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Introduction

The theory of graph limits is motivated by the aim of understanding the behavior
of large graphs. Such graphs can arise from natural models of random graphs, and
also in many applications, such as computer science, statistical physics, biological
studies, social networks.

One goal of graph limit theory is to define proper notions of distance that reflects
the local similarities observed between the members of various families of large
(random) graphs and to find a proper limit object for graph sequences that are
convergent in this metric. This aim is also motivated by the earlier observations
that large graphs chosen from the same family behave very similar to each other,
even when one considers random graphs [41, 22]. Local weak convergence provides
a tool to understand this phenomenon and study properties of large graphs through
the properties of the limit object.

It turned out, that in many cases, it is easier to work with the limit graph as with
the large graphs converging to it [5]. One can hope that the examined parameter of
the graphs converges and a proper probabilistic parameter of the limit object can
be defined that the parameters of the sequence converge to. One example for such
a parameter is the matching ratio. This phenomenon illustrate why graph limit
theory can provide a useful approach to various questions about parameters of large
graphs. Our work on the matching ratio presented in Chapter 3 fits into the series
of studies in this direction.

Local weak convergence of random graphs extends naturally to possibly infinite
rooted random graphs. The same questions arise for this wider class: in what
sense are infinite random graphs determined by their local structures? Do certain
parameters of the graphs converge along a local weak convergent sequence? We will
examine this type of questions for parameters related to Bernoulli percolation in
Chapter 4.

Historical background

The main subject of the thesis, local weak convergence, also called Benjamini-
Schramm convergence, was introduced by Benjamini and Schramm in [17], originally
for sequences of finite graphs. Local weak convergence applies for sparse graphs,
where the average degree of the sequence is bounded uniformly, hence the graphs
have O(|V (G)|) edges. The theory behaves especially nice when we consider graphs
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with a uniform bound on the vertices. There is another approach to local weak
convergence of bounded degree graphs which joins combinatorics and analysis. In
this concept, the limit object is not a rooted graph but rather an analytic object,
a graphing, see [4, Example 9.9], [36]. An approach to local weak convergence via
homomorphism densities is found in [29].

The above limit concepts do not work for dense graphs, i.e., graphs where the
number of edges is proportional to the number of all possible edges, that is, graphs
with O(|V (G)|2) edges: if lim |E(Gn)|/|V (Gn)|2 > 0, then there is no local weak
limit of the graph sequence. However, there is a proper notion for convergence in
the class of dense graphs. In this case, the limit object is a symmetric measurable
function W : [0, 1] × [0, 1] → R called graphon; see [63], [27], [28]. This notion of
convergence is trivial for sparse graphs: a sequence with o(|V (Gn)|2) edges converges
to the W ≡ 0 graphon.

In the thesis, we work with the local weak convergence defined by Benjamini and
Schramm. This concept applies well for the graph models that are most widely used
in the applications and have unbounded degrees with bounded expected value.

The convergence of a graph parameter along a local weak convergent sequence
means that the parameter is essentially determined by the local structure of the
graph. If this is the case, one may hope to find the limit value of the parameter
via a properly defined parameter on the limit graph. There are several parameters
of graphs that turned out to converge along a local weak convergent sequence of
finite graphs: the normalized logarithm of the number of spanning trees [65], the
normalized number of self-avoiding walks [49], the relative size of a maximal match-
ing [40, 26], chromatic measures [1], various graph polynomials [31]. We refer to [5]
for a survey on the application of graph convergence for parameters of finite graphs.
We examine questions about the convergence of the relative size of the maximal
matching in Chapter 3.

Similar questions concerning parameters of infinite graphs arise naturally: do
certain parameters of infinite graphs converge whenever the sequence of graphs con-
verges in the local weak sense? A central open problem in this field is the conjecture
of Schramm [16] about the locality of the percolation critical probability of trans-
itive graphs. We investigate this problem in Chapter 4 in the class of unimodular
random graphs.

We note that by the nature of local weak convergence, it cannot be used to gain
information about some global behavior, such as connectedness, bipartiteness, etc.
To see an example, consider the following sequence: let Fn be random d-regular
graphs on n vertices. Let Gn be the following sequence: for n odd, let Gn = Fn, for
n even, let Gn be the union of two copies of Fn/2. This sequence converges to the
infinite d-regular tree in the local weak sense, but the even and odd members of the
sequence differ fundamentally because of their connectedness. A possible approach
to refine the notion of local weak convergence to be sensitive also for global properties
of the graphs is local-global convergence, introduced in [24] and further studied in
[52]. A sequence of bounded degree graphs Gn converges in the local-global sense,
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if for any k and ε there is an l such that for every n,m > l and any fixed coloring
of Gn with k colors, there is a coloring of Gm that is at distance at most ε to the
fixed coloring of Gn. This notion is sensitive for both local and global properties of
the graph sequence.

Parameter and property testing, local algorithms

Given a large graph, besides the value of certain parameters, one may be interested
whether the graph satisfies certain property. If a small error in the accuracy of the
estimation of the parameter or in the probability of the correct guess is allowed, then
in some cases a constant time randomized algorithm suffices. For both questions, the
goal is to give an answer by looking at a sufficiently large neighborhood around a
bounded number of random vertices of the graph, where the radius and the number
of the examined neighborhoods is independent of the size of the graph. The existence
of such an algorithm is closely related to the continuity of the parameter along local
weak convergent graphs sequences, as explained below.

Call the neighborhoods of radius k of k independently uniformly chosen vertices
of a finite graph G a k-sample. A parameter of finite graphs is called testable (or
estimable) if it can be estimated with arbitrary small error with arbitrary large
probability via a k-sample of a graph for a sufficiently large k depending only on the
errors. Elek [38] showed that a bounded parameter of finite graphs is estimable if
and only if its value is convergent along local weak convergent sequences of graphs.
This theorem shows that the convergent parameters listed above are estimable. An
example of a parameter that is not estimable is the independence ratio, see [62,
Example 22.5].

We say that a property P of bounded degree graphs is testable if the following
holds. Whenever a finite graph G has the property P or P does not hold even for
any graph G′ obtained from G by modifying (adding or removing) ε|V (G)| edges,
then we can decide with high probability between these two cases just by looking at
a k-sample of the finite graph G, where k depends only on the errors. Benjamini,
Schramm and Shapira [18] showed that every minor-closed property (e.g., planarity)
is testable. Elek [39] and Newman and Sohler [72] proved that every property and
a large class of parameters are testable for every class of hyperfinite graphs.

Local algorithms can be used to compute not just the relative size but also the
structure of e.g., an almost maximal matching or flow of a graph [73, 40, 32]. These
algorithms can be deterministic [32] or they use random labels on the vertices (e.g.,
[40] or our Lemma 3.3.5) to break the symmetries of the graphs. For an overview
of estimable parameters, testable properties and randomized local algorithms on
bounded degree graphs we refer to [62, Chapter 22].
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Aims of the thesis

The thesis is intended to present our results on parameter continuity along local
weak convergent sequences of random graphs. We recall the basic notions related
to random graphs in Chapter 1 and illustrate them by examples which will be also
used later in the thesis.

Chapter 2 is devoted to the definition of local weak convergence of random graphs
and the illustration of it by several examples. In Section 2.2.1 we present a partially
unpublished result about unimodular Galton–Watson trees that provides an example
of the local weak convergence of infinite graphs with unbounded degrees. We define
almost sure local weak convergence, a stronger version of local weak convergence
for sequences of finite random graphs in Section 2.3. We show that preferential
attachment graphs converge in this stronger sense, which will be important for the
almost sure convergence of the matching ratio in Chapter 3.

In Chapter 3 we examine the concentration and limiting properties of the (dir-
ected) matching ratio, which is closely related to an important parameter in control
theory, as shown by Liu, Slotine and Barabási [61]. Our main motivation was that
the observations of [61] suggested that the matching ratio of directed graphs is in
some cases essentially determined by the degrees of the graphs and converges along
local weak convergent sequences. We give the precise forms and proofs of two main
observations of [61], which were based on numerical results and heuristics from stat-
istical physics. First, we show in Section 3.2 that the directed matching ratio of
directed random networks given by a fix sequence of degrees or by the preferential
attachment rule is concentrated around its mean. Second, we study the convergence
of the (directed) matching ratio of a random (directed) graph sequence that con-
verges in the local weak sense, and generalize the result of Elek and Lippner [40].
We prove in Theorem 3.3.3 that the mean of the directed matching ratio converges
to the properly defined matching ratio parameter of the limiting graph. We further
show in Theorem 3.3.10 the almost sure convergence of the matching ratios for the
most widely used families of scale-free networks, which was the main motivation
of Liu, Slotine and Barabási. The results of this chapter have been published in
Beringer and Timár [21].

In Chapter 4 we investigate parameters of infinite graphs related to Bernoulli per-
colation. We study generalizations of the classical percolation critical probabilities
pc, pT and the critical probability p̃c defined by Duminil-Copin and Tassion (2016),
introduced originally for transitive graphs, to bounded degree infinite unimodular
random graphs. We show in Theorem 4.2.1 that the equation pc = p̃c holds also
in this class of graphs. However, there are unimodular graphs with sub-exponential
volume growth and pT < pc (Example 4.2.10); i.e., the classical sharpness of phase
transition does not hold. We further examine Schramm’s conjecture in the case
of unimodular random graphs: does pc(Gn) converge to pc(G) if Gn converge to
G in the local weak sense? In Proposition 4.3.4 we give conditions which imply
lim pc(Gn) = pc(limGn). We provide examples of sequences of unimodular graphs
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such that Gn converges to G but pc(G) > lim pc(Gn) or pc(G) < lim pc(Gn) < 1

(Examples 4.3.7, 4.3.8 and 4.3.9). This shows that the locality conjecture does not
hold in the generality of bounded degree unimodular random graphs. As a corol-
lary to our positive results, we show in Proposition 4.4.1 that for any transitive
graph with sub-exponential volume growth there is a sequence Tn of large girth bi-
Lipschitz invariant subgraphs such that pc(Tn) → 1. It remains open whether this
holds whenever the transitive graph has cost 1. The results of Chapter 4 have been
published in Beringer, Pete and Timár [20].
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Chapter 1

Random graphs

1.1 Notations and basic definitions

In this section, we give our notations and the basic definitions used throughout the
thesis.

Given a (multi)set F (of edges or vertices) we denote by |F | the number of
elements of the set (counted with multiplicity). When a graph G is given, |G|
denotes the number of vertices of the graph. Let [n] be the set {1, . . . , n}.

1.1.1 Graphs

We always consider locally finite graphs, i.e. graphs with finite degrees. Multiple
edges and loops are allowed. The graphs can be undirected or directed. We denote
the vertex set of the graph G by V (G) and the edge set by E(G). We write x ∼ y

if x and y are adjacent vertices in G. We denote by {x, y} the undirected edge
connecting the vertices x and y, and by (x, y) the directed edge pointing from x to
y. We denote by e− and e+ the endpoints of the (directed) edge e. Given a directed
edge e = (e−, e+), we call e− the tail and e+ the head of the edge. When a subgraph
S is given (maybe implicitly) and it contains exactly one endpoint of the undirected
edge e, then we denote that endpoint by e−. Given a set F of edges, let V (F ) be
the set of vertices that are incident to an edge in F . In the directed case, let V −(F )

and V +(F ) be the set of the tails and the heads of the edges in F , respectively. We
write degG x for the degree of a vertex x in a graph G. If the graph G is directed,
denote by deginG x and degoutG x the in- and out-degree of the vertex x, respectively.

For any subset S of the vertices, let ∂ES := {e ∈ E(G) : e− ∈ S, e+ /∈ S} be the
edge boundary of S, let ∂in

V S := {x ∈ S : ∃y ∼ x, y /∈ S} be the internal vertex
boundary of S, and let ∂out

V S := {x /∈ S : ∃y ∼ x, y ∈ S} be the outer vertex
boundary of S.

We use distG(x, y) for the graph distance between the vertices x and y in the
graph G. Let BG(x, r) := {y ∈ V (G) : distG(x, y) ≤ r} be the ball of radius r
around a vertex x in the graph G induced by the graph metric. With a slight abuse
of notation, we often regard BG(x, r) as the subgraph of G induced by the vertices
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at distance at most r from x.
We often use rooted graphs (G, o), where G is a graph and o is a distinguished

vertex of G, the root of the graph.
Given two graphs G1 and G2 we denote by G1 ' G2 that the graphs are

isomorphic, i.e. there is a graph isomorphism φ : V (G1) → V (G2) such that φ is
a bijection and {x, y} ∈ E(G1) if and only if {φ(x), φ(y)} ∈ E(G2). If (G1, o1) and
(G2, o2) are rooted graphs, we say that they are rooted isomorphic, denoted by
(G1, o1) ' (G2, o2) if there is a graph isomorphism φ : G1 → G2 such that φ(o1) = o2.

We often consider labeled graphs: in this case, we assume (directly or im-
plicitly) that there are some labels c : V (G) ∪ E(G) → Θ, where Θ is usually
[0, 1] or a countable set. Whenever we consider labeled graphs, we require that
the graph isomorphism φ between G1 and G2 also preserves the labels: if G1 has
labels c1 and G2 has labels c2 then c1(v) = c2(φ(v)) for every v ∈ V (G1) and
c1({x, y}) = c2({φ(x), φ(y)}) for every edge {x, y}.

We say that a graph is (vertex-)transitive if for every pair of vertices x and y
there is an automorphism φ of the graph such that φ(x) = y. The graph is quasi-
transitive if there are finitely many orbits of the vertices under the action of the
automorphism group of the graph.

Directed graphs

In Chapter 3 we examine directed graphs as well. There is a useful tool for this
purpose: the bipartite representation of a directed graph. This allows us to easily
generalize many theorems from undirected graphs to directed graphs in a standard
way. Any directed graph can be represented as a bipartite graph.

Definition 1.1.1 (Bipartite representation of a directed graph). The bipartite rep-
resentation of a directed graph G = (V,E) is the bipartite graph ¯̄G = (V −, V +, ¯̄E)

with V − = {v− : v ∈ V }, V + = {v+ : v ∈ V } and ¯̄E := {{v−, w+} : (v, w) ∈ E}.

We lose information when we convert a directed graph into its bipartite represent-
ation, namely the connection between the vertices v− and v+. This has consequences
when we want to translate a statement back from the bipartite representation to
the directed graphs, as we will see in Proposition 2.1.4.

1.1.2 Finite random graphs

We consider two types of random graphs in the thesis. First, the easier concept of
random graphs is finite random graphs. We use this family in Chapter 3. If we say
that G is a finite random graph, we mean that there is a probability distribution on
the set of isomorphism classes of (possibly disconnected) finite graphs. Note that
this is a countable set, and we consider the discrete topology on it. For the sake
of simplicity, we usually speak about graphs instead of isomorphism classes. By
the realization of the random graph G we mean an arbitrary graph from the
isomorphism class chosen randomly according to the distribution of G.
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Let Gf be the set of isomorphism classes of finite (possibly disconnected)
labeled graphs. We define random finite labeled graphs in two steps. First
we consider a random finite graph G, and then we define the joint distribution of
the labels of the vertices and edges given the realization of G.

Remark 1.1.2 (Labels). We usually chose the labels to be elements of [0, 1], but one
can define them more generally, as elements of a complete separable metric space.
When we consider labeled graphs, we always specify the set of labels. If this set is
countable, then we mean without further mentioning that the distance of two distinct
elements are one.

Given a random (labeled) graph G, we denote by PG the probability with
respect to the distribution of G and by EG the expectation taken with respect
to PG. We omit the index G from this notation if it is clear what the measure is.

Examples of finite random graphs

In this section, we define the most widely used random graph models. These graphs
will be examined in Chapter 3. We work there with both undirected and directed
graphs.

Definition 1.1.3 (Random d-regular graphs). The random d-regular graph is a
random graph chosen uniformly at random from the set of graphs on the vertex set
[n] with all degrees equal d.

There are two natural ways to define random directed regular graphs. The first
one is if Gn is a uniformly chosen directed graph on [n] such that each vertex has
in- and out-degrees d. The second way to define directed graphs Gn is if we choose a
uniform random non-directed d-regular graph on [n] and orient each edge uniformly
at random independently from each other. This model is a special case of the random
configuration model defined in the sequel.

Definition 1.1.4 (Erdős–Rényi random graphs). The Erdős–Rényi random graphs
Gn,p are defined in the following way: consider the complete graph on n vertices and
keep each edge with probability p, and delete each edge with probability 1 − p inde-
pendently from each other. The resulting random graph is Gn,p.

We define the directed Erdős–Rényi random graphs
#»G n,p by orienting each edge

of Gn,p uniformly at random independently for the edges.

The next two graphs have become increasingly important in applications, be-
cause they can grab important characteristics of real-world networks, such as scale-
free degree distribution. This is the reason why in [61], which was motivated by
applications of controllability, these graphs were studied.

Definition 1.1.5 (Random configuration model). We fix a non-negative integer
valued probability distribution ξ. We define the graph Gn in the following way: let
ξ1, . . . , ξn be i.i.d. variables with distribution ξ. Given ξ1, . . . , ξn let E := {(k, j) :
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k ∈ [n], j ∈ [ξk]} be the set of the half-edges. Let H be a uniform random perfect
matching of the set E (if |E| is odd, then put off one half-edge uniformly at random
before choosing a perfect matching). The random configuration model is the
graph Gn = Gn(H) on [n] given naturally by the random perfect matching H.

If we want to define a directed graph, then we orient each edge uniformly at ran-
dom independently from the other edges. We get the same distribution if after fixing
the degree sequence ξ1, . . . , ξn we select a subset ET ⊆ E of size b|E|/2c uniformly
at random. Then we set ξ−k := |{j ∈ [ξk] : (k, j) ∈ ET}|, ξ+

k := ξk − ξ−k and we
denote by T := {(k, j,−) : k ∈ [n], j ∈ [ξ−k ]} the set of the tail-type half-edges and by
H := {(k, j,+) : k ∈ [n], j ∈ [ξ+

k ]} the set of the head-type half-edges. Let N be the
set of the perfect matchings of T to H and denote by N a uniform random element
of N . Then N defines the random directed graph Gn = Gn(N) on the vertex set [n].

Our second graph model, the preferential attachment graph was introduced by
Barabási and Albert in [13] and the precise construction was given by Bollobás and
Riordan in [23]. There are several versions of the definition of this family of random
graphs which have turned out to be asymptotically the same: they all converge
to the same infinite limit graph; see [19]. Although in the original definitions the
preferential attachment graphs are not directed, there is a natural way to give each
edge an orientation and these orientations extend to the limit graph as well. We
will examine the maximal size of the directed matchings of preferential attachment
graphs in Chapter 3. We use the following definition from [19] completed with the
natural orientation of the edges.

Definition 1.1.6 (Preferential attachment graphs). Fix a positive integer r and
α ∈ [0, 1). For each n the preferential attachment graph on n vertices is the
random graph Gn = GPA

r,α,n on the vertex set [n] defined by the following recursion:
let G0 be the graph with one vertex and no edges. Given Gn−1 we construct Gn by
adding the new vertex n and r new edges with tails n. We choose the heads w1, . . . wr
of the new edges independently from each other in the following way: with probability
α we choose wj uniformly at random among [n − 1], and with probability 1 − α we
choose wj proportional to degGn−1

. Note that each vertex except the starting vertex
has out-degree r and each vertex has a random in-degree such that the mean of the
average in-degree converges to r as n→∞.

1.1.3 Random rooted graphs

The case of possibly infinite random graphs is more difficult. The set of locally finite
graphs is uncountable and it is not a priori clear, what is the natural topology on
it.

We need the concept of rooted graphs to define an appropriate topology on the
set of isomorphism classes of possibly infinite graphs. There is a natural way to
define the distance of rooted graphs: we say that two graphs are close, if they are
isomorphic in a large neighborhood of the root. More precisely, let the distance
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of two rooted graphs (G1, o1) and (G2, o2) be 2−k if k is the largest integer such
that BG1(o1, k) ' BG2(o2, k). If the balls of radius k are rooted isomorphic for all
k, then let the distance be 0. It is easy to see that this defines a metric on the space
of isomorphism classes of locally finite, connected rooted graphs and this space is
complete and separable with this metric, see [17] or [25, Lemma 3.4] for a proof.

In the case of labeled graph, we have to refine the definition of the distance of two
graphs. We do not specify the labels yet, but we assume that they are chosen from
a complete separable metric space. See Remark 1.1.2 for more on the labels. Let
G? be the space of isomorphism classes of locally finite, connected labeled
rooted graphs. We equip the space G? with the metric defined by the following
distance: we say that two graphs are close, if they are rooted isomorphic in large
balls around the roots and the corresponding labels are close to each other. More
precisely, let (G1, o1) and (G2, o2) be two labeled rooted graphs with labels c1 and c2,
respectively. Let their distance be dist?

(
(G1, o1), (G2, o2)

)
:= inf{2−k} where the

infimum is taken over all k which satisfy the following: there is a rooted isomorphism
φk : BG1(o1, k) → BG2(o2, k) such that min{1; |c1(a) − c2(φk(a))|} ≤ 2−k for every
a ∈ V (BG1(o1, k)) ∪ E(BG1(o1, k)).

The space of isomorphism classes of locally finite connected graphs without labels
can be viewed as the subspace of G? with labels c ≡ 1, so we need to give the further
definitions only in the more general settings of labeled rooted graphs.

Remark 1.1.7 (Compactness). If the labels are chosen from a compact separable
metric space and we fix a positive integer D, then the subspace GD

? of G? consisting
of the graphs with degrees bounded above by D form a compact separable metric
space. There are several advantages of working with this space, and many results on
convergent sequences in GD

? make use of the compactness of the space, see e.g. [17],
[40].

However, there are several widely used random graph models that do not have
a uniform bound on the degrees, hence we cannot use compactness when studying
them.

Definition 1.1.8 (Random rooted graphs). By a random rooted graph we mean
a probability distribution on the space (G?,B(G?)), where B(G?) is the Borel σ-algebra
given by the metric defined above. For the sake of simplicity, instead of working with
random isomorphism classes, we always work with a representative graph from the
isomorphism class, which we call the realization of the random rooted graph. We
often consider a realization that naturally arise from the definition. One can also
chose the canonical representative of the isomorphism class, as defined in [4, Section
2].

Given a random (labeled, directed) rooted graph G, we denote the probability
and expected value with respect to its distribution by PG and EG, respectively.
We sometimes omit the subscript from the notation when we examine only a single
random graph. When we need to use integrals with respect to the distribution of a
random graph, then we introduce a notion for the distribution of it.
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Remark 1.1.9. We will speak about random rooted (labeled) graphs without men-
tioning the root in two cases.

First, if the random graph is almost surely finite, then we turn it into a random
rooted graph by choosing the root uniformly at random among the vertices of the
realization of the graph.

Second, if the random graph is a transitive graph and the distribution of the
labels is invariant under the automorphisms of the graph. In this case, it does not
matter which vertex we choose to be the root, the distribution of the isomorphism
class of the random rooted graph will be the same.

1.2 Unimodular random graphs

The notion of unimodularity comes from group theory. It was showed by Schlichting
[76] and Trofimov [82] that the unimodularity of a closed group of automorphism
of a fixed graph G can be described by an easy formula using the stabilizers of
the vertices. Namely, a subgroup Γ of the automorphism group of the graph is
unimodular iff for each x and y on the same orbit

|StabΓ(x)y| = |StabΓ(y)x|.

See [14] for more on fixed graphs and unimodularity. It turned out that Cayley
graphs of finitely generated groups are unimodular (see Definition 1.2.5 and Pro-
position 1.2.6), and the definition can be generalized to quasi-transitive graphs and
invariant random subgraphs of them [4]. We give two equivalent definitions below
that work in the generality of random rooted graphs.

Many theorems can be extended from Cayley graphs of finitely generated groups
to invariant random subgraphs of them; see e.g. [14], [15]. This suggests using
techniques developed for invariant subgraphs of unimodular transitive graphs for
studying even more general unimodular random graphs. Another motivation for
using these techniques is that they apply for local weak limits of finite graphs,
because these graphs are also unimodular (Proposition 1.2.4).

One may think that unimodular random graphs are generalizations of transitive
graphs, however, not every transitive graph is unimodular, as we will see in Example
1.2.9. Unimodular graphs should satisfy a property that is stronger than stationarity,
see Definition 1.2.1.

There are several equivalent definitions of unimodularity. One can approach un-
imodularity through random walks, see [4, Section 4], [15, Section 2.2], [75, Definition
14.1]. When a random rooted graph has finite expected degree (which will be the
case throughout the thesis), one can define unimodularity as follows. Note that the
notion of reversibility of Definition 1.2.1 used throughout this section differs from
the usual definition in the theory of Markov chains.

Definition 1.2.1 (Unimodularity and random walks). Let (G, o) be a random rooted
graph and let (X0, X1, . . . ) be a simple random walk on G starting from o. We say
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that (G, o) is reversible, if (G,X0, X1) and (G,X1, X0) have the same distribution.
The random rooted graph (G, o) with distribution µ and E(deg o) < ∞ is called
unimodular, if the random rooted graph obtained from (G, o) by biasing by the
degree of o is reversible; i.e., the measure µ̃ on G? is reversible, where µ̃ is absolutely
continuous with respect to µ and dµ̃

dµ
= degµ o.

Note that this definition says that a transitive graph (or any regular graph) is
unimodular iff it is reversible. This property holds for Cayley graphs, but does not
hold for every transitive graph, see Example 1.2.9.

Unimodularity of random rooted graphs is closely related to measured equival-
ence relations and this concept could be also used to give an equivalent definition.
We do not use this approach in the thesis. For more on the connection of unim-
odular random graphs and measured equivalence relations, see [15, Section 2.3], [4,
Example 9.9]. For more equivalent definitions of unimodularity see [75, Definition
14.1].

Now, we define unimodularity using the so called Mass Transport Principle. The
Mass Transport Principle was introduced by Häggström [50] to study percolation on
regular trees. This definition is useful in the proofs, even beyond percolation theory:
finding a proper mass transport, one can prove (in)equalities concerning unimodular
graphs.

To define unimodular random graphs, we need to define the space of iso-
morphism classes of locally finite labeled graphs with an ordered pair of
distinguished vertices, denoted by G??. (We have already used this space impli-
citly in Definition 1.2.1.) We equip this space with the natural topology, which is
similar to the topology of the space G?: two doubly rooted graphs are close if they
are isomorphic in large neighborhoods of the roots and the corresponding labels are
close to each other.

Definition 1.2.2 (Unimodular random graphs). [4, Definition 2.1] We say that a
random rooted (labeled) graph (G, o) with distribution µ is unimodular if it obeys
the Mass Transport Principle:∫ ∑

x∈V (ω)

f(ω, o, x)dµ(ω, o) =

∫ ∑
x∈V (ω)

f(ω, x, o)dµ(ω, o)

for each measurable function f : G?? → [0,∞].

The Mass Transport Principle can be interpreted as follows. One can think of
f(ω, o, x) to be the mass sent from o to x given the labeled graph ω, and unimodu-
larity is equivalent with the property that the expected value of the total mass sent
out by the root equals the expected value of the total mass received by the root.

Aldous and Steele [5] considered a similar definition of unimodularity but they
required the principle to hold for functions f(ω, x, y) that take positive values only
when x ∼ y. That definition is equivalent with the above general form of the Mass
Transport Principle, see [4, Proposition 2.2].
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It follows easily from the Mass Transport Principle that the class of unimod-
ular probability measures is convex. A unimodular probability measure is called
extremal if it cannot be written as a convex combination of other unimodular
probability measures. Extremal unimodular random graphs will be important in
Chapter 4.

1.2.1 Examples of unimodular random graphs

We present a few basic examples to illustrate the concept of unimodular graphs.
As mentioned earlier, this class is convex, hence every convex combination of the
following examples is also unimodular.

Example 1.2.3 (Finite random graphs). As we mentioned in Remark 1.1.9, if we
do not define the root of a finite graph, we mean that the root is chosen uniformly
at random among the vertices of the graph. It is easy to check that a finite graph
with a uniform random root is unimodular. It follows by the convexity of the class
of unimodular graphs that every finite random graph with a root chosen uniformly
at random is unimodular.

An important property of unimodular random graphs is that this class is closed
under taking local weak limits of random graphs. The concept of local weak conver-
gence will be defined in Chapter 2. Also, it is an open question whether the class
of unimodular random graphs is strictly larger than the class of sofic measures; i.e.,
the closure of the set of finite random graphs with a uniformly chosen root under
local weak convergence. For further discussion on this question, see [4, Section 10]
or [75, Question 14.2].

Proposition 1.2.4 (Local weak limits of unimodular graphs [17]). The space of un-
imodular random rooted graphs is closed under taking local weak limits (see Chapter
2 for the definition). It follows that random rooted graphs that arise as limits of
finite graphs are unimodular.

An important class of unimodular graphs consists of Cayley graphs of finitely
generated groups and of invariant random subgraphs of a Cayley graph. We also
use this family of random graphs in several examples in Chapter 4.

Definition 1.2.5 (Cayley graph of a finitely generated group). Given a finitely
generated group G with generator set S, its (left) Cayley graph Γ is the directed
graph with vertex set V (Γ) = G and edge set E(Γ) = {(g, sg) : g ∈ G, s ∈ S}.
Usually, it is assumed that S is symmetric, i.e., s ∈ S ⇔ s−1 ∈ S. We often forget
about the orientations of the edges and view the Cayley graph as an undirected graph.

When we talk about invariant random subgraphs of a Cayley graph Γ of a group
G, we always mean that the measure on subgraphs is invariant under the natural
action of G: the action of the elements of the group by multiplication from the right.
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Proposition 1.2.6 (Unimodularity of invariant subgraphs of Cayley graphs). [4,
Remark 3.3] Let Γ be a Cayley graph of a finitely generated group and let o be a
vertex of Γ. Then Γ is a unimodular graph. Furthermore, if G is a random subgraph
of Γ that is invariant under the action of the group, then (G, o) is unimodular.

An important special case of Proposition 1.2.6 is the cluster of the root of a
Cayley graph obtained by the Bernoulli percolation on the graph. Here we give just
the basic concept needed for the example. We define percolation in more detail in
Chapter 4, which is devoted to our results on percolation critical probabilities.

Example 1.2.7 (Bernoulli percolation on a unimodular transitive graph). Let G be
a unimodular graph, fix a vertex o and let p ∈ [0, 1]. Let ω be the random subgraph of
G obtained by keeping each edge with probability p and removing it with probability
1 − p, independently for the edges. Denote by Co the connected component of ω
containing o. Then (Co, o) is a unimodular random graph [4].

As we mentioned earlier, not every transitive graph is unimodular. For the most
basic example of a non-unmodular graph, we need the notion of ends of a tree. There
is a more general notion for ends of general graphs [68, Section 7.3], but we do not
need this notion in our thesis, hence we omit the general definition.

Definition 1.2.8 (Ends of a tree). [68, Example 7.1] Let T be an infinite tree. An
end of T is an equivalence class of infinite non-backtracking paths, where two paths
are equivalent if the symmetric difference of their vertex sets is finite.

Example 1.2.9 (A non-unimodular transitive graph: the grandmother graph). [68,
Example 7.1] Let T3 be the infinite 3-regular tree and let ξ be a distinguished end
of T3. Given an end of the tree T , for every vertex x there is a unique path in the
equivalence class ξ starting at x. We denote this path by Px = (x, x1, x2, . . . ). We
obtain the grandmother graph G by adding to T3 extra edges of the form {x, x2} for
all vertices x ∈ V (T3).

The graph G is clearly transitive but it is not unimodular.

Proof. We show the non-unimodularity of G by giving a measurable function f :

G?? → [0,∞) that does not satisfy the Mass Transport Principle.
First, we note that for every vertex x one can determine the vertex x1 (the second

vertex of the path in ξ starting from x) just by looking at BG(x, 1), as follows. There
are three vertices in BG(x, 1) with degBG(x,1) y = 4, and it is easy to see that x1 is
the unique vertex among them that is connected to both of the others by an edge.
This shows that the distinguished end ξ is encoded in the structure of G. Let f be
the following mass transport:

f(ω, x, y) =

{
1 if ω = G, y = x1

0 otherwise
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Then every vertex sends out mass 1 and receives mass 2 almost surely, hence the
probability measure on G? concentrated on (G, o) (where o is any vertex of G) does
not obey the Mass Transport Principle:∫ ∑

x∈V (ω)

f(ω, o, x)dµ(ω, o) = 1 6= 2 =

∫ ∑
x∈V (ω)

f(ω, x, o)dµ(ω, o).

For further examples of transitive, non-unimodular graph see [14, Example 3.2]
and [80].

There is an important class of unimodular random graphs, the so called unim-
odular Galton–Watson trees which provide examples of unimodular random graphs
with unbounded degrees. These graphs arise naturally as local weak limits of finite
random graphs, see Section 2.2. For the unimodularity of the Galton–Watson trees
see [4, Example 1.1] or [25, Lemma 3.10].

Definition 1.2.10 (Unimodular Galton–Watson tree). Let ξ be a non-negative in-
teger valued random variable with Eξ < ∞. The unimodular Galton–Watson
tree with degree distribution ξ (denoted by UGW (ξ)) is a random rooted tree with
root o. We say that a vertex y is the child of the vertex x, if they are adjacent
and dist(y, o) = dist(x, o) + 1. In this case, we say that x is the parent of y. The
distribution of the graph UGW (ξ) is given by the following recursive definition:

• The probability that o has k ≥ 0 children is P(ξ = k).

• For each vertex x, the probability that x has k ≥ 0 children is (k+1)P(ξ=k+1)
Eξ ,

independently for each vertex.

Let the directed unimodular Galton–Watson tree
#          »

UGW (ξ) be the random rooted
directed graph obtained from UGW (ξ) by orienting each edge independently.

1.2.2 Factor of IID labels

Factor of IID processes provide a useful tool to give bounds on combinatorial quant-
ities of large graphs or show the convergence of certain parameters. We will use
this concept in Chapter 3 to prove the convergence of the matching ratio of random
graphs.

A fundamental related question in this theory is whether an invariant random
subgraph of a Cayley graph can be obtained as a factor of IID, as defined in the next
paragraph. Positive answers for this questions were given for (perfect) matchings on
certain Cayley graphs by Lyons and Nazarov [67], Timár [78], Csóka and Lippner
[34], Lyons [66], for labeling with uniform marginals and infinite equivalence classes
on T3 by Mester [71], for large independent sets on Td by Gamarnik and Sudan [45],
Csóka, Gerencsér, Harangi and Virág [33], Harangi and Virág [51]. Nevertheless,
there are still many open questions in this field; see e.g., Lyons [66]. Results about
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properties of factor of IID processes that can also be used to prove a negative answer
for questions of the above type can be found in Backhausz, Szegedy and Virág [12]
and Lyons [66]. Factors of Poisson point processes have been studied by Holroyd
and Peres [54], Timár [79, 81], Holroyd, Pemantle, Peres and Schramm [53].

A sequence (or set) of independent, identically distributed random variables is
abbreviated as IID. Informally, a factor of IID is a random labeling of a graph
obtained by the following process. We assign to each vertex or edge of the graph
IID labels, and then we obtain new labels for every vertex v or edge e by applying
a deterministic rule, the factor to the graph and the IID labels around v or e.

Definition 1.2.11 (Factor of IID). A measurable function f : G? → R is called
a factor (map). In some cases we need to define factor labels also on the edges,
hence we extend the notion of factor to measurable functions f : G? ∪ G?? → R.

Let G be a (random directed) graph, let c : V (G)∪E(G)→ [0, 1] be IID uniform
random [0, 1]-labels on the vertices and edges, and let G(c) be the random labeled
graph given by the labels c. The collection of random variables {Xa = f((G(c), a)) :

a ∈ V (G) ∪ E(G)} is called a factor of IID process, if f is a factor.

The easiest examples of factor of IID use a factor map that takes into account
only the IID label of the edge or vertex, and ignores the other labels. One can
obtain Bernoulli percolation on a graph in such a way, even for more parameters
simultaneously, coupled independently or by the standard coupling (see [68, Section
5.2]). We will define random matchings as factor of IID in Section 3.3.

Remark 1.2.12 (Unimodularity of factor of IID). When we equip a unimodular
random graph with the IID labels, then the resulting labeled graph and also the factor
of IID process is unimodular. This allows us to use the Mass Transport Principle
for factor of IID processes which will be the case in Section 3.3.1.

1.2.3 Operations preserving unimodularity

Some of our examples in Chapter 4 arise from Cayley graphs using operations from
G? to G?. One of this operations is the edge replacement defined in [4, Example 9.8].
In the paper [20], we defined further operations, called vertex replacement and con-
traction. In the first two operations, we replace each edge or vertex of a unimodular
graph by a finite random graph with an appropriate number of distinguished vertices
corresponding to the endpoints of the edge or to the neighbors of the vertex. For
the third operation, we consider a unimodular random subgraph of a unimodular
random graph and identify the vertices that are in the same connected component
of the subgraph.

Before presenting the details of the general concepts, we start with easier ex-
amples. Given IID labels to a unimodular random graph turns it into a unimodular
labeled graph. Applying a factor map (Definition 1.2.11) to a (labeled) unimod-
ular graph also obtains a unimodular labeled graph. Factor of IID labelings and
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in particular, invariant random labelings of a unimodular random graph preserves
unimodularity, see Remark 1.2.12 and [4, Theorem 3.2].

We can obtain a new graph by adding extra edges using a deterministic rule,
i.e., adding an edge between pairs of vertices with a fixed distance that belong to
the same vertex class of a (quasi-)transitive graph. However, as we have seen in
Example 1.2.9, when the rule of adding the new vertices breaks the symmetries of
the original unimodular graph, the resulting graph is not necessarily unimodular.

Another way to obtain a new graph is to removing edges using a deterministic
rule, i.e., removing edges that belong to a particular edge-class of a quasi-transitive
graph. Removing edges independently at random with the same probability, i.e.
Bernoulli percolation on a unimodular graph results in a subgraph that is a unim-
odular random graph, see [4, Example 9.4]. More generally, if the removal of the
edges depends on a factor of IID process or on any unimodular labeling, then the
resulting graph is also unimodular, see Remark 1.2.12.

The easiest example of the edge replacement operation is when we substitute
each edge by a path of a fixed length; or more generally, by a path having a random
length according to some fixed distribution. Similarly, we get an example of vertex
replacement when we substitute each vertex x by a complete graph with deg x ver-
tices; or more generally, with a complete graph with a random number of vertices.
It is not a priori clear, how to choose the root of the resulting graph, even when
the original graph is a transitive unimodular graph. We describe the proper way
of chosing the random root of the resulting graph in the detailed discussion of the
general forms of edge and vertex replacement below.

Reversing the above examples gives an example of contraction: we can substitute
each path of a fixed length, or more generally, each path of length at least two by
a single edge. Another natural application of contraction is when each connected
component of Bernoulli bond percolation (Definition 4.1.3) is replaced by a single
vertex. For further applications of the operations of this section see Examples 4.2.10,
4.2.11, 4.3.9. Further operations on unimodular graphs can be found in [4, Section
9].

We note that in the edge and vertex replacement, the space of labels has a special
form, but the topology on them can be defined similar to the topology of G??. The
proper measurability conditions of the labels are ensured by Definition 1.1.8 of the
random labeled rooted graph.

Edge replacement [4, Example 9.8]. Let (Γ, o) be a unimodular random labeled
graph with distribution µ, where the label (G(x,y), o

(x,y)
x , o

(x,y)
y ) of each edge (x, y) is a

finite graph with two distinguished vertex. We assume that the labels corresponding
to the reverse orientation of the same edge satisfy G(x,y) = G(y,x), o

(x,y)
y = o

(y,x)
y and

o
(x,y)
x = o

(y,x)
x , so the orientation of a particular edge does not matter. If the labeling

satisfies Eµ
(∑

x∼o
(
|V (G(o,x))| − 2

))
< ∞, then we can define the rooted random

graph H(Γ, o) as follows. Let A(Γ, o) := 2 +
∑

x∼o
(
|G(o,x)| − 2

)
. Choose (Γ, o) with

probability distribution µ biased by A(Γ, o), and obtain H(Γ, o) by replacing each
edge (x, y) by the graph G(x,y), and for each fixed vertex x of Γ, identifying x with
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the vertices o(x,y)
x for each y ∼ x. Let the root o′ of H(Γ, o) be o with probability

2
A(Γ,o)

and any vertex from ∪x∼o
(
E(G(o,x)) \ {o(o,x)

o , o
(o,x)
x }

)
with probability 1

A(Γ,o)
.

For the proof that the resulting graph is unimodular, see [4, Example 9.8].

Vertex replacement. Let (Γ, o) be a unimodular random labeled graph with
distribution µ, where the labels are in the form (Gx, ϕx), where Gx is a finite graph
and ϕx is a map from {(x, y) ∈ E(Γ) : y ∼ x} to V (Gx). If the labeling satisfies
Eµ|V (Go)| < ∞, then we can define the following rooted random graph H(Γ): we
choose (Γ, o, {(Gx, ϕx) : x ∈ V (Γ)}) with respect to the probability measure µ biased
by |V (Go)|, and replace each vertex x of Γ by the graph Gx and each edge e of Γ

by the edge {ϕe−(e), ϕe+(e)}. Let the root o′ of H(Γ) be a uniform random vertex
of V (Go). Denote the law of (H(Γ), o′) by µ′.

We claim that if µ is unimodular with Eµ|V (Go)| <∞, then µ′ is also unimod-
ular. Let f(ω, u, v) be a Borel function from G?? to [0,∞] and let

f̄(ω̄, x, y) :=
1

Eµ|V (Go)|
∑

u∈V (Gx),v∈V (Gy)

f(H(ω̄), u, v)

which is a Borel function on the subspace of G?? that consists of graphs with labels
of the above form. We show that µ′ obeys the Mass Transport Principle:∫ ∑

v∈V (ω)

f(ω, o′, v)dµ′(ω, o′) =

∫ ∑
o′∈V (Go),v∈V (H(ω̄))

1

|V (Go)|
f(H(ω̄), o′, v)

|V (Go)|
Eµ|V (Go)|

dµ(ω̄, o)

=

∫ ∑
x∈V (ω̄)

∑
o′∈V (Go),v∈V (Gx)

1

Eµ|V (Go)|
f(H(ω̄), o′, v)dµ(ω̄, o)

=

∫ ∑
x∈V (ω̄)

f̄(ω̄, o, x)dµ(ω̄, o)

=

∫ ∑
x∈V (ω̄)

f̄(ω̄, x, o)dµ(ω̄, o)

=

∫ ∑
v∈V (ω)

f(ω, v, o′)dµ′(ω, o′).

Contraction. Let (Γ, o) be a unimodular random edge-labeled graph with distri-
bution µ, where the labels of the edges are 0 or 1. We denote by G the random
subgraph of Γ spanned by all the vertices and the edges with label 1. For a vertex
x of Γ let Cx be the connected component of x in G. We define the contracted
graph H(Γ): in practice, this is what we get by identifying every vertex in the same
component of G. More formally, first we choose (Γ, o, G) with respect to the distri-
bution µ biased by 1

|Co| . The vertices of H(Γ) are the connected components of G
and we join two vertices by an edge iff there is an edge in Γ which connects the two
components. Let the root o′ of H(Γ) be the connected component Co. Denote the
law of (H(Γ), o′) by µ′.
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We claim that if µ is unimodular then µ′ is also unimodular. Let f(ω, u, v) be a
Borel function from G?? to [0,∞] and let

f̄(ω̄, x, y) :=
1

|Cx||Cy|
f(H(ω̄), Cx, Cy)

which is a Borel function on the subspace of G?? that consists of graphs with edges
labeled by 0 or 1, such that the subgraph defined by the edges with label 1 consists
of finite components. We show that µ′ obeys the Mass Transport Principle:∫ ∑

v∈V (ω)

f(ω, o′, v)dµ′(ω, o′) =

∫ ∑
x∈V (ω̄)

1

|Cx|
f(H(ω̄), Co, Cx)

1

|Co|Eµ
(

1
|Co|

)dµ(ω̄, o)

=
1

Eµ
(

1
|Co|

) ∫ ∑
x∈V (ω̄)

f̄(ω̄, o, x)dµ(ω̄, o)

=
1

Eµ
(

1
|Co|

) ∫ ∑
x∈V (ω̄)

f̄(ω̄, x, o)dµ(ω̄, o)

=

∫ ∑
v∈V (ω)

f(ω, v, o′)dµ′(ω, o′).
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Chapter 2

Local weak convergence of graph
sequences

This chapter is devoted to the presentation of the concept of local weak convergence
introduced by Benjamini and Schramm [17].

In Section 2.1 we give the definitions and basic remarks on local weak conver-
gence. In Section 2.2 we illustrate the definitions with examples of convergent graph
sequences. We present a partially unpublished result in Section 2.2.1. In Section
2.3 we examine a stronger notion, the almost sure local weak convergence of graph
sequences and give examples.

2.1 Definitions

The local weak convergence of random rooted graphs is basically the weak conver-
gence of their distributions in the space G? of isomorphism classes of connected,
locally finite rooted graphs. The following definition is a more convenient descrip-
tion of local weak convergence, and captures the property that the local statistics
of the graphs converge to that of the limit graph.

Definition 2.1.1 (Local weak convergence of graphs). We say that the sequence
(Gn, o) of locally finite random rooted graphs converge in the local weak sense
to the locally finite connected random rooted graph (G, o) if for any positive integer
r and any finite rooted graph (H, o) we have P

(
BGn(o, r) ' (H, o)

)
→ P

(
BG(o, r) '

(H, o)
)
.

Let GD? be the subspace of G? consisting of the isomorphism classes of rooted
graphs with degrees bounded by D. It is not hard to show that this space with
the topology given by the distance defined in Section 1.1.3 is a compact space. It
follows, that every sequence in GD? has a convergent subsequence with a limit in
GD? . Many known results about convergent sequences have been proven assuming
the stronger property that the sequence is in GD? for some D. For some questions,
as in our Chapter 4, basic examples show that they make sense only in this class.
However, many natural graph models do not satisfy the uniformly bounded degree
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property. Nevertheless, all graph sequences we examine have bounded expected
average degrees. Such sequences also have a nice behavior from the point of view
of local weak convergence, hence the bounded degree assumption can be removed
from certain results about convergent sequences, as we will see in Chapter 3.

Remark 2.1.2 (Disconnected graphs). For the sake of simplicity, we often work
with possibly disconnected rooted graphs with countably many connected components
(or the ismorphism classes of them). From the point of view of local weak conver-
gence, only the component of the root matters in this case and we can regard our
graph as a convex combination of random rooted graphs.

Remark 2.1.3 (Convergence of finite graphs). We often examine sequences of non-
rooted random finite graphs. The natural way of turn them into rooted graphs is
to choose a random uniform vertex to be the root. When we consider a local weak
convergent sequence Gn of random finite graphs, we usually do not mention the root.
If this is the case, we always mean that the root on of Gn is chosen uniformly at
random among the vertices of the random graph Gn (after choosing the graph itself
with respect to its distribution).

In Chapter 3, we will examine the matching ratio of convergent sequences of
both undirected and directed graphs. In the next proposition, we analyze the rela-
tionship between a convergent graph sequence and its bipartite representation (see
Definition 1.1.1). As we mentioned after Definition 1.1.1, we lose information when
we examine the bipartite representation ¯̄G of a directed graph instead of G. This
explains the phenomenon described in the second statement of the next proposition.

Proposition 2.1.4. 1) If a sequence Gn of random directed graphs converges to the
random rooted directed graph (G, o), then the bipartite representations ¯̄Gn converge
to ( ¯̄G, ¯̄o), where ¯̄G is the bipartite representation of G with root ¯̄o being o− or o+

with probability 1/2-1/2.
2) The converse does not hold: the convergence of the sequence of bipartite rep-

resentations ¯̄Gn does not imply the convergence of Gn. In fact, there are different
random directed rooted graphs (G1, o1) and (G2, o2) that are limits of sequences of
finite random rooted graphs such that ( ¯̄G1, ¯̄o1) is isomorphic to ( ¯̄G2, ¯̄o2).

Proof. Denote the distribution of BGn(o, r) and BG(o, r) in the space of locally finite
rooted directed graphs by µn,r and µr, respectively. Similarly, denote the distribution
of B ¯̄Gn

(¯̄o, r) and B ¯̄G(¯̄o, r) in the space of locally finite rooted graphs by ¯̄µn,r and ¯̄µr,
respectively. The random uniform root ¯̄o of a bipartite representation ¯̄Gn of a finite
directed graph Gn is o− or o+ with probability 1/2-1/2, where o is a uniform random
root of G. It follows that ¯̄µn,r = 1/2¯̄µn,r,o− + 1/2¯̄µn,r,o+ , where ¯̄µn,r,o− and ¯̄µn,r,o+ are
the distributions of B ¯̄Gn

(o−, r) and B ¯̄Gn
(o+, r), respectively. The first statement of

the remark follows.
An example to the second statement is the following. Let G1 be the graph with

vertex set V (G1) = Z and edge set E(G1) = {(2k, 2k − 1), (2k, 2k + 1) : k ∈ Z}, i.e.
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the usual graph of Z with an alternating orientation of the edges. Let the random
root o1 be 2k or 2l− 1 for some k, l ∈ Z with probability 1/2-1/2 (the isomorphism
class of (G1, o) does not depend on the actual choice of the integers k and l). This
graph is the limit of the cycles C2n with 2n vertices and edges with alternating
orientations. Let G2 be the one-point graph without edges with probability 1/2 and
with probability 1/2 let G2 be the infinite regular tree with in- and out-degrees 2.
This graph is the limit of the sequence of random graphs on n vertices where with
probability 1/2 there are no edges and with probability 1/2 the graph is uniformly
randomly chosen from the set of graphs on n vertices with all in- and out-degrees
2. Then ( ¯̄G1, ¯̄o1) and ( ¯̄G2, ¯̄o2) are both isomorphic to the random graph that is the
one-point graph without edges or Z with probability 1/2-1/2.

2.2 Examples of convergent sequences

In this section, we list a few basic examples that illustrate the definition of local
weak convergence. In Sections 2.2.1 and 2.3.2 we present our results on convergent
sequences of graphs. Most of the examples and families of random graphs defined
in this section will be used later in the thesis.

As we mentioned in Remark 1.1.9, finite (random) graphs are considered with a
random root chosen uniformly among the vertices. In the case of transitive graphs
we can chose any vertex to be the root. The notations Zd and Z = Z1 stand for the
graph with vertex set Zd and edges between the pairs of vertices x = (x1, . . . , xd)

and y = (y1, . . . , yd) with
∑d

j=1 |xj − yj| = 1. Denote by Qn the subgraph of Zd

spanned by the box [−n, n]d. We will use these notations throughout the thesis.
In the first example, the members of the converging graph sequences are determ-

inistic transitive graphs, hence the r-ball around every vertex looks the same, thus
the ball around the random root is deterministic. In this case, the r-ball around the
root of Gn looks exactly the same as the r-ball in the limit graph for n large enough.

Example 2.2.1 (Transitive finite graphs converging to Zd). 1) Let Cn be the cycle
of length n. Then Cn → Z in the local weak sense.

2) More generally, fix a dimension d and sequences (an,k), k ∈ [d] satisfying
limn→∞ an,k = ∞ for every k ∈ [d] and let Tn be the torus of size an,1 × · · · × an,d.
Then Tn → Zd in the local weak sense.

Our next example describes a general phenomenon: transitive amenable graphs
can be approximated by properly chosen subgraphs. The notion of amenability
comes from group theory, but we will need only the definition of amenable transitive
graphs, which does not involve groups. For the following definition of amenability
we need only the subgraphs of a graph.

Definition 2.2.2 (Amenable graphs). We say that an infinite graph G is (edge)
amenable if

inf

{
|∂EF |
|F |

: F is a finite connected subset of V (G)

}
= 0 (2.2.1)
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A sequence of finite connected subsets satisfying |∂EFn|/|Fn| → 0 is called a Følner
sequence. We call the infimum on the left hand side of (2.2.1) the Cheeger con-
stant of the graph G. If the Cheeger constant is positive, then we say that the graph
is nonamenable. In the case of bounded degree graphs the ∂E in the above definition
can be substituted by ∂in

V or ∂out
V without changing the notion of amenability.

Amenability can be defined in more generality, see [14] and [4, Section 8] for
more on the amenability of the automorphism group of a graph. In the thesis, we
examine only transitive amenable graphs. If a transitive graph is amenable, then
one can choose a Følner exhaustion for a graph, defined in the next lemma.

Lemma 2.2.3 (Følner exhaustion in transitive graphs). [75, Lemma 5.3] If G is a
transitive amenable graph, then there is a Følner exhaustion: there exists connec-
ted subsets Fn of the vertices such that they form a Følner sequence, Fn ⊂ Fn+1 and
∪nFn = V (G).

Example 2.2.4. 1) For any fixed dimension d, the sequence Qn of boxes converges
to Zd in the local weak sense.

2) Let G be a transitive amenable graph and let Fn be a Følner exhaustion of G.
Then Fn converges to G in the local weak sense.

3)[75, Exercise 14.1] A transitive graph G has a sequence of subgraphs converging
to it in the local weak sense iff G is amenable.

Our next example illustrates that the above phenomenon does not hold for no-
namenable graphs: the balls BG(v, r) around a vertex in a transitive non-amenable
graph G do not converge to the graph G. It is easy to see that the infinite d-regular
tree is nonamenable for d ≥ 3. Although the balls do not converge to the d-regular
tree, we will see in Example 2.2.7, that the d-regular infinite tree also arises as the
local weak limit of finite graphs.

We note that even for amenable graphs, BG(o, r) is not necessary a proper choice
for a sequence in Part 3) of Example 2.2.4. An example of an amenable transitive
graph where the balls do not form a Følner exhaustion is defined in Example 4.3.7:
the Cayley graph of the lamplighter group is amenable, but the size of the balls grows
exponentially. This shows that amenability is not equivalent with sub-exponential
volume growth.

Example 2.2.5 (Limit of the balls in the 3-regular tree). Let T3 denote the 3-regular
infinite tree and let Gn = BT3(v, n) be the ball of radius n around a vertex of T3.
Then the graphs Gn converge to an infinite graph Λ, referred to it as the canopy
tree and defined rigorously after the example.

Proof. The graph Gn is not transitive: it consists of vertices of degree 3 and of degree
1. Note, that almost half of the vertices have degree 1, and in fact the probability
that the uniform random root has degree 1 tends to 1/2. Furthermore, it is easy
to compute that the probability that a uniform random root has distance k from
the vertices with degrees 1 tends to 2−k−1. Thus, the limit of the sequence Gn is an
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infinite tree Λ with a random root. The vertex set of the connected graph Λ can be
partitioned into countably many sets: let L(0) be the set of vertices with degree 1,
and for each k > 0, let L(k) be the set of vertices that are at distance k from L(0).
Each set L(j) in the partition has infinitely many vertices and each vertex in L(j)

is connected to one vertex in L(j + 1) and to two vertices in L(j − 1). The root of
Λ is a vertex in L(j) with probability 2−j−1.

Now we give the precise definition of the limit in 2.2.5. We will use this graph
in several examples in Chapter 4.

Definition 2.2.6 (Canopy tree). Let T be the 3-regular infinite rooted tree with a
distinguished end ξ (see Definition 1.2.8). Let h : T → Z be a Busemann function
(see [83]) that gives the levels w.r.t. to ξ. More precisely, to define h, fix a root
o ∈ T. For any vertex x, let (ξ, x) be the unique infinite simple path from x which
is in the equivalence class ξ. Denote by o ∧ x the unique vertex in T such that
(ξ, x ∧ o) = (ξ, x) ∩ (ξ, o). Finally, let h(x) := dist(o, x ∧ o)− dist(x, x ∧ o).

