
 

 

 

 

 

 

 

Theses of the Ph.D. Dissertation  

by 

Jacqueline M. S. Law 

 

Department of Chemistry and Chemical 

Informatics 

Juhasz Gyula Teachers College 

University of Szeged 

 

 

Szeged, Hungary 

2007 



 2 

 Abstract 

In general, the phsopholids were divided and different modular fragments and each 

fragment is numbered in a specific way.  Such modular organization of the 

individual fragments would allow for the construction of a database in which 

different fragments can be assembled into larger models in a systematic manner.  

Ab initio geometric optimization has been carried out on the glycerol backbone at 

RHF/3-21G level of theory in attempt to search for a set of topologically probable 

conformations.  Since glycerol is achiral, the energies of most conformations are 

paired.  The study of the X-group is currently underway as a component of the full 

phospholipids.  The fatty acid chain was analyzed in detail.  Specifically, three -3 

Polyunsaturated Fatty Acid (PUFA), namely SteariDonic Acid (SDA;18:4 n-3), 

EicosaPentaenoic Acid (EPA 20:5 n-3), and DocosaHexenoic Acid (DHA 22:6 n-

3) were chosen as the main focus of this study.  Using the recurring allylic structure 

(hepta-2,5-diene) as the basic unit (U), several analogous structures with different 

number of units (n) were also constructed and computed using various methods. 

The cis- 1U PES shows some similarity to that of the trans-MeCONH-CH2-

CONHMe.  Further exhaustive search performed on the 1U and a 2-unit structure 

(2U)  yielded four straight chain structures (two cis- and two trans-)  as well as 2 

helical structures (one cis- and one trans-), subsequent optimizations of more 

complex structures and the selected PUFAs have also resulted in obtaining similar 

conformations.  

 

Thermodynamic functions ),,( SGH   were computed at the B3LYP/6-

311+G(2d,p)//B3LYP/6-31G(d) for the selected PUFAs and their analogous 

structures. The six conformations from the above study were analyzed here. The 

trans- to cis-isomerization energy is similar for all structures. This indicates that the 

conformers selected are consistent across all the structures. In addition, the average 

folding energy was found to be about 0.9 ± 0.2 kcal mol-1unit-1.  However, amongst 

all structures, a significant difference was observed in the change of entropy of 

folding ( foldingS ), whereby the PUFA has the greatest rate of decrease with respect 

to the number of units or the degree of polymerization (n). Consequently, the Free 

Energy of Folding (Gfolding) and n for the cis- and trans-isomers also display great 

variability where PUFA shows the highest
n

G folding



 . This suggests that the naturally 

occurring cis-isomer is less ready to fold than the trans-isomer since a greater 

degree of organization is exhibited by cis-isomer during the folding process.   
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Aim of Study 

 The phospholipid (Figure 1) is a member of the lipid family and have many 

roles in the biological system.   Recent studies suggest that the integrity of the lipid 

bilayer depends on the packing between different phospholipids acyl chains, as 

well as the salt bridge formation between the polar head groups (X-groups) and the 

charged particles around them.  In general, the phopsholipids can be separated into 

five parts: the glycerol backbone, the phosphate, the X-group and the two fatty acid 

chains.  More importantly, it is the structural and conformational polymorphism of 

the fatty acid chains in phospholipids which affects the integrity of the membrane 

bilayer.  Specific numbers are designated to specific fragments. 

 

Figure 1 Phospholipid separated into 5 fragments and numbered in a specific order 
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Fatty acid chains come in various sizes and structures and they make up the non-

polar portions of the phospholipid.  A specific type of fatty acid, known as 

Polyunsaturated Fatty Acid (PUFA) contains multiple -bonds.  Stearidonic Acid 

(SDA), Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) (Figure 
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2) are -3 (or n-3) PUFAs contains multiple -bonds forming a repeating pattern 

of double allylic structure (n).   

Figure 2 Structures of SDA, EPA and DHA separated into repeating units 
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In addition, each PUFA type also contains a different alkyl structure at the 

carboxyl end.  Therefore, analogous models are designed with different structures 

for the ends.  They are labeled Model 0, Model 1 and Model 2.  The focus of the 

study will be on the PUFAs and their analogous models.    Model 0 will be all 

structures with n = 1 to 6, but will contain methyl groups at the ends (Figure 3).    

In Model 1, n = 3, 4 and 5 while both terminal groups will be extended into ethyl 

fragments (Figure 3). 

 

Figure 3 Numbering and definition for Model 0 (Left) and Model 1 (Right) 
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Model 2 is slightly more complicated because the end groups mimic that of the full 

PUFA very closely with n = 3, 4 and 5 (Figure 4).  The only difference between 

Model 2 and the PUFAs is that the structures in Model 2 do not have the carboxyl 
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group found in that is in PUFAs.  The general structure for Model 2 is similar to 

Model 1.  However, H25 will be removed and replaced by alkyl groups of different 

sizes (R-group).   

Figure 4 Numbering of Model 2 fragments where n = 3, 4 and 5 
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Only the all-trans structures are shown above, but the numbering of the atoms in 

the cis- isomers is identical to that of the trans-.   

 

 Method 

Preliminary Study and Model 0 

 The first part of the study of PUFA consists of building Model 0.  For initial 

analysis of the flexibility of the allylic systems, Potentian Energy Curves and 

Surfaces are generated from structures of Model 0, where n = 0, 1, respectiviely, by 

scaning the dihedrals shown in (Figure 3).  They are then compared to MeCO-

NHMe and MeCO-Gly-NHMe, respectively.  Then exhaustive search was carried 

out at lower levels of computation on the structure Model 0: n = 2 (2U). 

 

Study of Molecular flexibilities by conformational analysis of 
higher Models 

Six structures from 2U are selected to build larger analogous models.  To obtain 

such models, the dihedral values from each 2U allylic unit are first applied 

repeatedly until the chain reaches the desired degree of polymerization.  Then the 
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proper end groups are added to complete the construction of Model 0, Model 1, 

Model 2 and PUFAs.   Therefore, the new models will contain identical 2U 

modules repeated various times, but they would differ in their structure at the 

carboxyl end.  Computations at a higher level of theory (B3LYP/6-31G(d)) are 

carried out on these larger structures in all of the models in attempt to obtain the 

geometric structure as well as the frequency data.  In addition, single point 

calculations were carried out on the optimized structures at B3LYP/6-311+G(2d, p) 

level of theory.   

  

Thermodynamic Analysis for PUFAs and Analogous Models 

Frequency calculations has also been performed for the Model 0, Model 1, Model 

2 and PUFA at B3LYP/6-31G(d) level of theory.  The purpose of such calculation 

is to obtain thermodynamic data for the analysis of H, G and S as a function of 

structure.  In general, there are three molecular motions contributing to the thermal 

energy, enthalpy and entropy.  The motions include translation, rotational and 

vibration.   

 

Results 

Thesis I Flexibility Study via Conformational Analysis  

The simple structure of Model 0 had to be studied first.  A potential energy curve is 

generated from scaning Model 0: n = 0 (0U) (Figure 5, Left).  Then the Potential 

energy curve is compared to that of the peptide bond (Figure 5, Right).   From this 

study, it was found that the minima of t1 and t2 are located in the same areas as 

those of t2 of the peptide model (Figure 6).  However, they were 60o out of phase 

with the peptide t1 minima. Therefore, this implies that although the 0U model and 

the peptide model are structurally similar, they have marked conformational 

differences. 
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Figure 5 Left: Structure of Model 0: n=0 (0U); Right: Structure of MeCO-NHMe 

C2

C3

C7

C8

H9

H6

H10

H12H11

H4

H1 H5




Terminal 
Group


t1


t2

Terminal 
Group   

C2

C3

N7

C8

H9

O6

H10

H12H11

H4

H1 H5




Terminal 
Group

Terminal 
Group


t1


t2

(-)

(+)

   
 

Figure 6 Potential Energy Curve of  0U and the peptide model in search of all minima 
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Thesis II Flexibility Analysis of 1U and MeCO-Gly-NHMe 
Using Potential Energy Surfaces 

The Potential Energy Surfaces (PESs) of Model 0: n=1 (1U) has been studied.  The 

PESs of cis- and trans- 1U are generated by scanning the and dihedrals of 1U.  

While the PES for trans- 1U looks quite regular (Figure 7, Top), a unique PESs 
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emerged for the cis- 1U (Figure 7, Middle).  It can be seen that in the center of the 

latter PES, there is a very flat surface. Furthermore, comparison of the cis -1U 

PESs to that of trans-MeCO-Gly-NHMe (Figure 7, Bottom) shows that they are 

somewhat similar.  A plausible explanation for this observation may be that the 

barrier seen in the peptide model is the results of hydrogen bonding within the 

model.  However, in the cis- 1U model, such interactions are impossible and hence 

this yields a PES with relatively low barriers.  In general, it can be concluded that 

the cis- 1U is very flexible and, therefore, is able to form various structures in a 

short period of time.   

Figure 7 PES of cis- and trans- 1U and trans-MeCO-Gly-NHMe 
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Thesis III Nanostructural Feature of PUFA and Hydrocarbon 
Models 

 Fully relaxed optimizations were carried out on all models.  The values of 

the dihedrals from the selected structures were plotted on a Ramachandran type 

map.  The location of trans- dihedrals can be found at one of the following values 

1200 (+), -1200 (-) and 150 (S+) and –150(S-).  Therefore, in each unit, the two 
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dihedrals may have the combination of ++; +-, -+, --, +S-, -S+, S+-, and S-+ 

configuration.  For cis- structures the dihedral minima are found at 1200 (+), -1200 

(-) and between 1300 (a+) and +1300 (a-). Therefore, possible combination of values 

within one unit may be of ++ and a-+ and a+-.  From 2U, 6 conformations, 3 from 

trans- and 3 from cis- isomers, with the following conformations (quoted in order 

of 1 1 2 2):   ++-- (trans- beta), ++++ (trans- extended), – S+– S+ (trans- helix), 

++--(cis- beta), ++++ (cis- extended) and a–+a–+ (cis- helix) are especially 

interesting.  Therefore, these pairs of units are used to extend or constructure from 

3U to 6U.  All conformations found from 1U to 6U are summarized below (Figure 

8).   

 

Figure 8 Exhaustive search for all conformations in cis- (left) and trans- (right) 2U 
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Thesis IV Nanostructural Analysis 

Geometries of the planes of the double bonds (Table 1) were also analyzed for all 

models.   Both the extended and beta structures (cis- and trans-) are rotated about 

90 ± 50 degrees between adjacent double bond planes.  trans- helices are rotated 

104±10 between adjacent bonds.  However, a large variation is seen in the cis-helix 

bond rotations (standard deviation of ±21).  These observations are consistent with 

the PESs in Figure 9.  The data are summarized in Table 1. 
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Table 1 Values for the plane rotation of the SDA, EPA and DHA chain 

 

Structur

es 

Average Angle of Plane Rotation 

(Degrees) 

Standard 

Deviation 

( /degree) 

cis – SDA 

Helix 25.17 20.51 

Extended -93.05 0.07 

Beta 92.33 0.76 

trans – 

SDA 

Helix -104.90 0.97 

Extended 93.40 0.34 

Beta 93.23 0.54 

cis – EPA 

 

Helix 15.48 10.17 

Extended -94.20 0.26 

Beta 92.11 1.33 

trans –

EPA 

Helix -104.66 0.76 

Extended 92.58 0.34 

Beta 93.02 0.39 

cis – 

DHA 

Helix 30.77 14.81 

Extended -94.12 0.44 

Beta 92.76 0.46 

trans – 

DHA 

Helix -105.32 0.63 

Extended 93.36 0.25 

Beta 93.00 0.57 

 

 

Thesis V Thermodynamic Function (and G) for trans-
→cis- isomers  

  In the analysis of the trans- to cis- isomerization had thermodynamic 

functions (H and G) which varied linearly with increasing number of allylic 

units in the chain.  It seems that both H and G had positive slopes (Table 2 and 

Figure 9).  The H slopes of all the models are the same as other.  However, for 

G, Model 2 and PUFA has a significantly larger slope than the other models.  

Furthermore, the line for Model 1 and Model 2 intersects with each other.   
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  Table 2 Thermodynamic functions (H and G) for the trans-→cis- isomerization of 

all models 

Process 

Thermodyn

amic 

Function 

Model m b R2 

trans-→cis- 

Isomerization 

for Helices 

H 

0 1.8 1.4 1.00 

1 1.8 1.4 1.00 

2 1.8 1.4 1.00 

PUFA 1.8 1.4 1.00 

G 

0 1.7 1.1 0.99 

1 1.9 1.2 0.98 

2 3.6 -5.2 0.99 

PUFA 2.7 0.7 0.99 
 

Assessment of Table 2 and Figure 9 shows that the G for PUFA has a higher 

slope than Model 0, but a lower slope than Model 2. 

 

Figure 9 Thermodynamic functions (H and G) for trans-→cis- isomerization of all 

models (0, 1, 2 and PUFA) and all conformers (Helix, Extended, Beta) 
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It should also be noted that extended and beta conformers of Model 1 and 2, as 

well as PUFAs fall more of less on the line of Model 0. 

 

Thesis VI Thermodynamic Functions (and G) for 
beta→helix folding 

The beta→helix folding, H and G, also display a similar positive trend with 

respect to the increase of degree of polymerization (Table 3 and Figure 10).  

Across all models, the rate of increase in H and G is relatively close to each 

other.  However, the slope is smaller than the trans-→cis- isomerization. 
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Table 3 Thermodynamic functions (H and G) for the trans-→cis- isomerization of 

all models 

Process 

Thermodyna

mic 

Function 

Model m b R2 

beta→helix 

folding for 

cis- 

H 

0a 0.7 -0.1 0.98 

1 0.9 -0.2 1.00 

2 1.1 -1.4 0.99 

PUFA 1.0 -0.8 0.92 

G 

0a 0.8 -0.2 0.94 

1 1.5 -1.1 1.00 

2 2.0 -3.5 0.99 

PUFA 1.9 -1.4 1.00 

 

Figure 10 Thermodynamic functions (H and G) for beta→helix folding of all models 
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   It should also be noted that trans- isomers of Model 1 and 2, as well as PUFAs 

fall more of less on the line of Model 0. 

 

Thesis VII Entropy Variation for trans-→cis- isomerization and 
beta→helix folding 

The entropy (S) for trans-→cis- isomerization (Figure 11 Left and Table 4, Top) 

and beta→helix folding (Figure 11, Right and Table 4, Bottom) display a very 

different trend.  All the models have different negative slopes.  In the trans-→cis- 

isomerization reaction, only the helices display a clear linear relationship with 

respect to the degree of polymerization.  The extended and beta do not clearly show 

such a relationship.  Model 0 seem to have the smallest rate of decrease while 

Model 1 and Model 2 have about the same rate.  The PUFAs seem to display the 

most drastic lowering of entropy with respect to the degree of polymerization.  The 

S of folding with respect to the degree of polymerization displays a similar trend 
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to that of the cis- isomer.  However, the trans-isomer displays a rather invariant 

relationship with the degree of polymerization.  Once again, Model 0 shows the 

smallest decrease while the PUFAs have the largest.  Model 1 and Model 2 have 

the same rate of decrease. 

 

Table 4 Entropy Change (S) for trans-→cis- isomerization and beta→helix folding 

of all models 

Process 
Thermodynamic 

Function 
Model m b R2 

trans-→cis- 

Isomerization 

for Helices 

S 

0a -0.6 2.3 0.99 

1 -1.6 3.6 0.95 

2 -2 5.2 0.95 

PUFA -2.0 0.8 1.00 

beta→helix 

Folding for cis- 

isomers 

S 

0 -1.9 4.4 0.99 

1 -2.3 3.8 0.99 

2 -2.3 3.8 0.99 

PUFA -3.0 2.7 0.91 

 

Figure 11 Entropy Change (S) for trans-→cis- isomerization (left) beta→helix folding 

(right) of all models 
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 Conclusion 

After some exploratory study of the various components of phospholipids, most of 

the work was focused on the conformational intricacies of PUFAs and their 

hydrocarbon models.  The selected cis- and trans- nanostructures, all of which 

belong to one of the three types: extended, beta and helix, were studied and the 

flexibilities of these chains were established.  It was concluded from the 

comparison of conformational potential energy surfaces that the cis- isomers of 
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these polyunsaturated compounds have similar flexibilities than peptide chains do.  

 Considering the changes in the thermodynamic functions Z (where Z may be 

H, G and S) for the trans- to cis- isomerization as well as for the beta to helix 

folding, thermochemical cycles may be constructed as shown in (Figure 12). 

Figure 12 Born-Haber type cycle for configurational and conformational changes of 

PUFA as well as their hydrocarbon models; Z may be H,G, S 

helix

cistransZ 

cis

foldingZ

beta

cistransZ 

trans

foldingZ

trans helix cis helix

trans beta cis beta
S was nearly invariant

S was nearly 
invariatnt

 
Interestingly enough, the trans- to cis- isomerization as well as beta to helix folding 

had thermodynamic functions, H and G, that varied linearly with increasing 

number of allylic units in the chain.  This was the case not only for PUFAs but for 

their hydrocarbon models as well.  In contrast to that the S functions for trans- to 

cis- isomerization were almost invariant with respect to the degrees of 

polymerization for the extended and beta conformers.  Also for the beta to helix 

folding the S functions were virtually invariant for the trans- isomers.  For all 

others the entropy lowering with increasing degree of polymerization was linear for 

PUFAs as well as for their hydrocarbon models. 
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