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Introduction

The theory of graph limits is motivated by the aim of understanding the behavior of large
graphs. Such graphs can arise from natural models of random graphs, and also in many ap-
plications, such as computer science, statistical physics, biological studies, social networks.

In the thesis, we work with the local weak convergence introduced by Benjamini and
Schramm. This concept applies well for the graph models that are most widely used in the
applications and have unbounded degrees with bounded expected value.

It turned out, that in many cases, it is easier to work with the limit graph as with the
large graphs converging to it [2]. One can hope that the examined parameter of the graphs
converges for the graph sequence under study, and a proper probabilistic parameter of the
limit object can be defined that the parameters of the sequence converge to. One example
for such a parameter is the matching ratio. This phenomenon illustrates why graph limit
theory can provide a useful approach to various questions about parameters of large graphs.
Our work on the matching ratio presented in Chapter 3 fits into the series of studies in this
direction.

Local weak convergence of random graphs extends naturally to possibly infinite rooted
random graphs. The same questions arise for this wider class: in what sense are infinite
random graphs determined by their local structures? Do certain parameters of the graphs
converge along a local weak convergent sequence? In Chapter 4, we examine this question
for the percolation critical probability, which was originally asked for transitive graphs by
Oded Schramm [5]. Typically, however, the natural setting for such locality statements is
not the class of transitive graphs, but the class of unimodular random graphs. Therefore,
it is natural to investigate the question in the setup of unimodular random graphs and see
what the proper notion of critical probability may be from the point of view of locality.

1 Random graphs

In this section, we define the most widely used random graph models. These graphs are
examined in Chapter 3. We note that each graph presented here has a directed version and
also a generalization to labeled graphs that we define only in the thesis.

1.1 Examples of finite random graphs

The first two examples are finite random graphs. By this concept, we just mean a discrete
probability distribution on the countable set of isomorphism classes of finite graphs.

These two graph models have become increasingly important in applications, because
they grab important characteristics of real-world networks, such as scale-free degree distri-
butions. This is the reason why in [16], which was motivated by applications of controllab-
ility and motivated our work presented in Chapter 3, these graphs were studied.



Definition 1.1 (Random configuration model). We fix a non-negative integer valued prob-
ability distribution £&. We define the graph G, in the following way: let &, ... &, be i.1.d.
variables with distribution . Given &, ...,&, let £ :={(k,7) : k € [n],j € [§]} be the set
of the half-edges. Let H be a uniform random perfect matching of the set € (if |E| is
odd, then put off one half-edge uniformly at random before choosing a perfect matching).
The random configuration model is the graph G, = G,(H) on [n] given naturally by
the random perfect matching H.

As a special case of the random configuration model, we define the random d-regular
graph by setting the degree distribution ¢ being constant d. This is equivalent with a
random graph chosen uniformly at random from the set of graphs on the vertex set [n]
with all degrees equal d.

The other investigated graph model, the preferential attachment graph was introduced
by Barabasi and Albert in [4] and the precise construction was given by Bollobas and
Riordan in [10]. There are several versions of the definition of this family of random graphs
which have turned out to be asymptotically the same: they all converge to the same infinite
limit graph; see [7].

Definition 1.2 (Preferential attachment graphs). Fiz a positive integer r and o € [0, 1).
For each n the preferential attachment graph on n vertices is the random graph G, =
Gfﬁm on the vertex set [n| defined by the following recursion: let Gy be the graph with one
vertex and no edges. Given G,_1 we construct G,, by adding the new vertex n and r new
edges with tails n. We choose the heads w, . ..w, of the new edges independently from each
other in the following way: with probability o we choose w; uniformly at random among
[n — 1], and with probability 1 — o we choose w; proportional to degg . Note that each
vertex except the starting vertexr has out-degree r and each vertex has a random in-degree

such that the mean of the average in-degree converges to r as n — oo.

1.2 Random rooted graphs

The case of possibly infinite random graphs is more difficult. The set of isomorphism
classes of locally finite graphs is uncountable and it is not a priori clear, what is the natural
topology on it. One way to define a topology on the set of possible infinite graphs is to
consider the space of rooted graphs, which is also natural from the point of view of local
weak convergence. On this space, the distance of rooted graphs can be defined such that two
graphs are close, if they are isomorphic in a large neighborhood of the root. We denote by
G, the space of the isomorphism classes of locally finite connected rooted graphs with the
topology generated by this distance. By a random rooted graph we mean a probability
distribution on G,.

We restrict our attention to unimodular random rooted graphs, which is a natural sym-
metry assumption on the distribution of the random graph. This notion generalizes the
features of the most often investigated random graphs, such as invariant random subgraphs



of Cayley graphs and local weak limits of finite graphs. There are several equivalent defin-
itions of unimodularity. The following definition is useful in the proofs: finding a proper
mass transport, one can prove (in)equalities concerning unimodular graphs.

Definition 1.3 (Unimodular random graphs). [1, Definition 2.1] We say that a random
rooted (labeled) graph (G, o) is unimodular if it obeys the Mass Transport Principle:

Eq Z f(w,o0,z) | =Eg Z f(w,z,0)

zeV(w) z€V(w)

for any measurable function f on the space of isomorphism classes of locally finite graphs
with an ordered pair of distinguished vertices.

The following classes of unimodular random rooted graphs provide basic examples of
the definition and are investigated in the thesis.

Example 1.4 (Finite random graphs). It is easy to check that a finite graph with a uniform
random root is unimodular. It follows by the convexity of the class of unimodular random
graphs that every finite random graph with a root chosen uniformly at random is unimodular.

An important property of unimodular random graphs is that this class is closed under
taking local weak limits of random graphs. Also, it is an open question [1, Question 10.1]
whether the class of unimodular random graphs is strictly larger than the class of sofic
measures; i.e., the closure of the set of finite random graphs with a uniformly chosen root
under local weak convergence.

Proposition 1.5 (Local weak limits of unimodular graphs [6]). The space of unimodular
random rooted graphs is closed under taking local weak limits (Definition 2.1). It follows
that random rooted graphs that arise as limits of finite graphs are unimodular.

Our last example of a unimodular random rooted graph is an interesting object in its
own right. As described in Theorem 2.4, it also arises as local weak limit of finite graphs.
We will present another important example of a unimodular random rooted graph given as
a limit of finite graphs in the next section.

Definition 1.6 (Unimodular Galton—Watson tree). Let £ be a non-negative integer valued
random variable with E§ < oo. The unimodular Galton—Watson tree with offspring
distribution & (denoted by UGW (§)) is the following random rooted tree with root o. We say
that a vertex y is the child of the vertex x, if they are adjacent and dist(y, o) = dist(x,0)+1.
The distribution of the graph UGW (§) is given by the following recursive definition:

o The probability that o has k > 0 children is P(§ = k).

(k+1)P(§=k+1)

e For each vertex x the probability that x has k > 0 children is 3

, independ-
ently for each vertex.



2 Local weak convergence of graph sequences

The local weak convergence of random rooted graphs is basically the weak convergence of
their distributions in the space G, of isomorphism classes of connected, locally finite rooted
graphs. The following definition is a more convenient description of local weak convergence,
and captures the property that the local statistics of the graphs converge to that of the
limit graph.

Definition 2.1 (Local weak convergence of graphs). We say that the sequence (G, o)
of locally finite random rooted graphs converges in the local weak sense to the locally
finite connected random rooted graph (G, o) if for any positive integer r the distribution of
the ball of radius r around the root in (G,,0,) converges to the distribution of the ball of
radius v around the root in (G, 0).

Let GP be the subspace of G, consisting of the isomorphism classes of connected rooted
graphs with degrees bounded above by a fixed constant D. It is not hard to show that
GP is a compact topological space. It follows that every sequence in GP has a convergent
subsequence with a limit in GP. Many known results about convergent sequences have
been proven assuming the stronger property that the sequence is in GP for some D. For
some questions, as in our Chapter 4, basic examples show that they make sense only in this
class. However, many natural graph models do not satisfy the uniformly bounded degree
property. Nevertheless, all graph sequences we examine have bounded expected average
degrees. Such sequences also have a nice behavior from the point of view of local weak
convergence, hence the bounded degree assumption can be removed from certain results
about convergent sequences, as we will see in Chapter 3.

In the rest of this section, we list the most important examples of local weak convergent
sequences for our research.

Our first example provides important examples in Section 4. It may be surprising at
first sight that the limit of the balls in a regular tree is not the regular tree.

Example 2.2 (Limit of the balls in the 3-regular tree). Let Ty denote the 3-regular infinite
tree and let G,, = Br,(v,n) be the ball of radius n around a vertex of Ts. Then the graphs
G, converge to an infinite tree A with a random root, referred to it as the canopy tree.
The vertex set of the connected graph A can be partitioned into countably many sets: let
L(0) be the set of vertices with degree 1, and for each k > 0, let L(k) be the set of vertices
that are at distance k from L(0). Each set L(j) in the partition has infinitely many vertices
and each vertex in the set L(j) is connected to one vertex in L(j + 1) and to two vertices
in L(j —1). The root of A is a vertex in L(j) with probability 2771

Our next non-trivial example is a convergent sequence of infinite random graphs, which
also shows that the bounded degree assumption in Chapter 4 is natural. This result was
partially published in the case EX > 1 in Beringer, Pete and Timar [8] and extended later
to the present generality.



Proposition 2.3. Given a non-negative integer valued random variable X, denote by X

the positive integer valued random wvariable with distribution IP’(X = k) = kfé( PX=k-1) 1 for

k> 1. Let UGW(X ) be the unimodular Galton—Watson tree with oﬁsprmg dzstmbutwn
X, conditioned to be infinite. If EX,, > 1 and EX > 1, then UGW( n) — UGW (X )
in the local weak sense iff X,, — X in distribution.

The next two convergent graph sequences will be important in Chapter 3.

Let GG, be the random graph on n vertices given by the random configuration model
with degree distribution & with E(£2) < oo. Then G,, converge to UGW (£) in the local
weak sense as n — oo; see [1, Example 10.2|, [11, Theorem 3.15]. It is standard, that in the
special case of random d-regular graphs, the local weak limit of the sequence is the infinite
d-regular tree Ty.

Berger, Borgs, Chayes and Saberi |7| showed that the sequence of preferential attachment
graphs with fixed parameters r and « converges in the local weak sense to the Poélya-point
graph (defined in |7]) with the same parameters.

It turned out that these two latter models converge also in a stronger sense. If we define
the sequence (G,,) on a common probability space with the given marginals for each n but
with an arbitrary joint distribution, then the sequence converges almost surely in the local
weak sense to the same limiting distribution. The directed versions of the above models,
which are important in applications, converge to the natural directed versions of the limit
graphs, even in this stronger sense. We proved Part 2) of Theorem 2.4 using the local weak
convergence of preferential attachment graphs in [7] and showing a strong concentration of
the probabilities in the definition of the local weak convergence. Part 3) follows from the
generalization of [14, Proposition 2.2| to the unbounded degree case.

Theorem 2.4. 1) [11, Theorem 3.28] The random configuration model with degree distri-
bution £ with E(&P) < oo for some p > 2 converges to the unimodular Galton—Watson tree
UGW () almost surely in the local weak sense for any joint distribution of the sequence.
2) [9] The preferential attachment graphs converges to the Pdlya-point graph almost
surely in the local weak sense for any joint distribution of the sequence.
3) [9] The directed versions of both models converge almost surely in the local weak sense
to the directed versions of the limit graphs.

3 The matching ratio of large graphs

There is an important parameter in control theory which is closely related to the directed
matching ratio of the network, as shown in the paper of Liu, Slotine and Barabési [16].
Informally, the controllability parameter of a network is defined as the minimum number
Np of nodes needed to control a network, e.g., the number of nodes that can shift molecular
networks of the cell from a malignant state to a healthy state. In [16], it was showed that
the proportion np = Np/|V(G)| of nodes needed to control a finite network G equals one
minus the directed matching ratio, i.e., the relative size of the maximal size directed
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matching, where a directed matching is a subset of directed edges such that each vertex
has in- and out-degree at most 1. This makes possible to prove results on np by proving
the corresponding statement for the directed matching ratio.

Our main motivation was the two further observations in [16], which are the follow-
ing. First, simulations run on both real networks and network models suggested that the
matching ratio is mainly determined by the degree sequence of the graph; more precisely,
if the edges are randomized in a way that does not change the degrees, then the matching
ratio does not change significantly. Second, arguments based on methods from statistical
physics and numerical results suggested that for the most widely used families of scale-
free networks, the directed matching ratio converges to a constant when the size of the
network tends to infinity. The models that were most relevant in [16] are the so-called
scale-free networks, which are known to exhibit several characteristics, such as a power-law
degree decay, of the networks observed in real-world applications. Our aim was to give
rigorous mathematical proofs of these observations of [16], by extending the result of Elek
and Lippner [15] on the convergence of the matching ratio. By the connection between
the matching ratio and the controllability parameter, our results translate to theorems
concerning controllability of networks.

The results of this chapter have been published in Beringer and Timar [9].

3.1 Concentration of the matching ratio

Our theorems presented in this section extends the series of results on the concentration
of certain parameters of random graphs. Previous results made use of the independence in
the examined graphs [3, 11], but the definitions of the models in Theorems 3.1 and 3.2 give
rise to more dependence which we had to deal with.

Part 1) of Theorem 3.1 shows the concentration for randomized graphs with the in-
and out-degrees left unchanged. This is the result that was observed through simulations
in [16], which motivated our work in this direction. Part 2) of the theorem shows that
a very similar concentration phenomenon holds even after a randomizing that does not
require the in- and out-degrees to be unchanged but only the total degree to remain the
same for every vertex. In particular, Theorem 3.1 shows that if a graph sequence satisfies
that the empirical second moment of the degree sequence is o(n) with probability tending
to 1 (as n — o0), then the directed matching ratios of the graphs with randomized edges
are strongly concentrated around their mean with high probability. The most widely used
random graph models, defined in Section 1, satisfy this property.

Theorem 3.1 (Concentration of the matching ratio of the random configuration model).
1) Let G be a random directed graph on n vertices given by the random configuration model
with a fived sequence of in- and out-degrees with e(G) edges. Then for all e > 0, the directed
matching ratio m(G) of G satisfies

P(m(G) — B(m(G))| > =) < 2exp {—82 g;)} .



2) Let G be a random directed graph on mn vertices given by the random configuration
model with a fized sequence of degrees with e(G) edges. Then for all € > 0, the directed
matching ratio m(G) of G satisfies

2,,2

B (Im(G) — E(m(G))| > <) < 2exp {—8“; (’g)} .

Preferential attachment graphs also satisfy a strong concentration phenomenon. We
note that Theorem 3.2 does not follow from Theorem 3.1, since the orientations of the
edges of the preferential attachment graph are given naturally by the recursive definition,
and differ significantly from the independent random orientation.

Theorem 3.2 (Concentration of the matching ratio of preferential attachment graphs). Let
G, be a random graph sequence obtained by the preferential attachment rule with parameter
r. Then m(Gy,) is concentrated around its expected value: for any ¢ > 0 we have

B (Im(G) — E(m(G))| > <) < 2exp {—8—”} .

3.2 Convergence of the matching ratio

We present our results on the convergence of the directed matching ratio for convergent
sequences of random directed graphs in this section. This convergence is understood in
the stronger sense of almost sure convergence, as we will see. For a fixed deterministic
undirected graph sequence that is locally convergent when a uniform root is taken, the
convergence of the matching ratio is proved by Elek and Lippner in [15] in the uniformly
bounded degree case and by Bordenave, Lelarge and Salez in [12] in the unbounded case.
To prove the results of Liu, Slotine and Barabasi in [16], we need to generalize these results
for directed random graphs. Our first theorem shows the convergence of the mean of the
matching ratio for this more general setting.

Theorem 3.3. Let G, be a sequence of random finite (directed) graphs that converges to
the random (directed) rooted graph (G, o) that has finite expected degree. Then

lim E(m(G,)) = mp(G, o),

n—oo
where mg(G,0) := sup,; Pa(o € VIO (M)) is the (expected) matching ratio of (G, o),
defined as a supremum taken over all random (directed) matchings M of G such that M
is almost surely a (directed) matching of (G,0) and the distribution of the labeled graph of
(G, M, o) is unimodular. The notation V=) (M) stands for the vertex set of the matching

M in the undirected case and for the set of vertices with positive in-degree in M in the
directed case.

The proof of Theorem 3.3 follows the method of [15]. The main differences to that proof
come from the lack of uniform bound on the degrees. We handle the unbounded degrees



by defining a random matching M (7T') without long augmenting paths as factor of IID.
For graphs with unbounded degrees, Lemma 4.1 of [15] does not apply, hence we have to
proceed through Lemma 3.4.

Lemma 3.4. Let (G,0) be a unimodular graph with distribution p and finite expected
degree. Then for any € > 0 and any n there is a § such that if a measurable event H
satisfies W(H) < 9, then u(H") < ¢, where H" := {(w, z) : (w,0) € H, dist,(0,x) < n}.

The main result of this section, the almost sure convergence of the (directed) matching
ratio of the examined graph models follows from Theorems 3.3 and 2.4. As a special case
of Part 1), we get that the directed matching ratio of the directed random configuration
model converges almost surely to a constant.

Theorem 3.5 (Almost sure convergence of the matching ratio). 1) Let G,, be a sequence of
undirected finite graphs defined on a common probability space that converges almost surely
in the local weak sense and let é—,: be a sequence of random directed graphs obtained from
G, by giving each edge a random orientation independently. Then m((?,:) converges almost
surely to the constant lim,, E(m(é—;))

2) Let G,, be the sequence of random directed graphs given by the preferential attachment
rule. Then m(G,,) converges almost surely to the constant lim,, .. E(m(G,)).

4 Percolation critical probabilities and unimodular

random graphs

The notion of local weak convergence was originally introduced for sequences of finite
graphs. However, the definition applies also for sequences of infinite random rooted graphs,
and the same question arises naturally: do certain parameters of infinite graphs converge
along local weak convergent sequences? In this chapter, we examine percolation critical
probabilities, originally defined for deterministic infinite graphs.

There are several definitions of the critical probability for percolation on the lattices Z¢,
which have turned out to be equivalent not only on Z?, but also in the more general context
of arbitrary transitive graphs. In Section 4.2, we investigate the relationship between these
different definitions when the graph G is an extremal unimodular random graph, which is
the natural extension of transitivity to the disordered setting.

The continuity of percolation critical probability is conjectured by Oded Schramm [5]
in the class of transitive graphs:

Conjecture 4.1 (Schramm). If G, is a sequence of vertez-transitive infinite graphs such
that G,, converges locally to G and sup,, p.(G,) < 1 then p.(G,) — p.(G) holds.

The conjecture has been proven for some special for some special cases but not in full
generality.



Typically, however, the natural setting for such locality statements is not the class of
transitive graphs, but the class of unimodular random graphs. Therefore, in Section 4.3,
we investigate Schramm’s locality conjecture in the setup of unimodular random graphs
and see what the proper notion of critical probability may be from the point of view of
locality.

The results of this chapter have been published in Beringer, Pete and Timar [8].

4.1 Generalizations of percolation critical probabilities

We examine Bernoulli bond percolation on a graph G which is the following random
subgraph: each edge is present (open) with probability p and removed (closed) with prob-
ability 1—p independently. We fix a root o of G and denote by C, the connected component
of o in the percolation subgraph. The notations P, and E, stand for the probability and
expectation with respect to percolation with parameter p.

A fundamental and long studied question in percolation theory is the value of the
critical probabilities p. = sup {p : P,(|C,| = 00) = 0} and pr = sup{p : E,(|C,|) < oo}.
These quantities have natural generalizations to extremal unimodular random graphs. In
this section, we define the generalized critical probabilities p., pr, p., p$, and p%; somewhat
simplistically saying, the first three will be quenched versions of the quantities mentioned
above, while the last two will be annealed versions.

Let (G, 0) be an extremal unimodular random graph with distribution y; i.e., 1 cannot
be written as a non-trivial convex combination of unimodular measures. In this case,
the critical probability p.(w) of an instance w of (G, 0) is p-almost surely a constant and
the same holds for pr (see [1], Section 6.). Thus, the following definitions make sense
for extremal unimodular graphs. Using the notation Py and E; for the probability and
expectation with respect to percolation with parameter p on the fixed realization w of the
random graph G, we define

pe=1inf {p: p (P¥(|Co| = 00) > 0) =1}
= sup {p: (P4 (|Co| = 00) = 0) = 1}
and
pr =sup {p: p (E; (|C|) < 00) =1}
=inf{p: p (]E;j (ICo|) = o0) =1} .
It may happen that although [E# (|C,|) < oo for u-almost every w, the expectation of these

quantities with respect to p is infinite. This provides a second natural extension of pr to
unimodular random graphs defined using the average size of C,:

py =sup{p:E (E% (|C,])) < oo}
—inf {p E (ES (C.)) = oo}



It follows from the definitions that p. > pr > p%. It is known that p. = pr in the case
of transitive graphs. For extremal unimodular random graphs (even with sub-exponential
volume growth), the three critical probabilities can differ, as our examples show.

The last two critical probabilities are generalizations of a quantity introduced by Duminil-
Copin and Tassion [13] for transitive graphs. Let (G,0) be a rooted graph, S € S(G) be a
finite subgraph containing the root, and define

the expected number of open edges on the boundary of S such that there is an open path
from o to e~ in S. In [13], the following critical probability was defined:

De = sup{p : there is an S € S(G) s.t. ¢,(5) < 1}

. (4.1)
=inf{p: ¢,(S) > 1forall S e S(G)}.

It was proven in [13] that transitive graphs satisfy p. = p.. In fact, p. was designed to
address the question of locality of the critical probability.

How to generalize this definition to unimodular random graphs is not a priori clear. The
simplest way to define a similar critical probability seems to be a quenched version: find a
suitable S, € S(w) for almost every configuration w. For a subgraph S € S(w) denote by

¢ (S) = Z pP, <0 % e‘)
c€dpS

the expected number of open edges on the boundary of S in w such that there is an open
path from o to e in the percolation on w with parameter p. Then let

De 1= Sup {p Y ({w 138, € S(w) st @y (S,) < 1}) = 1}. (4.2)

The following critical probability is another natural extension of the definition of p., an
annealed version of p,:

pe := sup{p : Ir such that E (¢%(B,(o,r))) < 1}.

4.2 Relationship of the critical probabilities of unimodular random

graphs

In this section, we examine the relationship between these different generalizations. The
one sentence summary is that p. = p. always holds, but otherwise almost anything can
happen, unless the random graph satisfies some very strong uniformity conditions; one
that we call “uniformly good” suffices for most purposes.

We start with our positive results, i.e., with the results that show coincidence of certain
critical probabilities.

Our first theorem is indispensable to the proofs in the chapter. One direction of the
proof depends on new ideas, while the other direction is a slight modification of the proof
in [13] for our settings.

10



Theorem 4.2. If G is a bounded degree unimodular random rooted graph, then p.(G) =
Pe(G).

One advantage of the definition of p. for transitive graphs is that it enables one to check
whether a certain p is under p. using a finite witness. This characteristic makes the next
definition natural. This assumption captures important features of transitive graphs, which
imply a strong connection between the two critical probabilities p. and p.

Definition 4.3. We say that a bounded degree unimodular random graph G is uniformly
good if for any p < p. there exists a positive integer r(p) such that pe({w : IS, C
Bu(o,1(p)),0 € S, 5.t 62(5,) <1}) =1

Uniformly good unimodular graphs satisfy the following exponential decay of ¢, (B, (0, 1))
in r. As a corollary, we get that p. < p? for uniformly good graphs.

Lemma 4.4. Let G be a bounded degree unimodular random graph. G s uniformly good if
and only if for all p < p. there are constants ¢ = ¢(p) < 1 and R(p) such that if r > R(p),
then ¢i(B) < ¢ for almost every w and every finite B 2 B,(o,7).

Corollary 4.5. If G is a uniformly good unimodular graph, then p. < p.

If a uniformly good unimodular graph has uniform sub-exponential growth, then the
critical probabilities p., pr, p$ coincide, as in the transitive case.

Definition 4.6. We say that a unimodular graph G has uniform sub-exponential volume
growth if for any ¢ <1 and € > 0 there is an R such that Pg (w : |By(o,7)|c" <) =1 for
any r > R.

Corollary 4.7. If G is a uniformly good unimodular graph with uniform sub-exponential
volume growth, then p. = pr = p.

De = De bounded degree
Pe > pr = py | always
De = DT bounded degree uniformly good with sub-exp. growth

De > Pr example with polynomial growth

pr > ph example with polynomial growth

De < DY bounded degree uniformly good

De < D2 a bounded degree uniformly good example
De > P2 a not uniformly good example

Table 1: Relationship of the critical probabilities

As we mentioned at the beginning of this subsection, without the assumption of uniform
goodness, the critical probabilities can differ. The easiest example is the canopy tree (see
Example 2.2), which is not uniformly good, has no uniform sub-exponential volume growth
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and satisfies p. = 1 > \% = p7 = p%. Also, we constructed an example that shows that
the inequality in Corollary 4.5 can be strict for uniformly good graphs. We also found
examples with polynomial growth, that provide strong inequalities between p., pr and p%.
These show that omitting only one of the conditions of Corollary 4.7 makes the statement
already false.

Our results on the relationship of the critical probabilities are summarized in Table 1.

4.3 Locality of the critical probability

In this section, we investigate the extension of Schramm’s conjecture for unimodular random
graphs:

Question 4.8. Does p.(G,,) converge to p.(G) if G,, are unimodular random graphs, G, —
G in the local weak sense and sup p.(G,) < 17

First we note that, as a corollary of Proposition 2.3, locality holds for unimodular
Galton-Watson trees with bounded degrees, but not in general; this shows that it is natural
to restrict one’s attention to bounded degree unimodular random graphs.

In Section 4.3.1, we give conditions which imply limp.(G,) = p.(G). However, our
examples show that there are sequences of unimodular random graphs such that G,, - G
but p.(G) > limp.(G,) or p.(G) < limp.(G,) < 1. These examples indicate a negative
answer to Question 4.8; i.e., Schramm’s conjecture does not hold in the generality of unim-
odular random graphs, although many such statements, formulated originally for transitive
graphs, extend to this class.

4.3.1 Lower semicontinuity and continuity

The quantity ¢,(S) can be used to give a short proof of the lower semicontinuity of p.(G)
in the local topology of transitive graphs: that is, liminf p.(G,,) > p.(G) holds. It can be
shown in a similar way that this inequality is also true for p¢ and unimodular graphs.

Proposition 4.9. Let G,, and G be unimodular random graphs with uniformly bounded
degrees. If G,, converges to G then liminf, . p*(G,) > p2(G).

We show in Proposition 4.10 that under certain restrictions on the graphs G and G,
the convergence lim p.(G,) = p.(G) holds; i.e., we give assumptions that imply a positive
answer to Question 4.8.

Proposition 4.10. Let G be a uniformly good unimodular random graph. Furthermore, let
G, be unimodular random graphs converging to G in the local weak sense, in a uniformly
sparse way: there is a positive integer k such that for each n there is a coupling v, of nug
and pg, such that G C G, and there is a sequence of positive integers r,, — oo that satisfies
|(E(Gn) \ E(G)) N Bg, (0,7,)] < k vy-almost surely. Then

lim p.(G,) = p(G).

n—oo
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In the thesis, we present an example where this proposition applies.

In the quite special setting of unimodular trees of uniform sub-exponential growth, the
assumption of uniformly sparse convergence from Proposition 4.10 can be relaxed. The
following proposition gives further examples of uniformly good unimodular graphs, while
the convergence part will be used in Proposition 4.12.

Proposition 4.11. If G is a bounded degree unimodular random tree with uniformly sub-
exponential volume growth, then all five critical percolation densities equal 1, and G is
uniformly good.

If G,, 1s a sequence of bounded degree unimodular random graphs with uniformly sub-
exzponential volume growth and girth tending to infinity, then p.(G.), p.(Gn), p*(G,) all
tend to 1.

4.3.2 Counterexamples

In the thesis, we present graph sequences that provide counterexamples for Question 4.8,
i.e., they indicate that unimodular graphs do not satisfy Schramm’s conjecture in general.
The first two examples show that both of the conditions in Proposition 4.10 are necessary.
We omit the details of the examples here, and only describe the most important features
of them.

The first example is a sequence of invariant random subgraphs G,, of a Cayley graph,
converging to an invariant subgraph G of the same Cayley graph in a uniformly sparse way.
In this example, lim p.(G,,) < p.(G) and the limit graph G is not uniformly good.

The second example is a sequence G,, of invariant random subgraphs of Z° converging
to Z?* such that limp.(G,) < p.(imG,). In this example, the limit graph is uniformly
good, but the convergence is not uniformly sparse. In the thesis, we describe also a more
general version of this example.

In the third example, we show a sequence with p.(lim G,,) < lim p.(G,) < 1. Each G,
is a quasi-transitive subgraph of Z? which can be viewed as a random invariant subgraph
of Z? (hence unimodular), and G,, converges to Z2. In this example, lim G,, and each G,
satisfy the conditions of Corollaries 4.5 and 4.7, thus p. = pr = p$ and also p%(G) <
lim p%(G,) < 1. This shows that none of the generalizations of the critical probabilities can
possibly satisfy the extension of Schramm’s conjecture for unimodular graphs in general.
This example also shows that the inequality of the lower semicontinuity in Proposition 4.9
may be strict even when invariant subgraphs G,, of Z? converge to Z2.

4.4 On transitive graphs of cost 1

A corollary to our positive results is that if GG is a transitive graph of sub-exponential
volume growth, then there exists a sequence of invariant bi-Lipschitz spanning subgraphs
G, such that p.(G,) — 1.

13



Proposition 4.12. If G is a transitive amenable graph, then there is a sequence of invariant
random subgraphs Gy, which satisfies the following: each Gy is a bi-Lipschitz (in particular,
connected) spanning subgraph of G, the girth of Gy tends to infinity and Gy, locally converges
to an invariant random spanning tree T with at most two ends.

If G is a unimodular transitive graph with sub-exponential volume growth then p.(Gy) — 1.

Our proposition may be thought of as a strengthening of the simple fact that groups of
sub-exponential growth have cost 1, as our Lemma 4.13 shows. The cost of a group G is
defined as half of the infimum of the expected degrees of its invariant connected spanning
graphs. The cost of a transitive graph I' may be defined similarly, over G-invariant
random connected spanning subgraphs, where G < Aut(T") is a vertex-transitive subgroup
of graph-automorphisms that is usually fixed implicitly.

Lemma 4.13. If I" is a Cayley graph of G, and there exists a sequence of G-invariant
connected spanning subgraphs Gy C T' with p.(Gy) — 1, then the cost of T', hence of G,
15 1.

We do not know if the assumption of the lemma is equivalent of cost 1; i.e., the converse
of Lemma 4.13 holds.

Having a G-invariant connected spanning graph 7 with p.(7) = 1 is equivalent with
the amenability of G, which implies that the cost of G is 1. However, we found a sequence
of invariant bi-Lipschitz subgraphs Gy C T3 x Z which shows that p.(Gy) — 1 does not
imply amenability.
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