Let Λ ⊂ T be the subgraph spanned by the vertices x with h(x) ≥ 0. This tree Λ

is called the canopy tree. Denote by L(n) := {x ∈ V (T) : h(x) = n} the nth vertex
level and by LE(n) := {e ∈ E(T) : e− ∈ L(n), e+ ∈ L(n + 1)} the nth edge level of
T, or, for n ≥ 0, of Λ. If we choose the root o of Λ such that P(o ∈ L(n)) = 2−n−1,
we get a unimodular random graph.

The sequences of finite random graphs defined in Section 1.1.2 are examined in
Chapter 3. We work there with both undirected and directed graphs. We present
here the results about the local weak convergence of both the undirected and directed
versions of these sequences. The case of directed graphs follows trivially from the
undirected case by the definition of local weak convergence. We will see in Section
2.3 that these sequences converge in an even stronger sense: they converge almost
surely in the local weak sense. We postpone the definition of this notion and the
corresponding statements to Section 2.3.

Example 2.2.7 (Random d-regular graphs). Let Gn be the random graph chosen
uniformly at random from the set of graphs on the vertex set [n] with all degrees
equal d. It is standard (see e.g., [22, Corollary 2.19]), that the local weak limit of
Gn as n→∞ is the infinite d-regular tree Td.

Recall from Definition 1.1.3 that there are two natural ways to define random
directed regular graphs. When the vertices are oriented in a way that each vertex
has in- and out-degrees d, then the local weak limit is a regular tree with in- and
out-degrees d. When the edges of the d-regular graphs are oriented independently,
then the model is a special case of the directed random configuration model. The
limit of that graph sequence is the d-regular tree with independently oriented edges.

When we examine the local weak convergence of Erdős–Rényi random graphs
(see Definition 1.1.4), we have to chose the parameters properly. If we fix p and let
n tend to infinity, then the expected number of edges is proportional to n2, hence
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the local weak limit of the graph does not exists. To have a nice limiting behavior,
we need a uniformly bounded expected average degree which can be achieved by
choosing p = c/n with some fixed positive constant c.

Example 2.2.8 (Erdős–Rényi random graphs). The local weak limit of Gn,c/n is
UGW (Poi(c)), that is the unimodular Galton–Watson tree (see Definition 1.2.10)
with Poisson(c) degree distribution.

The local weak limit of the sequence of oriented Erdős–Rényi random graphs
#»G n,c/n is

#          »

UGW (Poi(c)), the same tree with edges oriented independently.

The random configuration model and the preferential attachment graph con-
verges in the local weak sense when the parameters are fixed and only the size tends
to infinity.

Example 2.2.9 (Random configuration model). Let Gn is a sequence of graphs
given by the random configuration model (Definition 1.1.5) with degree distribution
ξ with E(ξ2) < ∞. Then Gn converge to UGW (ξ) in the local weak sense; see [4,
Example 10.2], [25, Theorem 3.15].

The local weak limit of the directed graphs
#  »

Gn is
#          »

UGW (ξ), the directed unimod-
ular Galton–Watson tree with the same degree distribution.

Berger, Borgs, Chayes and Saberi proved in [19] that the local weak limit of
GPA
r,α,n as n → ∞ is the Pólya-point graph with parameters r and α. This graph is

a unimodular random infinite tree with directed edges; see [19, Section 2.3] for the
definition.

Theorem 2.2.10 (Convergence of the preferential attachment graphs [19]). The
sequence of preferential attachment graphs with fixed parameters r and α converges
in the local weak sense to the Pólya-point graph with the same parameters.

The convergence also holds for the directed versions of the members of the se-
quence and the limit graph with the natural orientations of the edges.

We finish this section with a few interesting results and an open question on
converging graph sequences. We note that the following examples have no uniform
bound on the degrees.

The sequence of planar maps with n triangle or quadrangle faces converge in the
local weak sense as showed by Angel [7] and Benjamini and Curien [15], respectively.

The sequence of uniform trees on the vertex set [n] converges to the unimodular
Galton–Watson tree UGW (Poisson(1)) [56].

It can be shown easily, that the largest component of the Erdős–Rényi random
graphG(n, c/n) converge to the infinite unimodular Galton–Watson tree UGW∞(Poisson(c))

whenever c > 1. It is expected that the same holds for c = 1, but there is no known
proof on this statement yet.
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2.2.1 Local weak convergence of unimodular Galton–Watson
trees

In this section, we present a result on sequences of infinite random rooted graphs
that converge in the local weak sense. We examine unimodular Galton–Watson trees
conditioned to be infinite. First we note that if we regard the unimodular Galton–
Watson tree as the limit of finite graphs, it is natural to use the parameterization
given by the distribution of the degree of the root, see Definition 1.2.10 and Example
2.2.9. Contrary to this, when we investigate percolation on the graph (which will be
the case in Example 4.3.2), it is more natural to work with the distribution of the
number of children of the other vertices. Since we investigate Galton–Watson trees
conditioned to be infinite, we only need to consider the degree distribution of the
root conditioned to be positive. It follows from Definition 1.2.10, that there is a one
to one correspondence between the distribution of the degree of the root conditioned
to be positive and the distribution of the number of children of the other vertices. In
this section, it is more convenient to work with the latter, which we denote by X and
call the offspring distribution of the Galton–Watson tree. We also restrict our
attention to degree distributions of the root that are almost surely positive. Given
the offspring distribution X, i.e., the distribution of the number of children of any
vertex except the root, the degree distribution of the tree, i.e., the distribution of
the root is denoted by X̂, where

P(X̂ = k) =
P(X = k − 1)

k E( 1
X+1

)
(2.2.2)

for k ≥ 1. If EX > 1, then P(|UGW (X̂)| = ∞) > 0 [68, Proposition 5.4], thus we
can consider the measure UGW∞(X̂) which is UGW (X̂) conditioned on the event
{|UGW (X̂)| = ∞}. The random graph UGW∞ is unimodular, being an ergodic
component of a unimodular measure. Moreover, it is an extremal unimodular graph
[4, Section 4], wich will be important in Chapter 4.

If EX = 1 and P(X = 1) < 1, then UGW (X̂) is almost surely finite, but there is
still a natural definition of the infinite tree UGW∞(X̂) as follows. Let UGWn(X̂) be
the tree UGW (X̂) conditioned to have n vertices and choose the root of UGWn(X̂)

uniformly at random. We denote by UGW∞(X̂) the local weak limit of the trees
UGWn(X̂), which is a unimodular infinite tree with one end; see [3, Example 3.4
and Proposition 11].

The following proposition describes the convergence of unimodular Galton–Watson
trees. The first part is trivial, it follows from the definition of local weak conver-
gence, while the proof of the second part needs more effort and is based on the
decomposition of the infinite Galton–Watson tree given in [68, Section 5.5]. This is
an extended version of the proof published in Beringer, Pete and Timár [20] by the
case EXn = 1.

Proposition 2.2.11. Let Xn and X are non-negative integer valued random vari-
ables and define X̂n and X̂ as in (2.2.2).
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1)The sequence of unimodular Galton–Watson trees UGW (X̂n) converge in the
local weak sense to UGW (X̂) iff Xn → X in distribution.

2) Let UGW∞(X̂) be the unimodular Galton–Watson tree with degree distribution
X̂, conditioned to be infinite. If the offspring distributions satisfy EXn ≥ 1 and
EX ≥ 1, then UGW∞(X̂n) → UGW∞(X̂) in the local weak sense iff Xn → X in
distribution.

Proof. Part 1) is trivial, it follows from the definitions of unimodular Galton–Watson
tree and local weak convergence.

For the proof of Part 2), let fX(t) :=
∑∞

k=0 P(X = k)tk be the probability
generating function of a non-negative integer valued random variable X. Denote
by GW (X) the Galton–Watson tree with offspring distribution X, and let q =

q(X) := P(|GW (X)| <∞), which is the smallest non-negative number that satisfies
fX(q) = q; see [68, Section 5.1].

According to [68, Section 5.5], the distribution of UGW∞(X̂) can be described
as follows. Each vertex except the root has a type: the vertices that have an infinite
line of descendants (i.e. there is an infinite path from this vertex that does not
contain the parent of this vertex) are called special, the other vertices are called
normal. Each special vertex has at least one special child and each normal vertex
has only normal children. Denote the number of special and normal children of
a vertex v by degs v and degn v, respectively. We claim that the distribution of
UGW∞(X̂) equals the distribution of the family tree of a branching process, where
the number of children of the vertices are independent, they depend only on the
type of the vertex, and their distribution is described by the following equations for
k ≥ 0 and l ≥ 1:

P(degn o = k, degs o = l) =

(
k+l
k

)
P(X = k + l − 1)qk(1− q)l−1

(k + l)
∑∞

j=1 P(X = j − 1)(1 + · · ·+ qj−1)/j
,

(2.2.3)

P(degn v = k, degs v = l |v is special) =

(
k + l

k

)
P(X = k + l)qk(1− q)l−1,

P(degn v = k |v is normal) = P(X = k)qk−1.

Note, that the offspring distribution of the normal vertices has mean at most
1, thus the subtree of the descendants of a normal vertex is almost surely finite.
If EX = 1 and P(X = 1) < 1, then q = 1 thus the root and all special vertices
have only one special child, hence the special vertices form a unique infinite path in
UGW∞(X̂). If EX > 1, then the distribution of the subtrees containing the special
vertices equals the distribution of the union of a random number of independent
Galton–Watson trees with an appropriate offspring distribution with mean larger
then one. (Recall that we did not assign any type to the root.) It follows, that in
this case UGW∞(X̂) has infinitely many ends.

If EX = 1 and P(X = 1) < 1, then q = 1 and [56, Remark 7.13] shows that
UGW∞(X̂) has the claimed distribution. If P(X = 1) = 1, then the root has 2
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special children and each special vertex has one child almost surely, which gives
that the family tree is Z, as claimed. If EX > 1, then the number of children is
independent for each vertex; see [68, Proposition 5.23]. To prove the above formulas
for the offspring distributions of the types let l ≥ 1. Using Bayes’ Rule we have

PUGW∞(X̂)(degn o = k, degs o = l) =
PUGW (X)(degn o = k, degs o = l, |UGW (X)| =∞)

P(|UGW (X)| =∞)

=

P(X=k+l−1)(k+l
k )qk(1−q)l

(k+l)E((X+1)−1)∑∞
j=1

P(X=j−1)(1−qj)
jE((X+1)−1)

=

(
k+l
k

)
P(X = k + l − 1)qk(1− q)l−1

(k + l)
∑∞

j=1 P(X = j − 1)(1 + · · ·+ qj−1)/j
.

For the special vertices we have

PUGW∞(X̂)(degn v = k, degs v = l |v is special)

= PGW (X)(degn o = k, degs o = l ||GW (X)| =∞)

=
PGW (X)(degn o = k, degs o = l, |GW (X)| =∞)

P(|GW (X)| =∞)

=
P(X = k + l)

(
k+l
k

)
qk(1− q)l

1− q

and a similar argument shows that the offspring distribution of the normal vertices
also equals the claimed distribution.

Assume that Xn → X in distribution, first with P(X = 1) < 1. Then the
uniform convergence of the convex functions fXn to the strictly convex function fX
on [0, 1] implies that qn = q(Xn) → q(X). It follows that the offspring distribution
of each type associated to Xn converges in distribution to the offspring distribution
of the same type associated to X. Thus UGW∞(X̂n)→ UGW∞(X̂).

Now assume that Xn → X, P(X = 1) = 1 and P(Xn = 1)→ 1. Using (2.2.3),

PUGW∞(X̂n)(deg o = 2) =
(1− q2

n)P(Xn = 1)

2
∑∞

j=1 P(Xn = j − 1)(1− qjn)/j
. (2.2.4)

We claim that PUGW∞(X̂n)(deg o = 2) → 1. If qn converges to some q∞ < 1, then
plugging P(Xn = 1) → 1 into (2.2.4) yields the claim immediately. If qn → 1, then
a trivial bound on the denominator gives

(1 + qn)P(Xn = 1)

2
∑∞

j=1 P(Xn = j − 1)(1 + qn + · · ·+ qj−1
n )/j

≥ (1 + qn)P(Xn = 1)

2
→ 1 . (2.2.5)

Finally, if qn does not converge, we can still apply one of these two arguments to any
convergent subsequence, and obtain the claim. Therefore, in the local weak limit,
the root has degree 2 almost surely. By unimodularity, this limit must be Z. This
is also UGW∞(X̂), thus we have UGW∞(X̂n)→ UGW∞(X̂).

For the other direction of Part 2), suppose that there are Xn and X such that
UGW∞(X̂n)→ UGW∞(X̂), butXn 9 X. The set {Xn} of probability distributions
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must be tight: otherwise, a uniform random neighbor of o in UGW∞(X̂n), whose
offspring distribution stochastically dominates Xn because of the conditioning on{
|UGW (Xn)| = ∞

}
, would have arbitrarily large degrees with a uniform positive

probability, and thus UGW∞(X̂n) could not converge to the locally finite graph
UGW∞(X̂). It follows from this tightness that there is a subsequence {Xk(n)} that
converges in distribution to a random variable Y 6= X. We show that EY ≥ 1.
Suppose EY < 1, then lim qn = q(Y ) = 1, hence

PUGW∞(X̂n)(deg o = k) =
P(Xn = k − 1)(1 + · · ·+ qk−1

n )

k
∑∞

j=1 P(Xn = j − 1)(1 + · · ·+ qj−1
n )/j

→ P(Y = k − 1).

It follows that the expected degree of the root in the limit graph is EY + 1 < 2.
The local weak limit of the graphs UGW∞(X̂n) is almost surely infinite, hence the
expected degree of the root is at least 2 (see [4, Theorem 6.1]), a contradiction.

Since EY ≥ 1, the first direction of Part 2) implies that UGW∞(X̂k(n)) →
UGW∞(Ŷ ). If we prove that the distribution of UGW∞(X̂) determines X, then we
must have X = Y , a contradiction.

First, if UGW∞(X̂) = Z, then P(X = 1) = 1. If UGW∞(X̂) has one end (i.e.
there is a unique non-backtracking infinite path from the root), then it must be
the case that EX = 1 and P(X = 1) < 1 by the notes after (2.2.3). In this case
P(deg o = k + 1) = P(X = k), hence the degree distribution of the root determines
the distribution of X. The last case is EX > 1. If we consider the components
of the subgraphs formed by the special and normal vertices, respectively; and we
choose for each such tree the vertex closest to o to be the root of that component,
then the distributions of the components are equal to Galton–Watson tree measures
with offspring distributions which have probability generating functions f ∗(t) :=
fX(q+(1−q)t)

1−q and f̄(t) = f(qt)
q

, respectively; see [68, Theorem 5.28]. It follows that the
distribution of UGW∞(X̂) determines (f ∗, f̄). We get the function f from (f ∗, f̄) by
the transform f(s) = qf̄

(
s
q

)
, if 0 ≤ s ≤ q and f(s) = (1− q)f ∗

(
s−q
1−q

)
, if q ≤ s ≤ 1.

There is a unique q for which the resulting f(s) has the same second derivative from
the left and from the right at s = q. Since f(s) has to be analytic, we see that
(f ∗, f̄) uniquely determines f and hence X.

2.3 Almost sure local weak convergence

Previous results about the continuity of graph parameters state that a certain para-
meter of finite deterministic graphs converges when the sequence of graphs converges
in the local weak sense [65, 49, 40, 26, 1, 31]. When we examine parameters of con-
vergent sequences of finite random graphs, the parameters are also random variables.
It is a natural question in this setting, in what sense does the parameter converge
if it does converge. It turned out, that the matching ratio, which we introduce in
Chapter 3, converges almost surely for the most widely used random graph models.
This result relies on the fact that the examined directed graph models converge in
a stronger sense: the sequence of random graphs given by the random configuration
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model or the preferential attachment rule converges almost surely in the local weak
sense.

First we give the precise definition of the almost sure local weak convergence
and illustrate it with a few examples. Then in Section 2.3.1 we generalize the result
of Elek [38] to the case of directed random graphs with no uniform bound on the
degrees. In Section 2.3.2 we present an unpublished result on the almost sure local
weak convergence of the preferential attachment graphs.

Definition 2.3.1 (Almost sure local weak convergence). Let Gn be a sequence of
finite (labeled) random graphs defined on a common probability space with joint dis-
tribution µ. We say that Gn converges almost surely in the local weak sense
if µ-almost every sequence (G1, G2, . . . ) converges in the local weak sense, in other
words, almost every realizations of the sequence (Gn) satisfy that the sequence of the
deterministic graphs converges in the local weak sense.

First we note that the local weak convergence of a sequence Gn of random graphs
defined on a common probability space does not imply automatically that the se-
quence converges almost surely in the local weak sense, as shown by the next ex-
ample.

Example 2.3.2. Let Gn be the path of length n2 or the n × n square grid, with
probability 1/2-1/2. Let the joint distribution of the sequence Gn given by the product
measure. Then Gn converges in the local weak sense to the infinite rooted graph G
which is Z or Z2 with probability 1/2-1/2, but there is almost surely no local weak
limit of the deterministic graph sequence given by the product measure. This follows
from the Strong Law of Large Numbers which implies that almost surely both Z and
Z2 are accumulation points of the sequence.

This example also shows that if we consider a continuous graph parameter that
has different limiting values along the sequences of finite paths and and finite square
grids, then this parameter does not converge almost surely for general sequences of
random finite graphs.

Our aim is to use the results of this section in Chapter 3: if a sequence Gn of
finite random graphs converges almost surely in the local weak sense, then Theorem
3.3.3 implies the almost sure convergence of the matching ratio, which will be the
case for the examined random graph models.

Remark 2.3.3. Skorohod’s Representation Theorem states that for a weakly conver-
gent sequence µn → µ of probability measures on a complete separable metric space
S there is a probability space (Ω,F ,P) and S-valued random variables Xn and X
with distributions µn and µ respectively, such that Xn → X almost surely.

One could think that Skorohod’s Theorem could be applied for the graph sequences
that we consider, and get the convergence of the matching ratio for almost every se-
quence, using Theorem 3.3.3. This argument does not work for our purpose, because
in Skorohod’s Theorem, the coupling between the finite graphs is coming from the the-
orem, while in the case of the preferential attachment graphs there is given a joint
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probability space by construction, that contains them all. In fact, we prove an even
stronger statement for preferential attachment graphs: the almost sure convergence
for any joint distribution of the sequence.

Let us present a few examples of sequences of finite random rooted graphs known
to converge almost surely in the local weak sense. The convergence in the next two
examples relies on a certain concentration phenomenon: given a functional on finite
graphs that does not change much when changing just one edge of the graphs (e.g., a
density of vertices with a given neighbourhood), the random value of the functional
is strongly concentrated around its mean when considering random graphs from
one of the families in the following two examples; see [25, Section 3.6] for more
detail. We will use a similar method to that in Section 2.3.2 to show the almost sure
convergence of the preferential attachment graphs.

Example 2.3.4 (Erdős–Rényi random graphs). [25, Theorem 3.23] The sequence
Gn,c/n of Erdős–Rényi random graphs converges to UGW (Poi(c)) almost surely in
the local weak sense.

The next example also covers the case of random d-regular graphs as a special
case.

Example 2.3.5 (Random configuration model). [25, Theorem 3.28] Let ξ be a
non-negative integer valued random variable with E(ξp) <∞ with some p > 2, and
let Gn be a random graph given by the random configuration model on n vertices
with degree distribution ξ. Then for any joint distribution of the sequence Gn, the
sequence converges to UGW (ξ) almost surely in the local weak sense.

2.3.1 Almost surely convergent graph sequences with inde-
pendently oriented or labeled edges

Our next lemma will be used in Chapter 3 to prove the almost sure convergence
of the directed matching ratio of certain families of graphs. Lemma 2.3.6 states
that when the edges of a local weak convergent deterministic graph sequence are
oriented independently at random, then the resulting sequence of random directed
graphs converges almost surely in the local weak sense. The proof of Lemma 2.3.6
essentially follows the proof of Proposition 2.2 in [38]. The main difference is that
we had to generalize the proof for graph sequences without a uniform bound on the
degrees. Lemma 2.3.7 is more general than Lemma 2.3.6: it states that giving IID
random labels to a convergent sequence of deterministic graphs turns the sequence
into an almost surely local weak convergent sequence of random labeled graph. This
lemma can be proven similarly, hence we omit its proof here.

An important consequence of Lemmas 2.3.6 and 2.3.7 is that when IID random
orientations or labels are added to an almost surely local weak convergent sequence
of random graphs, then the resulting sequence also converges almost surely in the
local weak sense.
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Lemma 2.3.6. Let Gn be a sequence of deterministic undirected graphs on n vertices
that converges to the random rooted graph (G, o) in the local weak sense. Let

#  »

Gn

be the sequence of random directed graphs obtained from Gn by giving a random
uniform orientation to each edge uniformly independently. Then the sequence

#  »

Gn

converges almost surely in the local weak sense to (
#»

G, o), which is the random rooted
graph obtained from (G, o) by orienting each edge independently.

Lemma 2.3.7. Let Gn be a sequence of deterministic graphs on n vertices that
converges to the random rooted graph (G, o) in the local weak sense. Let Giid

n be the
sequence of random directed graphs obtained from Gn by giving a random uniform
[0, 1] label to each edge and vertex independently. Then the sequence Giid

n converges
almost surely in the local weak sense to (Giid, o), which is the random rooted graph
obtained from (G, o) by giving each edge and vertex a random uniform [0, 1] label
independently.

Now we prove Lemma 2.3.6. The proof of Lemma 2.3.7 is similar.

Proof. To handle the case of unbounded degrees, we consider the following neigh-
borhoods of the vertices: for any graph G and v ∈ V (G) denote by B−G(v, r) the
subgraph of G obtained from BG(v, r) by removing all edges with both endpoints
being at distance r from v. Then the local weak convergence of the sequence of the
finite (directed) random graphs Gn to the rooted random (directed) graph (G, o) is
equivalent with the following: for any r and any finite (directed) rooted graph H we
have limn→∞ P(B−Gn

(on, r) ' H) = P(B−G(o, r) ' H), where on is a uniform random
vertex of Gn.

Fix any positive integer r and any finite directed rooted graph
#»

H. Let H be
the rooted non-directed graph obtained from

#»

H by forgetting the orientations of the
edges, and suppose that P(B−G(o, r) ' H) > 0. Denote by b(Gn) and b(

#  »

Gn) the
number of vertices v of Gn and

#  »

Gn such that B−Gn
(v, r) ' H and B−#   »

Gn
(v, r) ' #»

H,

respectively. We show that P
(
B−#   »
Gn

(o, r) ' #»

H
)

= b(
#   »
Gn)
n

almost surely converges to

P
(
B−#»
G

(o, r) ' #»

H
)
. Since this holds for any

#»

H, the lemma follows.
Let h be the probability that the graph obtained from H by giving each edge

a random orientation independently is isomorphic to
#»

H. Then E(b(
#  »

Gn)) = hb(Gn).
We will show that

b(
#  »

Gn)

b(Gn)
→ h almost surely. (2.3.1)

The statement of the lemma follows from this, because the assumption on the conver-
gence of Gn implies that hb(Gn)

n
converges to hP(B−G(o, r) ' H) = P(B−#»

G
(o, r) ' #»

H).
To show (2.3.1), we note that if two vertices x, y in Gn satisfy B−Gn

(x, r) '
B−Gn

(y, r) ' H and distGn(x, y) ≥ 2r, then the orientations of the edges inB−#   »
Gn

(x, r)∪
B−#   »
Gn

(y, r) are independent. Let D be the maximum degree of the graph H. We claim

that we can define a partition (Rn
j )D

2r+1
j=1 of the set {x ∈ V (Gn) : B−Gn

(x, r) ' H}
such that the distance between any two points of Rn

j is at least 2r for every j and
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n. Indeed, if distGn(x, y) is less than 2r and B−Gn
(x, r) ' B−Gn

(y, r) ' H, then there
is a path of length at most 2r − 1 such that every vertex of that path has distance
at most r − 1 from the set {x, y}, and hence every vertex in the path has degree at
most D. It follows, that for any fixed x, the number of such paths and hence the
number of vertices y with distGn(x, y) < 2r is at most D2r.

We conclude as in the proof of Proposition 2.2 in [38]. The further part of the
proof is essentially the same as the proof of that proposition, but for the sake of com-
pleteness we present it here. The graph with vertex set {x ∈ V (Gn) : BGn(x, r) '
H} and edge set {{x, y} : distGn(x, y) < 2r} has maximal degree at most D2r, thus
there is a coloring of its vertices with D2r + 1 colors, that gives the partition (Rn

j ).
Let 0 < ε < 1

2
P(B−G(o, r) ' H) and 0 < δ be arbitrary, and let Rn

1 , . . . , R
n
k(n) be

the list of the sets Rn
j that satisfy |Rn

j | ≥ ε2|V (Gn)|/(D2r + 1). Denote by
#»

b (Rn
j )

the number of vertices v in Rn
j such that B #   »

Gn
(v, r) ' #»

H. By the Strong Law of
Large Numbers ∣∣∣∣∣

#»

b (Rn
j )

|Rn
j |
− h

∣∣∣∣∣ < ε (2.3.2)

holds for all n large enough and j ≤ k(n) with probability at least 1 − δ. Using
(2.3.2), the assumptions on ε and the size of the sets Rn

j we have∣∣∣∣∣b(
#  »

Gn)

b(Gn)
− h

∣∣∣∣∣ < 2ε

for all large enough n with probability at least 1 − δ. Since ε and δ was arbitrary,
this implies (2.3.1).

2.3.2 Preferential attachment graphs

Berger, Borgs, Chayes and Saberi [19] showed that the preferantial attachment
graphs (Theorem 2.2.10) converge in the local weak sense. They also showed, that
the distribution of the r-ball around the random root converges in probability. The
orientations of the edges of this class of graphs are given naturally by the recurs-
ive definition, and the proof in [19] shows implicitly the convergence also for the
sequence of the directed graphs. Using this result, we prove a strong concentration
phenomenon, which implies that the convergence holds almost surely.

There is a natural joint distribution for a sequence of preferential attachment
graphs, given by the definition (see Definition 1.1.6). However, it follows from the
concentration shown in the proof of Theorem 2.3.8, that the almost sure local weak
convergence holds not just for this joint distribution, but for any, provided the
marginals have the required distributions.

Theorem 2.3.8 (Almost sure local weak convergence of the preferential attachment
graphs). Let Gn be the sequence of random directed graphs given by the preferential
attachment rule with parameter m, and consider any joint distribution of the graphs
Gn. Then the sequence Gn converges almost surely in the local weak sense.
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Before proving the theorem, we state a version of the Azuma–Hoeffding inequal-
ity, that will be used also in Chapter 3. This theorem provides a powerful tool for
proving the concentration of a random variable around its expected value.

Theorem 2.3.9 (Azuma–Hoeffding inequality). [68, Theorem 13.2] Let X1, . . . , Xn

be a series of martingale differences. Then

P

(
n∑
k=1

Xk > ε

)
≤ ε2

2
∑n

k=1 ‖Xk‖2
∞
.

Proof of Theorem 2.3.8. We denote by PGn the probability correspondig to the fixed
graph Gn but considering a random uniform root on. The notations P and E stand
for the joint probability of the sequence of random graphs Gn with the independently
chosen uniform random roots on. The statement of the theorem holds for any joint
distribution of the sequence (Gn), provided that the graph Gn has the distribution
of the preferential attachment graph on n vertices.

To handle the case of unbounded degrees, we consider the following neighbor-
hoods of the vertices: for any graph G and v ∈ V (G) denote by B+

G(v, r) the
subgraph BG(v, r) together with the set of labels Lr(Gn, v) := {(w, degGn

w) :

distGn(v, w) = r}. Then the local weak convergence of the sequence of the finite
(directed) random graphs Gn to the rooted random (directed) graph (G, o) is equi-
valent with the following: for any positive integer r and any finite (directed) rooted
graph H = (H, o) and label set Lr(H) := {(w, dw) : distH(o, w) = r} with positive
integer valued labels dw, we have

lim
n→∞

P(B+
Gn

(on, r) '+ H) = P(B+
G(o, r) '+ H), (2.3.3)

where '+ means that there is a rooted graph isomorphism φ between the directed
graphs such that the labels of w and φ(w) are equal. Since the sequence of prefer-
ential attachment graphs converges in the local weak sense (see [19]), the limit in
(2.3.3) exists.

Given that the sequence of random graphs Gn converges to (G, o) in the local
weak sense, the almost sure local weak convergence of Gn is equivalent with the
following: for every r and rooted directed labeled graph H = (H, o) ∪ Lr(H) we
have

P
(

lim
n→∞

PGn

(
B+
Gn

(on, r) '+ H
)

= PG
(
B+
G(o, r) '+ H

))
= 1. (2.3.4)

We will show that for any fixed r and H = (H, o)∪Lr(H) there is a positive constant
c = c(ε,H) such that

P
(∣∣PGn

(
B+
Gn

(on, r) '+ H
)
− P

(
B+
Gn

(o, r) '+ H
)∣∣ > ε

)
≤ 2e−cn. (2.3.5)

This and the existence of the limit in (2.3.3) imply (2.3.4) by the Borel–Cantelli
lemma, hence the statement of the theorem follows.

It remains to prove (2.3.5). Fix any positive integer r and any finite directed
rooted labeled graph H = (H, o)∪LR(H). Denote A(Gn) = {v ∈ [n] : B+

Gn
(v, r) '+
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H}. We fix n and denote by Gn[k] the subgraph of Gn spanned by the vertices
{1, . . . , k}. We define

Xk := E
(
|A(Gn)|

∣∣∣Gn[k]
)
− E

(
|A(Gn)|

∣∣∣Gn[k − 1]
)
.

The random variables Xk, k ∈ [n] form a series of martingale differences and satisfy

n∑
k=1

Xk =|A(Gn)| − E|A(Gn)| (2.3.6)

=n
(
PGn

(
B+
Gn

(on, r) '+ H
)
− P

(
B+
Gn

(on, r) '+ H
) )
.

Note that in (2.3.6), the quantities PGn

(
B+
Gn

(on, r) '+ H
)
are random variables

which depend on the value of the random Gn. We will show that there is an almost
sure bound |Xk| ≤ 2ma for every k, where m is the parameter of the graph, i.e., the
out-degree of every vertex except the first, and a =

∑r
j=0 d

j, where d is the maximum
of the degrees and labels of H. We express the left hand side of (2.3.5) using (2.3.6),
and bound it by applying the Azuma–Hoeffding inequality to the variables Xk:

P (|A(Gn)− E(A(Gn))| > εn) = P (|X1 + · · ·+Xn| > εn)

≤ 2 exp

{
− (εn)2

2
∑n

k=1 ‖Xk‖2
∞

}
≤ 2 exp

{
− ε2n2

8nm2a2

}
.

This implies (2.3.5) and hence the statement of the theorem.
It remains to show the bound |Xk| ≤ 2ma. We show that for any fixed pair

of directed graphs F and F ′ on the vertex set [k] with F [k − 1] = F ′[k − 1], the
inequality∣∣∣∣E(|A(Gn)|

∣∣∣Gn[k] = F
)
− E

(
|A(Gn)|

∣∣∣Gn[k] = F ′
)∣∣∣∣ ≤ 2ma (2.3.7)

holds. This implies the bound |Xk| ≤ 2ma.
Fix F and F ′ as above and let

C := {j : (k, j) ∈ E(F ) ∪ E(F ′)}.

For any possible configuration of Gn, denote by

h(Gn) := {(`, j) ∈ E(Gn) : ` > k, j ∈ [n] \ C}

the subset of the edges of Gn with tails in {k+1, . . . , n} that do not have a common
head with the edges in the graphs F or F ′ with tail k. The proof of inequality (2.3.7)
is based on two observations:

1. The distribution of h(Gn) conditioned on {Gn[k] = F} is the same as condi-
tioned on {Gn[k] = F ′} by the definition of the preferential attachment graph.
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2. For any configuration of Gn with Gn[k] = F , the size of A(Gn) changes by at
most 2ma if we fix h(Gn), set Gn[k] := F ′ and vary arbitrary the heads of the
edges with tails in {k + 1, . . . , n} that are not in h(Gn).

In order to prove the second observation, let G[S] be the graph on the vertex set [n]

with edge set E(G[S]) := E(F [k − 1]) ∪ S. We obtain any possible configuration of
the graph Gn with Gn[k] = F , h(Gn) = S by adding to G[S] new edges with heads
in C in such a way that after adding the new edges, the out-degree of every vertex
(except for the first) equals m. We denote the set of such configurations by

NF,S :=
{
G : G[k] = F, h(G) = S, degoutG j = m ∀j ∈ [n] \ {1}

}
.

Decompose A(Gn) = A1(Gn) ∪ A2(Gn), where

A1(Gn) = {v ∈ A(Gn) : distGn(v, C) > r} , A2(Gn) = {v ∈ A(Gn) : distGn(v, C) ≤ r} .

IfGn ∈ NF,S∪NF ′,S, then the size of the set A1(Gn) depends only onG[S] and it does
not depend on the choice of F or F ′. This is because if v ∈ A1(Gn), then BGn(v, r)

lies entirely in Gn[S] and the degrees of the boundary vertices are also determined
by Gn[S]. If Gn ∈ NF,S then the size of A2(Gn) is bounded: if v ∈ A2(Gn), then
there is a path of length at most r from v to a vertex in C, such that every vertex in
the path has degree at most d by the definition of B+

Gn
(v, r). Since |C| ≤ 2m by the

definition of the set C, we have that |A2(Gn)| ≤ |C|a ≤ 2ma for every Gn ∈ NF,S.
By symmetry, the same holds for any Gn ∈ NF ′,S. Note, that |A2(Gn)| can be
arbitrary large if we consider the usual neighborhood BGn(v, r) instead of B+

Gn
(v, r).

The bounds on the size of the sets A1 and A2 imply the second observation. It
follows that∣∣∣E(|A(Gn)|

∣∣∣Gn ∈ NF,S
)
− E

(
|A(Gn)|

∣∣∣Gn ∈ NF ′,S
)∣∣∣ ≤ 2ma. (2.3.8)

We give a trivial upper bound on the left hand side of (2.3.7), and then use the
first observation and (2.3.8) to prove the desired bound. This finishes the proof of
the theorem.∑
S

∣∣∣∣E(|A(Gn)|
∣∣∣Gn[k] = F, h(Gn) = S

)
P
(
h(Gn) = S

∣∣∣Gn[k] = F
)

− E
(
|A(Gn)|

∣∣∣Gn[k] = F ′, h(Gn) = S
)
P
(
h(Gn) = S

∣∣∣Gn[k] = F ′
) ∣∣∣∣

≤
∑
S

∣∣∣∣E(|A(Gn)|
∣∣∣Gn ∈ NF,S

)
− E

(
|A(Gn)|

∣∣∣Gn ∈ NF ′,S
) ∣∣∣∣P(h(Gn) = S

∣∣∣Gn[k−1] = F [k−1]
)

≤
∑
S

2maP
(
h(Gn) = S

∣∣∣Gn[k−1] = F [k−1]
)

= 2ma.

�
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Chapter 3

The matching ratio of large graphs

3.1 Introduction

3.1.1 Motivation

There is an important parameter in control theory which is closely related to the
directed matching ratio of the network, as shown in the paper of Liu, Slotine and
Barabási [61]. Informally, the controllability parameter of a network is defined as
the minimum number ND of nodes needed to control a network, e.g., the number
of nodes that can shift molecular networks of the cell from a malignant state to
a healthy state. In [61], it was showed that the proportion nD = ND/|V (G)| of
nodes needed to control a finite network G equals one minus the relative size of
the maximal directed matching which we call the directed matching ratio. This
allows one to prove results on nD by proving the corresponding statement for the
directed matching ratio.

Our main motivation was the two further observations in [61], which are the
followings. First, simulations run on both real networks and network models sug-
gested that the matching ratio is mainly determined by the degree sequence of the
graph; more precisely, if the edges are randomized in a way that does not change the
degrees, then the matching ratio does not change significantly. Second, arguments
based on methods from statistical physics and numerical results suggested that for
the most widely used families of scale-free networks, the directed matching ratio
converges to a constant. The models that were most relevant to them are the so-
called scale-free networks, which are known to exhibit several characteristics, such
as a power-law degree decay, of the networks observed in real-world applications.
Our aim was to give rigorous mathematical proofs of these observations of [61], by
extending the result of Elek and Lippner [40] on the convergence of the matching
ratio.

In this chapter, we formalize the above statements and give the proofs of them.
In Section 3.2, we show that the directed matching ratio of directed random networks
given by a fix sequence of degrees is concentrated around its mean. In Section 3.3
we examine the convergence of the (directed) matching ratio of a random (directed)
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graph sequence that converges in the local weak sense, and generalize the result
of Elek and Lippner [40]. We prove that the mean of the directed matching ratio
converges to the properly defined matching ratio parameter of the limiting graph.
We further show the almost sure convergence of the matching ratios for the most
widely used families of scale-free networks, which was the main motivation of [61].
The results of this chapter have been published in Beringer and Timár [21].

3.1.2 Definitions

First we define directed matchings and the matching ratio of directed graphs.

Definition 3.1.1 (Directed matching and directed matching ratio). A directed
matching M of a directed graph G is a subset of the edges such that the in- and
out-degrees in the subgraph induced by M are at most one. The directed matching
ratio of the finite directed graph G is m(G) := |V −(Mmax(G))|

|V (G)| = |Mmax(G)|
|V (G)| , where

Mmax is a maximal size directed matching of G. For undirected finite graphs G we
define the matching ratio as m(G) := |V (Mmax(G))|

|V (G)| = 2|Mmax(G)|
|V (G)| , where Mmax is a

maximal size matching of G.

For possibly disconnected graphs (for instance Erdős–Rényi graphs (Definition
1.1.4) or graphs defined by the random configuration (Definition 1.1.5)), there is
another natural way to define the directed matching ratio. Viewing them as a
unimodular random graph, one takes a uniformly chosen random root, and only
keeps the connected component of this root. Then one could define the matching
ratio as the size of the maximal matching of this component divided by the size of the
component. Contrary to connected graphs, this later definition can give a random
variable even if we consider deterministic but disconnected graphs. The reason of
using Definition 3.1.1 in this paper is coming from our motivating applications in
controllability. In a finite directed graph the minimum number of nodes needed
to control the network equals the number of vertices that have in-degree 0 in a
maximal directed matching Mmax (which equals |V (G)| − |Mmax(G)|); see [61]. We
are thus interested in the directed matching ratio m(G) of a finite directed graph G
provided by Definition 3.1.1, which takes the proportion of vertices of the (possibly
disconnected) network that are not needed to control the dynamics of the system.

Our statements about the directed matching ratio follow from the corresponding
statements about the matching ratio of the undirected graphs. The next remark
describes the relationship between the matching ratio of directed and undirected
graphs.

Remark 3.1.2. There is a natural bijection between the directed matchings of G
and the matchings of the bipartite representation ¯̄G of it (see Definition 1.1.1) which
preserves the size of the matching, namely if M is a directed matching of G then
M 7→ ¯̄M = {{v−, w+} : (v, w) ∈ M}. Furthermore, M is a directed matching of
maximal size if and only if ¯̄M is a maximal size matching of ¯̄G. It follows that
m(G) = m( ¯̄G).
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Recall, that a matching M of G has maximal size if and only if there is no
augmenting path in G for M . By an augmenting path of length k we mean a
sequence of disjoint vertices (v0, . . . , v2k+1) such that {v2j−1, v2j} ∈ M for j ∈ [k],
{v2j, v2j+1} /∈M for j ∈ {0, . . . , k} and degM v0 = degM v2k+1 = 0.

3.1.3 Our contribution to Controllability of complex networks

We devote this subsection to the presentation of our results in a network theoretical
language. We also highlight the relevance of the present chapter for the network
theoretical research community; in particular, as a follow-up of the work [61] of Liu,
Slotine and Barabási.

Denote by nD the proportion of the minimum number of driver nodes needed to
control the network G to the number of nodes, as defined in [61]. Our Theorems
3.2.1, 3.3.3 and 3.3.10 translate to Theorems 3.1.3 and 3.1.5 by nD(G) = 1−m(G).

Previous results in [40] and [26] on the matching ratio and our Theorem 3.1.5
imply that the parameter nD is a quantity determined by the local structure of
the graph. It is a natural question whether even the most local structure, namely
the degrees of the vertices, determines this parameter. Liu, Slotine and Barabási
approached this question through simulation: in their paper [61] some particular
networks are taken from the real world, and then the edges are randomly reshuffled
while keeping all in- and out-degrees unchanged. More precisely, the randomization
used in [61] generates a random graph Ḡ with the same distribution as given by
the random configuration model with the fixed sequence of in- and out-degrees,
conditioned to be a simple directed graph (see Definition 1.1.5 for the definition of
the model). The parameter nD of several real-world networks was compared with the
average of this parameter over the randomized copies. (Generating a large number
of random copies provides an average nD that is close to the expectation of the
random nD by the Law of Large Numbers.) Their results suggested that for random
graphs given by the above model, the degrees essentially determine nD.

The first part of our Theorem 3.1.3 shows that for a random directed graph
G given by the random configuration model with fixed in- and out-degrees, the
difference between the parameter nD of the random G and the expectation of nD
is small with large probability. This result confirms the phenomenon observed in
[61]: with large probability, the parameter nD of a randomized graph is close to
the average, even with the randomization used in [61], see Corollary 3.1.4. Our
theorem compared with the results in [61] also shows that the examined real-world
networks could have been produced by a process that results in a random graph
with distribution given by the random configuration model with fixed in- and out-
degrees. Our theorem can also be used to substitute generating random networks
in order to show concentration.

The second part of Theorem 3.1.3 shows that even the total degrees of the
network encode the controllability parameter nD if we assume that the orientation
of the edges are independent. In this model, we only fix the total degrees of the
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vertices, generate the random undirected graph, and orient each edge independently.
We proved that for this model the parameter nD of the random graph G is close
to the expectation of nD with large probability. We can use this theorem only for
graphs generated by the above algorithm. Such graphs have the property that the
in- and out-degrees have the same distribution.

Theorem 3.1.3 (Concentration of the controllability parameter). Consider a se-
quence of in- and out-degrees d+

1 , . . . , d
+
n and d−1 , . . . , d−n with

∑n
j=1 d

−
j =

∑n
j=1 d

+
j

and let dj = d+
j + d−j . Denote by e(G) :=

∑n
j=1 d

−
j the number of the edges.

1) Let G be a random directed network on n vertices given by the random config-
uration model conditioned on the event that the in- and out-degrees are d+

1 , . . . , d
+
n

and d−1 , . . . , d−n , respectively. Then the controllability parameter nD(G) of G satisfies

P (|nD(G)− E(nD(G))| > ε) ≤ 2 exp

{
− ε2n2

8e(G)

}
.

2) Let G be a random directed network on n vertices given by the random con-
figuration model conditioned on the event that the total degrees of the vertices are
d1, . . . , dn. Then the controllability parameter nD(G) of G satisfies

P (|nD(G)− E(nD(G))| > ε) ≤ 2 exp

{
− ε2n2

8e(G)

}
.

Corollary 3.1.4 (Concentration of the controllability parameter in conditioned
graphs). Let the random directed graph G defined as in Part 1) of Theorem 3.1.3
and let Ḡ have the same distribution, but conditioned to be a simple graph. Then
the controllability parameter of Ḡ is concentrated around E(nD(G)):

P
(∣∣∣nD(Ḡ)− E(nD(G))

∣∣∣ > ε
)

=
P (|nD(G)− E(nD(G))| > ε,G is simple)

P(G is simple)

≤ 2

P(G is simple)
exp

{
− ε2n2

8e(G)

}
.

Our Theorem 3.1.5 confirms the observations of [61] that the parameter nD
converges for some particular network models when the size of the networks tends
to infinity. In fact, Part 1) shows that the expectation of the parameter nD converges
for any sequence of directed graphs that converges in the local weak sense. There
are several network models that are known to perform this type of convergence,
e.g., Erdős–Rényi random graphs, random d regular graphs, networks given by the
random configuration model, preferential attachment graphs; see Examples 2.2.8,
2.2.7, 2.2.9 and Theorem 2.2.10. Parts 2) and 3) of Theorem 3.1.5 imply that the
graph sequences listed above have an even stronger property: their controllability
parameter nD converges almost surely to a constant. For the first three networks
one can derive the limit of nD(Gn) = 1−m(Gn) using the formula of Theorem 2 in
[26], see Corollaries 3.3.13, 3.3.12, 3.3.11 in Subsection 3.3.2.
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It was observed in [61] that the nodes with low degree are more likely to be driver
nodes, i.e., nodes with in-degree zero in the maximal size directed matching. The
method of the proof of the first part of our Theorem 3.1.5 shows that this feature of
the driver nodes follows naturally from the construction of a maximal size matching:
the nodes with higher degrees are more likely to be matched.

Theorem 3.1.5 (Almost sure convergence of the controllability parameter for scale–
free graphs). 1) Let Gn be a sequence of random directed finite graphs that converges
to a random rooted graph (G, o) in the local weak sense. Then E(nD(Gn)) converges,
namely

lim
n→∞

E(nD(Gn)) = inf
M

PG
(
o /∈ V +(M)

)
,

where the infimum is taken over all directed matchings M of G such that the distri-
bution of (G,M, o) is unimodular, and V +(M) denotes the set of the heads of the
edges in M .

2) Let Gn be a sequence of undirected finite graphs defined on a common prob-
ability space that converges almost surely in the local weak sense and let

#  »

Gn be a
sequence of random directed graphs obtained from Gn by giving each edge a random
orientation independently. Then nD(

#  »

Gn) converges almost surely to the constant
limn→∞ E(nD(

#  »

Gn)).
3) Let Gn be the sequence of random directed graphs given by the preferential at-

tachment rule. Then nD(Gn) converges almost surely to the constant limn→∞ E(nD(Gn)).

3.2 Concentration of the matching ratio in random-
ized networks

In this section, we prove Theorem 3.2.1, which gives a quantitative version of the
following observation: if we consider a large directed graph, and randomize the edges
in such a way that does not change the in- and out-degrees of the graph, then the
matching ratio does not alter significantly. Our main motivation was to give rigorous
proof on the experimental results of Liu, Slotine and Barabási in [61]. We further
show in Section 3.2.1 that the matching ratio of preferential attachment graphs also
concentrates strongly around its expected value.

Our theorems extends the series of results on the concentration of certain para-
meters of random graphs. If there is a functional on graphs that does not change
much if we add or remove an edge, then for Erdős–Rényi random graphs, the value
of the functional is in some sense concentrated around its mean, see [6, Section 7],
[25, Remark 3.25]. The almost sure local weak convergence of Erdős–Rényi random
graphs can be shown by an argument using this type of concentration [25, Theorem
3.23]. These results made use of the independence in the definition of the Erdős–
Rényi random graph. There is a similar but stronger concentration inequality for
the undirected random configuration model with given degree sequence [25, Remark
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3.31], which implies the almost sure local weak convergence of the random config-
uration model with a degree distribution that has finite pth moment for some p > 2

[25, Theorem 3.28]. Our Theorems 3.2.1 and 3.2.3 extend these type of results for
directed matchings of directed graphs given by the random configuration model and
preferential attachment rule, respectively. In this models, one has to deal with a
stronger dependence than in the models referred above.

Part 1) of Theorem 3.2.1 shows the concentration for randomized graphs with
the in- and out-degrees left unchanged. This is the result that was observed through
simulations in [61]. Part 2) of the theorem shows that a very similar concentration
phenomenon holds even after a randomizing that does not require the in- and out-
degrees to be unchanged but only the total degree to remain the same for every
vertex. In particular, Theorem 3.2.1 shows that if a graph sequence satisfies that
the empirical second moment of the degree sequence is o(n) with probability tending
to 1 (as n→∞), then the directed matching ratios of the graphs with randomized
edges are strongly concentrated around their mean with high probability. Erdős–
Rényi graphs with parameters (n, c/n) or graphs given by the random configuration
model with degree distribution ξ with Eξ <∞ have this property.

Theorem 3.2.1 (Concentration of the matching ratio). Consider sequences of in-
and out-degrees d+

1 , . . . , d
+
n and d−1 , . . . , d

−
n with

∑n
j=1 d

−
j =

∑n
j=1 d

+
j and let dj =

d+
j + d−j . Denote by e(G) :=

∑n
j=1 d

−
j the number of the edges.

1) Let G be a random directed graph on n vertices given by the random config-
uration model conditioned on the event that the in- and out-degrees are d+

1 , . . . , d
+
n

and d−1 , . . . , d−n , respectively. Then the directed matching ratio m(G) of G satisfies

P (|m(G)− E(m(G))| > ε) ≤ 2 exp

{
− ε2n2

8e(G)

}
.

2) Let G be a random directed graph on n vertices given by the random con-
figuration model conditioned on the event that the total degrees of the vertices are
d1, . . . , dn. Then the directed matching ratio m(G) of G satisfies

P (|m(G)− E(m(G))| > ε) ≤ 2 exp

{
− ε2n2

8e(G)

}
.

First we need a lemma that shows that modifying a (directed) graph just around
a few vertices cannot alter the size of the maximal matching too much.

Lemma 3.2.2. Adding some new edges with a common endpoint to an undirected
finite graph or adding edges with a common head (respectively tail) to a directed
finite graph can increase the size of the maximal matching by at most one.

Proof. For directed graphs the statement follows from the undirected case, using the
bipartite representation (see Definition 1.1.1). For undirected graphs let F be the
set of new edges with common endpoint x and let G2 be the graph with vertex set
V (G) and edge set E(G2) = E(G) ∪ F . If M2 is a maximal size directed matching
of G2, then there is at most one edge in M2 ∩ F by the definition of the matching.
Then M2 \ F is a matching of G, hence |Mmax(G)| ≥ |M2| − 1.

44



As mentioned at the beginning of this section, the proof of Theorem 3.2.1 uses
similar methods to that of Corollary 3.27 in [25], which implies the concentration of
matching ratio for undirected graphs.

Proof of Theorem 3.2.1. We prove both parts of the theorem in the following way: we
define random variables Xk, k ∈ [e(G)] which form a series of martingale differences
and satisfy

∑e(G)
k=1 Xk = n

(
m(G)− E(m(G))

)
. We will show that there is an almost

sure bound |Xk| ≤ 2, hence we have by the Azuma–Hoeffding inequality (Theorem
2.3.9)

P (|m(G(N))− E(m(G(N)))| > ε) = P
(
|X1 + · · ·+Xe(G)| > εn

)
≤ 2 exp

{
− (εn)2

2
∑e(G)

k=1 ‖Xk‖2
∞

}

≤ 2 exp

{
− ε2n2

8e(G)

}
.

Part 1). Recall the second definition of the directed random configuration model
from Definition 1.1.5, conditioned on the fixed sequences of in- and out-degrees.
Denote by N a uniform random element of the set N of perfect matchings of T to
H. For a half-edge h = (i, j,±) ∈ T ∪ H let N(h) be the pair of the half-edge h
by the matching N . Let {hi : i ∈ [e(G)]} be an enumeration of T and denote by
N [k] := {(hi, N(hi)) ∈ N : i ∈ [k]} the partial matching that consists of the pairs
of half-edges of N with the first k tails. Let F0 be the trivial σ-algebra, let Fk be
the σ-algebra generated by N [k] and define

Xk := E
(
|Mmax(G(N))|

∣∣∣ Fk)− E
(
|Mmax(G(N))|

∣∣∣ Fk−1

)
. (3.2.1)

The variables Xk clearly form a series of martingale differences, and we claim that
|Xk| ≤ 2 almost surely for all k ∈ [e(G)].

Fix an arbitrary partial matching F0 = {(hi, F0(hi)) : i ∈ [k]} and let Nk :=

{S ∈ N : S[k] = F0} and Nk−1 := {S ∈ N : S[k − 1] = F0[k − 1]} be the set of
perfect matchings of H to T with S[k] = F0 and S[k − 1] = F0[k − 1], respectively.
Denote h′ := F0(hk) and for a configuration S ∈ N [k − 1] let

f(S) :=
(
S \

{(
hk, S(hk)

)
,
(
S(h′), h′

)})
∪
{

(hk, h
′),
(
S(h′), S(hk)

)}
. (3.2.2)

For each S ∈ Nk−1 there is a unique f(S) ∈ Nk and for each S ′ ∈ Nk the size of the
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set {S ∈ Nk−1 : f(S) = S ′} is equal, namely e(G)− k = |Nk−1|
|Nk|

. We have∣∣∣∣E(|Mmax(G(N))|
∣∣∣N [k] = F0

)
− E

(
|Mmax(G(N))|

∣∣∣N [k − 1] = F0[k − 1]
)∣∣∣∣

=

∣∣∣∣∣∣
∑
S′∈Nk

|Mmax(G(S ′))|
|Nk|

−
∑

S∈Nk−1

|Mmax(G(S))|
|Nk−1|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

S∈Nk−1

|Mmax(G(f(S)))|
(e(G)− k)|Nk|

− |Mmax(G(S))|
|Nk−1|

∣∣∣∣∣∣
≤

∑
S∈Nk−1

∣∣∣|Mmax(G(S))| − |Mmax(G(f(S)))|
∣∣∣ 1

|Nk−1|
. (3.2.3)

For any S ∈ Nk−1 the graphs G(S) and G(f(S)) differ by at most four edges in
such a way that the size of the set of the heads of these vertices is at most two. By
Lemma 3.2.2 we have in this case

∣∣∣ |Mmax(G(S))| − |Mmax(G(f(S)))|
∣∣∣ ≤ 2 which

combined with (3.2.3) proves the bound |Xk| ≤ 2.

Part 2). Recall the notations and the first definition of the directed random configur-
ation model from Definition 1.1.5, conditioned on the fixed sequence of total degrees.
Let R be the set of perfect matchings of the set E of half-edges together with an or-
dering on each matched pair (this ordering gives the orientation of the corresponding
edge). Denote by R a uniform random element of R and let {h,R(h)}R = (h,R(h))

or (R(h), h), i.e., the unique ordered pair containing the half-edge h given by the
matching R. Let E = {hi : i ∈ [2e(G)]} be an enumeration of the set of half-edges.
Let R[k] be the partial matching that contains the first k edges with respect to the
ordering given by the minimum of the indices of the two half-edges, i.e., let R[0] := ∅
and for k ≥ 1 let

R[k] := R[k − 1] ∪
{
{hi, R(hi)}R : i = min{j : hj /∈ E(R[k − 1])}

}
,

where E(R[k − 1]) is the set of half-edges that are paired by the partial matching
R[k − 1].

Let F0 be the trivial σ-algebra, let Fk be the σ-algebra generated by R[k] and
define

Xk := E
(
|Mmax(G(R))|

∣∣∣ Fk)− E
(
|Mmax(G(R))|

∣∣∣ Fk−1

)
.

We claim that |Xk| ≤ 2 almost surely for all k, which implies the statement of the
theorem.

Let F0 be any fixed partial matching of E consisting of k ordered pairs. We will
show that∣∣∣∣∣E(|Mmax(G(R))|

∣∣∣R[k] = F0

)
− E

(
|Mmax(G(R))|

∣∣∣R[k − 1] = F0[k − 1]
) ