities. Although velocity 

affects bedload, in this study, high velocity did not correlate to high sediment yield. 

This meant other factors were dominant in controlling the bedload. The tendency of 

high velocity areas not yielding high bedload may be attributed to high fluctuations in 

sediment delivery to the channel section over time. In the Maros, the shifting of mid-

channel bars across the channel may be responsible for this variability. Again, is 

explained by Ghilardi et al. (2014), this variability is a general characteristic of steep 

channels.  

The resultant rating curve is just valid for water discharges less than 300 m3/s. 

This means for higher discharges; it would not be applicable. This therefore requires 

more data covering higher stages as the highest discharge recorded on the Maros is 

2620 m3/s. 

 

 

5.6 Estimation of the bedload transport of the Maros River 

5.6.1 Comparison of estimates from applied formulae 

The six bedload formulae applied to the Maros River to obtain the bedload 

transport at Makó had varying results (Fig 5.65). The estimation of the bedload 

transport covered equations with different theoretical basis. As a result, the formulae 

were expected to generate different bedload estimates. The Meyer-Peter Muller 

formula and the Wong and Parker formula were based on shear stress but yielded very 

different bedload rates. The best estimate was by the Bathurst formula. As indicated 

from the results, the bedload rates based on shear stress (Meyer-Peter Muller, and Wong 

and Parker) had very different results. The highest estimate was by the Rottner formula 

while the least rates were by Bagnold, Wong and Parker, and Bathurst formulae 

although their theoretical basis were different. 

A comparison of the different formulae showed the relative differences with the 

sampled results. The Rottner formula which yielded the highest estimate had it bedload 

rate was more than six times the sampled bedload. Although the Bagnold, Wong and 

Parker, and Bathurst formulae had the least yields, they were more by 19-48% 

compared with the sampled results. The Einstein-Brown formula had similar results as 
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the Rottner formula although it showed more variability due to its sensitivity to lower 

water stages.  

 

 
Fig. 5.65: Comparison of the bedload rates of the bedload formulae with sampled bedload rate 

 

The variability of the bedload estimates with changing discharges are indicated 

by their mean estimates and corresponding standard errors (Fig. 5.66). The mean 

estimate from the formula of Wong and Parker formula (0.18 kg/s/m) yielded results 

close to the sampled bedload rate (0.13 kg/s/m) but had the least standard error of all 

the equations (0.011). The error was ca, 9% less than the standard error for the sampled 

bedload rates (0.012).  Although the Rottner formula had the highest estimates, its 

standard error (standard error: 0.034) was comparable to the Meyer-Peter Muller 

formula (standard error: 0.028) with the Einstein Brown showing the highest variability 

(standard error: 0.089). 

 

 
Fig. 5.66: The mean and standard errors of the estimated and sampled bedload rates 

 

5.6.2 Discussion of bedload estimation 

To correctly estimate the bedload transport in alluvial rivers is very important not only 

for fluvial geomorphologists but also for engineers, as sediment transport plays a 

significant role in the evolution of rivers. The importance of bedload rate estimates are 
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even more significant when the technical difficulties, cost and dangers associated with 

bedload sampling are considered.  

 In testing the six bedload formulae, it was important that the estimates provided 

by any formula to be very consistent. This condition of consistency is highlighted by 

the standard errors. From the results, the equations with the least estimates of the 

bedload rates were the most consistent. The highest estimates of the bedload rate was 

by the Rottner formula and Einstein-Brown formula which are based on regression and 

probability respectively. Their higher estimates may therefore be attributed to using 

statistical and probabilistic analysis as the basis of their development, while the other 

formulae are based on some natural attribute of flow. Although the Rottner formula 

yielded the highest mean bedload transport rate, it was not the least consistent as the 

Einstein-Brown formula had a higher standard error. The Meyer-Peter Muller formula 

is an older formula which has been analyzed by various author to improve its 

predictability (Wong and Parker, 2006; Huang, 2010; Sidiropoulous et al., 2018; Kurigi 

et al., 2019). 

 In this present study, the sensitivity of the various formulae was not tested. 

However, as indicated by Claude et al. (2012), the bedload formulae are not sensitive 

to differences in the mean sediment diameter; hence, the sediment size did not play a 

role in the differences in their estimates. This is further shown by the Bathurst formula 

and Wong and Parker formula which gave good estimates of the bedload although their 

applicable sediment range used in developing them were higher than the sediment size 

used in the estimation of the bedload transport rate for my study. However, changes in 

the stage may affect the estimates especially with the Rottner and Einstein-Brown 

formulae. Even at low stages used for the estimates, the two formulae responded to 

both the least and highest values which resulted in their higher variability. However, 

same cannot be said for the other formulae as they did not show any appreciable 

sensitivity for the range of water stages applied. As already indicated, although the 

Wong and Parker formula is a modified form of the Meyer-Peter Muller equation, it 

yielded very consistent values, as well as close estimates to the measured bedload rate 

from the sampling. 

In a highly dynamic alluvial river channel, the effect of changing bedforms 

affects the bedload transport rates. However, in this study, no corrections were made to 

incorporate this variable bed. Although, the best estimate is from the Bathurst formula, 

the results generally suggest the more recent bedload formulae have been calibrated to 

perform better estimates of the bedload transport based on the performance of the six 

bedload formulae used. 
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6. CONCLUSIONS  

This PhD research focused on the morphological response of a lowland river 

channel subjected to various engineering interventions which ranged from 

channelization to make the river more navigable, to bank stabilization methods (mainly 

through revetments) which were to control the evolution of the river channel which 

posed various forms of hazards. To better understand how the evolution of the river, 

various analyses were done to ascertain the processes driving the changes in the river 

channel. Furthermore, the ability of forecasting methods including the use of a process-

based model and empirical formulae were tested to project future development of the 

river to help in decision making which is critical in effective river management.  

 

6.1 Centurial changes in the Lower Tisza channel 

The human interventions in the Lower Tisza included the construction of 

levees, artificial meander cutoffs, and the construction of revetments and groynes. 

However, in this study, the effects of meander cutoffs and the revetments which directly 

impacted the river channel were studied in detail. The aim of artificial meander cutoffs 

was to straighten the channel, and they were made between 1850 and 1889 which 

reduced the length of the Lower Tisza by one third. The reduction in length effectively 

increased the slope and as a result, the stream power of the channel. The revetments 

within the Lower Tisza on the other hand, were constructed from the late 19th century 

(1886) with the latest in 2001. However, most of them (ca. 54% of revetments) were 

built between 1925 and 1965. The middle section of the river had the highest length of 

revetments (58%) but the least density of all the reaches due to its longer length. 

The temporal changes in the vertical channel parameters can be categorized 

into three distinct periods based on the response of the channel to the various direct 

engineering interventions. In response to the artificial meander cutoffs, there was an 

increase in cross-sectional area from 1891-1961 although the latter part of the period 

was characterized by a slower rate of increase due to the declining influence of the 

cutoffs. The next period, 1961-1976 was marked by a reduction in the cross-sectional 

area as a response to the construction of revetments; while the last period, 1976-2017 

was also characterized by an increase in the cross-sectional area of the channel as the 

channel began to re-establish it evolution trend after adjusting to the revetments. 

However, the last two decades have been marked with the highest ever rate of increase 

in the cross-sectional area of the Lower Tisza. These changes in the cross-sectional area 

were reflected in the changes in the depth and width values of the channel too. The 

channel generally incised and experienced narrowing over the entire 126-year studied 

period. This meant the any increase in cross-sectional area was due to the increase in 

the depth conditions of the river. The drastic reduction in the cross-sectional area of the 

channel for period 1961-1976 was characterized by both aggradation and narrowing. 

Although the width generally decreased over the 126-year period, the mean width 

increased between 1999 and 2017 referring to the rapid increase in the channel cross-

sectional area. The pattern of temporal changes in the Lower Tisza from my research 

compares to the work of Kiss et al. (2008) and Sipos et al. (2007) although it involved 
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shorter river sections. It is important to note that the bank erosion which necessitated 

the construction of the revetment was and is responsible for the collapse of the 

revetments has been indicated by Simon (1992) as the channel’s most efficient means 

of energy dissipation. Furthermore, although rates of incision were not as high as 0.6 

m/y as indicated by Simon (1989) and Baena-Escudero et al. (2019), their theory of the 

migration of incision rates upstream may very well be responsible for the relatively 

widespread incision in parts of the Lower Tisza not directly affected by human impacts. 

Spatially, the evolution of the Lower Tisza channel was controlled by intensity 

of the engineering interventions. Generally, the upper reach had the highest change, 

while the least change was in the middle reach although it is the most active of the 

reaches. The lower reach on the other hand, was relatively stable due to its proximity 

to the confluence of the Tisza River with the larger Danube which affected channel 

processes. The mean cross-sectional area of the Lower Tisza channel was highest in 

the lower reach for all periods irrespective of the impact of the various engineering 

interventions. The larger cross-sectional area may be attributed to the proximity of the 

confluence of the Maros within this reach, as well as the influence of the larger Danube, 

of which the Tisza is a tributary. The smallest cross-sections however alternated 

between the very middle reach and the upper reach. From 1891 to 1961, the smallest 

cross-section was in the middle reach. However, this changed after the construction of 

the revetments as the river expended its energy to erode the unrevetted sections. Also, 

within the middle reach, the type of revetment and their spacing served perfect 

conditions for the erosion of the revetments; thus, increasing the channel size. The 

depth of the Lower Tisza channel was generally highest within the lower reach, with 

an increasing depth downstream. Over the studied period however, the thalweg depth 

has evolved towards a uniform mean value in 2017. The width of the channel was 

similarly highest in the lower reach although there is no clear downstream trend as in 

the case of the depth. However, the least and highest widths for the channel were in the 

middle and lower reaches respectively for the whole period. 

The morphological evolution of the Lower Tisza River was mostly controlled 

by the various direct engineering interventions. The has also been established by Surian 

and Rinaldi (2003) for single thread alluvial rivers. Provencal et al. (2014) also 

attributed the impact of various engineering interventions to the changes morphology 

of the Rhône River in France over a 130-year period similar to my research; although 

it covered a 120 km section, slightly longer than the Lower Tisza.  The meanders, 

which are free of cutoffs developed with little influence from the cutoffs. Based on the 

evolution indicated by the low rates of change, the river had achieved some form of 

equilibrium by 1961 based on a 100-year readjustment period of equilibrium for the 

Lower Tisza as hypothesized by Kiss et al. (2008). This quasi-equilibrium was 

however distorted with the construction of the revetment, as a new period of re-

adjustment was created with the revetments controlling the morphological 

development of the channel. After this evolutionary setback, the channel began to re-

establish the pre-revetment evolution pattern. The results of this PhD research indicate 

that the channel is still undergoing changes with a non-linear pattern of temporal change 

which is supported by Surian and Rinadi’s (2006) channel evolution theory. The 
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response of the entire studied channel refers to the fact, that adjustments to various 

human interventions were relatively rapid initially, after which the adjustments slowed 

down considerably and became asymptotic. The non-linearity of evolution is analogous 

to the theory of Phillip (1992) which highlights the complexity and non-linearity of 

geomorphic systems, although my research simplified the process-response of the 

various human impacts which are more complex than have been analyzed in this 

research. The general morphological evolution of the channel is represented by the 

conceptual model (Fig. 5.20). 

The process-based model of the Lower Tisza was able to replicate the evolution 

of the river without the presence of the revetments. Due to the complexity of the 

revetments along the banks of the Lower Tisza, the effects of the revetments were not 

modelled. The model results however suggest that the river without bank stabilization 

measures will evolve generally with channel incision and narrowing, following the 

original evolution pattern after the cutoffs before the construction of revetments and 

groynes. 

 

 

6.2 Morphology, in-channel processes and near-bank processes 

The morphology of the river section, as well as the presence and state of 

revetments, were found to control the in-channel processes of the Lower Tisza River. 

The revetted sections (both meandering and straightened) generally had lower mean 

velocities than the freely meandering section of the river. The meandering sections 

(both revetted and unrevetted) on the other hand, had lower stream power than the 

straightened sections. The Lower Tisza cannel was found to be eroding in both revetted 

and unrevetted; and, straightened and meandering sections. However, two types of 

revetment were present in the studied sections of the river: placed-rock revetment and 

stepped-block revetment. Due to the differences in their construction, only the placed-

rock revetment erodes. My analysis suggests that incision caused by the construction 

of the revetments within the channel can accelerate the erosion of the placed-rock 

revetment which failed as the rocks can fall into the over-deepened pools one-by-one. 

Although revetment erosion occurred mainly with the placed-rock revetments, two 

types of revetment erosion were however identified (Fig. 5.33). Both types are erosion 

are made possible by the high velocities generated near the revetments which cause 

incision and finally the erosion of the revetment. In the first type, the incision creates 

deep and steep vertical banks which are necessary condition for landslides. Thus, the 

revetted section fails through landslides. In the second type of erosion, the incision of 

the channel coupled with the high erosivity generated at the end of the revetment causes 

the rocks at the end of the revetment to collapse one-by-one. The collapse creates a 

pool due to both vertical and lateral erosion which creates the conditions for further 

collapse of the revetment. 

Due to the identified vulnerability of the placed-rock revetments, I  suggest 

reviewing the existing bank-protection practice in similar environments: (1) in case of 

new revetment constructions the revetments should be extended far more downstream 

towards the inflection zone, thus its end will be farther from the high erosivity velocity 
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fields, (2) a strengthened stepped-block type should be applied, and (3) in some narrow 

and sharp bends even the replacement of artificial levee sections could be considered 

or (4) the diversion of the thalweg by applying groynes.  

My study also proved that the construction of revetments has had drastic long-

term effects on bank processes. Aside the relatively high costs of revetments, they 

seem to have caused a range of unfavourable processes such as incision, enhanced 

erosion and evacuation of sediment from parts of the river. This conclusion of the 

unfavourable processes I highlighted was also presented by Klingeman et al. (1984). 

Along the unrevetted sections, erosional processes became dominant, as the transferred 

stream energy initiated active bank erosion downstream of revetments. This erosion 

downstream of revetments propagates upstream which destabilizes the entire system. 

This may cause further incision, accelerate the erosion around built-in structures (e.g. 

bridge piers, groynes), and lower ground-water levels. The result of these may be the 

development of hydrological droughts, and lowered low stages, making water-

withdrawal very difficult and expensive. 

This PhD research has established erosion to be the dominant near-bank 

process along the channel of the Lower Tisza as indicated by erosion of point-bars, as 

well as bank erosion on unrevetted sections. However, there is a general loss of active 

bank processes of the Lower Tisza due to the engineering intervention which 

transformed the originally meandering equilibrium river into a meandering incising 

one (Kiss et al., 2008). The loss of morphological character and fluvial processes is 

identical to Yu et al. (2016) although the fluvial settings were different. As highlighted 

by Kiss et al. (2019), in the late 19th century, active point-bars developed in all bends 

and meanders of the Lower Tisza covering about half the studied reach with a length 

of 52.3 km (in 47 locations). However, with the change in bank processes, only 4.7 km 

of the banks have active bars at about 20 locations (with both point-bar in convex banks 

and side bars in concave and straight sections). The construction of revetments to 

stabilize banks has reduced intensive natural near-bank processes. However, the 

channel incision due to the various engineering constructions has initiated intense bank 

erosion of the concave banks, and erosion of the active point-bars of the Lower Tisza.  

In the morphology of the meandering Lower Tisza River, the active near-bank 

processes of the Lower Tisza river as indicated by the changes in the point-bar 

elevation and bank erosion refer to a loss of equilibrium; as the development of point-

bars and bank erosion give an indication of the state of equilibrium of a river channel. 

As highlighted by Church and Rice (2009) and Schuurman et al (2016), the reduction 

in the active processes, and the predominantly erosion-dominant nature of the Lower 

Tisza suggests a loss of equilibrium. My research has proved that point-bars, especially 

those with revetments on their opposite banks are declining. Although most of them 

have already been lost, the remaining ones will also soon disappear if the status quo 

remains. Only those point-bars which are in free meanders might survive. Based on our 

case study, such a point-bar follows the seasonal variations in hydrology and bank 

erosion on the opposite bank, representing cyclic deposition and erosion of sediments 

on its surface. Although the geomorphic processes are variable, and our research has 

temporal and spatial limitations based on the size of the Lower Tisza River and the 
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period of adjustment of the river after regulations, the results of this research have 

implications for future river management.  

Based on the active processes it could be assumed, that most active point-bars 

will be lost (eroded) with the exception of those which are without direct human impact. 

The process will be accelerated if new revetments are built and the collapsed ones are 

restored. However, it would be imperative for river managers to preserve the natural 

environment and the sensitive ecosystems created by these active bank processes by 

the possible restoration of some bank processes by the removal of hard bank 

stabilization structures. Management of the river system should gradually refocus on 

soft engineering measures and find ways of reviewing existing management schemes 

to reflect this new shift in ideology, with an exhortation to engineers as indicated by 

Lawler (1993) to adopt geomorphic methods in river management schemes as they may 

lead to improved solutions. 

 

6.3 Measurement and estimation of sediment transport  

Bedload transport is fundamental in channel incision processes, therefore I also 

focused on measuring and estimation bedload sediment transport. However, due to 

limitations in technology, I measured it on only the Maros River. My measurement 

revealed that the bedload transport rate on the Maros at Makó is 350,000 t/y although 

Bogárdi (1974) indicated that the bedload transport of the Maros was 28,000 t/y. The 

optimum sampling time using the 76 mm Helley-Smith bedload sampler on the Maros 

was also determined to be 60 s which compared well with Haschenburger (2016) who 

suggested 30 s and 60 s as suitable sampling times for the Helley Smith sampler. 

The estimation of the bedload sediment transport of the Maros at Makó 

presented a different perspective to understanding the differences in the various 

formulae available for predicting bedload. Although the sediment sampling had its 

errors possible due to changing channel bed forms and the sampler, the Bathurst 

formula predicted bedload rates similar to the rates obtained from the sampling 

campaigns. Therefore, this can be applied in bedload prediction for similar flow 

conditions. For different flow conditions however, further calibration is needed due to 

the possibility bedload formulae being sensitive to the changing flow conditions. As 

indicated by López et al. (2014) in applying bedload formulae in the Lower Ebro River 

in Spain, the Bathurst formula was one of two formulae that yielded good agreement 

with the sampled bedload rate. Although the bedload formulae generally over predicted 

the bedload rates based on the rates from the sampling, Claude et al. (2012) also 

indicated the variability of the bedload transport formulae.    
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9. ABSTRACT 

The Lower Tisza, like most lowland alluvial rivers has been altered by 

engineering constructions including the construction of levees to protect settlements, 

artificial meander cutoffs to improve its navigability, and the construction of revetment 

and groynes to stabilize its banks. These human interventions in the river system have 

had various impacts on the evolution of the river.  

Although recent researches have sought to investigate the impacts of these 

interventions, they have been rather limited to short sections of the river. To have 

parametric connections between the changes at the various sections of the Lower Tisza, 

this research covered the response of the entire Lower Tisza reach (89-km length) from 

upstream of Csongrád to the Hungarian-Serbian border to various human interventions 

which included artificial meander cutoff cutoffs and the construction of bank 

stabilization (revetments and groynes). The influence of the planform (indicated by 

sinuosity) on the changes in channel morphology were also analyzed. Thus, the 

morphological evolution of the river was investigated from 1891 until 2017 using data 

from hydrological surveys (1891, 1931, 1961, 1976, 1999 and 2017) and the 

Hydrological Atlas (1976) of the Lower Tisza. Besides, to understand the short-term 

changes in the in-channel processes, characteristic locations with different 

morphological characteristics within the more sinuous middle section of the river were 

selected, and the flow and bank processes measured. In the morphological evolution of 

a meandering lowland river, the development of point-bars and bank erosion are critical 

near-bank processes which indicate the sediment and hydraulic regime of the river 

system; thus, reflect the equilibrium conditions of the river channel. Therefore, the 

changes in elevation of the point-bars (between 2011 and 2019) at a freely developing 

meander and a section with revetment on its opposite bank were therefore monitored 

using a Topcon RTK GPS. Digital elevation models (DEM) were generated using 

ArcGIS 10.3 for the point-bar data and analyzed. Similarly, the bank erosion (between 

2011 and 2019) at three locations (two revetted sections and a naturally meandering 

section) were also monitored using a Topcon RTK GPS. To understand the short-term 

changes in the in-channel processes, the velocity and discharge of the river were 

measured using a boat-mounted River Ray ADCP and GPS at four selected sites (three 

revetted sections and a naturally meandering section). The measured velocity and 

discharge data for different geomorphic units were analyzed using the WinRiver 
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software together with a DEM of the Lower Tisza which was produced from merging 

airborne LiDAR and a high-frequency survey of the channel bathymetry. Furthermore, 

the bedload sediment transport on the Maros at the Makó gauging station was also 

monitored using a 76 mm-Helley-Smith sampler as part of the in-channel processes. At 

the Makó gauging station which is operated and maintained by the ATIVIZIG, a 

motorized monitoring station with a fixed-steel cable across the river section allow 

sampling instruments to be moved at defined intervals along the river cross-section. An 

ADCP was also used to measure the flow characteristics on sampling days. Thus, 

bedload transport rate, the optimum sampling duration and the effects of both the 

channel morphology and flow characteristics were analyzed. To be able to predict the 

bedload transport of the Maros and the morphological evolution of the Lower Tisza, 

six bedload formulae and the Delft3D model were used respectively. 

The analysis of the results suggests, that from 1891 until 1961 there was channel 

incision and narrowing of the Lower Tisza, while the mean cross-sectional area 

increased in response to the artificial meander cutoffs as the channel proceeded towards 

a quasi-equilibrium. Between 1961-1976, the construction of revetments to stop lateral 

erosion which threatened the levees eliminated most active bars (areal reduction from 

140 ha to 4 ha) and distorted the morphological evolution of the river. The overlap of 

the initial evolution pattern with the effects of the revetments resulted in aggradation 

within the channel and narrowing which caused a drastic reduction in the channel cross-

sectional area. However, in the subsequent period (1976-2017), the evolution of the 

channel was controlled by the effects of the bank stabilization which resulted in channel 

incision and an increase in channel cross-sectional area. Within the period however, 

although the rate of increase was slower initially, it later increased with the highest 

mean cross-sectional area occurring in 2017. The evolution pattern of the river suggests 

that it will continue to increase its cross-sectional area to achieve a new equilibrium, 

with the initially meandering river transforming into an ingrown meandering river.  

The spatiality of geomorphic units and the presence of revetments influence the 

velocity distribution in the Lower Tisza. The non-meandering revetted sections had 

relatively more uniform velocity distributions, while the meandering sections did not. 

However, while the freely meandering meander had the highest velocity distributions, 

the revetted meander had the smallest. The flow characteristics at the revetted sections 

were found to depend on the rate and type of revetment collapse. Within the studied 

sites, although stepped-block revetments experienced no collapse, the placed-rock 
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revetment collapsed in two ways. The high velocities generated by the revetment 

created conditions for intense incision which caused some revetments to collapse 

through landslides. At the end of the placed-rock revetment, high erosivity of the 

downstream section of the revetments coupled with the high incision caused the 

collapse of the individual rocks of the revetments. Large pools developed in front of 

the revetments, playing an important role in initiating their erosion which has an 

upstream propagation. Currently, erosional processes dominate the river. At the point-

bars, their elevations decreased by 0.19-0.40 m, with the highest rates occurring on the 

freely developing point-bar. The bank erosion rate differed based on the type of bank. 

It was 0.6 m/y along the revetted section, while at a freely meandering section, it was 

2.3 m/y. These intensive erosional processes refer to an incising meandering channel, 

which must be considered during future planning of in-channel structures (e.g. 

revetments, bridges), thus, geomorphic methods must be considered in any river 

engineering scheme.  

Although the morphological model could replicate the changes in the 

morphology of the Tisza with in-channel incision and sedimentation along the banks, 

further modelling is needed to adequately apply it in river management as complex 

nature of the current state of the river with revetments could not be well modelled. 

The bedload studies indicated 60 s as the optimum sampling duration for low 

flow conditions which may change in different hydrological settings. The annual 

bedload transport of the Maros from the measurement was ca. 350,000 t/y while the 

estimated values ranged from ca. 460,000-2,900,000 t/y with the best estimate given 

by the Bathurst formula. Although the estimation of the bedload transport rates showed 

varied results for the different formula, the Bathurst equation yielded estimates within 

20% of the bedload rates from sampling.  
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10. APPENDIX  

A1. Cross-sectional area (m2) of cross sections (VO) 

VO 1891 1931 1961 1976 1999 2017 

200 1498 1871 1937     2005 

201 839 1624 1693     1616 

202 1707 1532 1372 1201 1194 1557 

203 1389 1407 1637 1168 1284 1582 

204 1539 1804 1585     1579 

205 1236 1489 1776 1294 1556 1600 

206 1034 1615 1756 1902 1630 1818 

207 1550 1748 1619 1464 1500 1583 

208 1807 1829 1687 1760   1741 

209 1703 1831 1507 1498 1635 1493 

210   1611 1719 1460 1403 1698 

211 1533 1725 1835 1830 1389 1938 

212 1476 1634 1264 1329 1241 1503 

213 1730 1742 1609 1635 1717 1700 

214 1718 1853 1220 1335 1510 1379 

215 1275 1269 1393 1202 1212 1436 

216 1743 1615 1543 1623 1802 1729 

217 1518 1948 1857 1451 1525 1562 

218   1788 1868 1951 1727 1835 

219   1624 1749     1741 

220 1763 1542 1455 1387 1688 1655 

221 620 1651 1683 1742 1719 1652 

222 1534 1551 1608 1517 1781 1429 

223 1179 1552 1779 1641 1630 1604 

224 1762 1559 1490 1503 1594 1669 

225 2177 1608 1505 1536 1627 1490 

226 1619 1784 1878 1614 1655 1572 

227 1270 1283 1531 1454 1314 1205 

228 1568 1619 1872   1708 1661 

229 1631 1803 2053 1990 1936 1962 

230 1558 1740 1873     1827 

231 1647 1733 1693 1632   1977 

232   1536 1843 1693   2039 

233 1877 1590 1685   1908 2277 

234 1924 1925 1939 1783 1931 1839 

235 1473 2176 2372     2352 
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A2. Thalweg depth (m) of cross sections (VO) 

VO 1891 1931 1961 1976 1999 2017 

200 10.3 22.8 16.6     17.3 

201 12.9 11.1 14.9     16.0 

202 8.9 10.4 10.9 10.1 10.6 12.5 

203 9.1 11.1 11.6 10.4 11.0 11.3 

204 10.6 12.5 11.2     14.3 

205 14.6 12.8 13.4 11.6 13.0 11.9 

206 12.6 14.2 14.1 14.3 13.0 12.5 

207 8.3 9.7 12.1 12.4 13.4 12.6 

208 10.8 10.6 11.4 11.8     

209 10.3 10.8 12.1 11.8 12.5 12.6 

210   12.6 13.3 11.2 9.6 11.5 

211 9.6 13.5 16.0 15.8 13.1 15.2 

212 12.2 14.8 13.6 12.4 11.9 14.0 

213 17.1 16.2 15.5 16.9 19.0 16.0 

214 11.7 13.7 13.7 14.9 15.7 13.3 

215 13.5 13.8 15.8 14.7 16.4 13.4 

216 16.6 17.0 15.7 16.4 16.5 16.3 

217 9.2 10.9 12.6 11.1 12.5 12.8 

218   14.0 12.7 12.9 11.7 12.9 

219   14.0 14.1     14.2 

220 15.1 16.6 16.7 15.8 16.3 16.3 

221 12.1 14.8 14.3 15.0 15.0 15.5 

222 11.7 13.2 14.6 14.2 14.1 14.2 

223 15.0 14.2 13.2 13.4 13.6 13.1 

224 9.2 10.5 13.6 12.5 14.0 14.3 

225 22.4 21.5 20.6 21.3 21.6 21.1 

226 10.5 14.1 14.7 13.6 13.2 11.9 

227 11.3 11.5 13.3 13.2 12.3 10.8 

228 18.9 14.2 18.2   18.6 16.4 

229 12.2 13.6 12.3 13.6 13.6 13.4 

230 8.6 11.5 11.8       

231 8.2 11.0 11.1 10.9     

232   10.6 11.3 11.2   14.1 

233 10.0 10.4 11.5   12.9 13.0 

234 10.2 16.0 16.8 14.9 15.1 13.9 

235 16.3 12.4 12.9       
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A3. Mean depth (m) of cross sections (VO) 

VO 1891 1931 1961 1976 1999 2017 

200 5.9 10.7 11.2     12.5 

201 10.4 7.6 8.5     11.1 

202 6.5 7.3 8.8 8.5 8.3 9.4 

203 6.5 7.8 8.8 7.5 8.5 8.4 

204 6.7 7.8 8.1     8.8 

205 9.8 8.9 8.2 7.5 8.6 8.4 

206 9.5 10.4 9.3 8.6 9.1 9.4 

207 5.7 7.7 7.6 9.7 10.3 9.4 

208 7.6 8.8 9.0 9.4   9.4 

209 8.1 8.1 8.9 8.9 10.2 10.4 

210   8.6 8.0 8.3 8.4 9.3 

211 6.8 8.9 9.6 11.5 9.4 11.2 

212 7.9 8.7 8.9 9.3 8.6 10.0 

213 10.6 11.0 9.8 10.7   9.5 

214 7.1 7.0 9.2 9.0 11.2 9.1 

215 6.5 9.7 11.1 11.1 10.4 9.1 

216 9.5 8.2 9.3 9.3 10.0 10.9 

217 7.2 8.8 8.7 8.4 9.3 9.3 

218   10.5 9.1 9.4 8.4 9.7 

219   10.5 9.9     10.3 

220 8.5 9.5 10.4 9.8 10.7 10.3 

221 9.3 10.8 11.3 12.1 11.2 11.2 

222 7.9 8.0 9.5 9.0 9.7 10.2 

223 11.0 11.1 10.0 10.6 11.1 10.1 

224 6.6 7.6 8.4 8.3 9.1 9.2 

225 12.7 9.5 12.6 10.7 12.1 13.3 

226 7.6 9.1 7.0 8.3 9.6 8.9 

227 7.1 7.5 8.5 9.1 8.8 8.2 

228 11.4 9.8 10.0   12.6 11.6 

229 8.8 9.5 9.9 9.6 10.1 9.8 

230 6.3 8.0 8.3     9.1 

231 6.8 6.5 7.4 7.9   8.7 

232   6.9 8.8 7.4   8.7 

233 6.2 7.9 8.3   9.9 9.8 

234 7.8 9.9 9.4 10.1 10.5 10.3 

235 12.7 9.2 9.0     9.1 
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A4. Bankfull Width (m) of cross sections (VO) 

VO 1891 1931 1961 1976 1999 2017 

200 257.1 178.4 181.2     148.0 

201 84.4 219.8 219.7     140.7 

202 270.3 219.1 169.8 143.9 144.8 159.5 

203 217.0 178.9 209.9 160.9 152.1 156.0 

204 234.6 254.1 228.7     166.1 

205 139.1 166.7 226.6 169.6 176.4 193.6 

206 105.9 159.5 193.2 193.2 180.1 176.9 

207 266.3 234.9 232.5 156.7 154.8 157.6 

208 241.7 211.1 190.2 195.4   171.6 

209 205.9 237.8 172.2 160.9 160.9 161.0 

210   202.8 232.0 171.8 172.8 178.4 

211 234.7 206.1 192.7 165.0 151.7 164.5 

212 191.3 189.3 144.8 148.7 148.1 153.6 

213 160.5 163.7 163.0 163.2 163.4 130.0 

214 253.3 262.8 138.1 129.3 137.3 128.8 

215 211.4 127.6 131.7 112.1 120.6 110.8 

216 200.5 201.5 175.5 168.0 169.6 156.7 

217 213.9 221.3 223.2 173.0 173.9 177.9 

218   174.9 201.4 207.7 209.2 202.7 

219   156.9 175.4     174.4 

220 215.0 161.9 137.9 133.9 156.6 157.7 

221 68.7 147.1 152.7 154.7 154.4 156.4 

222 214.2 189.0 174.1 154.8 184.8 147.5 

223 108.1 137.1 151.0 152.1 153.0 158.9 

224 277.5 205.3 226.2 181.0 178.4 184.7 

225 189.0 165.7 123.1 116.1 146.8 123.8 

226 214.3 203.8 255.1 176.2 179.4 160.6 

227 186.4 163.6 174.1 158.8 153.9 138.3 

228 143.2 177.3 188.6   133.4 146.6 

229 197.3 192.8 211.9 205.9 187.1 180.6 

230 257.2 218.9 230.8     196.3 

231 249.4 272.9 226.2 209.4   219.5 

232   241.5 223.3 230.0   218.3 

233 312.0 210.7 200.9   198.4 196.3 

234 254.5 196.1 201.1 180.1 186.8 180.0 

235 119.4 230.6 260.8     264.9 
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A5. Mean width (m) of cross sections (VO) 

VO 1891 1931 1961 1976 1999 2017 

200 146.1 82.2 116.4     115.9 

201 65.0 146.2 113.9     101.0 

202 191.1 147.9 126.3 118.9 112.7 124.1 

203 152.3 127.4 141.3 112.5 117.2 139.9 

204 145.4 143.9 141.4     110.3 

205 84.5 116.6 132.3 111.6 119.5 134.0 

206 82.2 113.6 124.4 133.0 125.7 145.6 

207 187.5 181.1 133.5 118.0 111.6 125.8 

208 167.5 173.3 147.6 149.4   154.0 

209 164.7 168.9 124.7 126.6 130.8 118.7 

210   127.6 129.0 130.8 145.7 147.7 

211 160.4 127.5 115.0 116.2 105.8 127.4 

212 121.3 110.4 92.8 107.0 104.6 107.5 

213 101.4 107.4 103.7 96.9 90.4 106.4 

214 146.4 135.3 88.9 89.8 96.3 104.0 

215 94.2 91.7 88.4 81.8 73.8 107.0 

216 104.8 95.2 98.1 98.8 108.9 106.0 

217 164.8 178.0 147.5 130.7 122.0 122.5 

218   127.3 147.0 151.1 148.1 142.6 

219   115.7 124.0     122.8 

220 116.8 92.7 87.3 87.8 103.8 101.3 

221 51.4 111.6 118.1 116.1 114.3 106.6 

222 131.1 117.9 110.0 106.7 126.3 100.4 

223 78.7 109.7 135.0 122.1 119.7 122.6 

224 191.7 149.2 109.8 120.2 114.0 116.4 

225 97.3 74.8 73.0 72.0 75.3 70.6 

226 154.3 126.3 127.5 118.5 125.5 132.4 

227 112.6 111.6 115.4 110.6 107.1 112.1 

228 83.0 114.2 103.1   91.8 101.1 

229 133.3 132.9 166.4 146.0 142.5 146.4 

230 181.8 151.3 158.6     148.4 

231 201.4 157.7 152.0 149.2   156.4 

232   144.4 162.8 151.8   144.9 

233 187.0 153.0 147.1   147.6 175.4 

234 188.8 120.3 115.5 119.7 128.0 132.2 

235 90.6 175.0 183.9     202.2 

 

 

 

 

 

 


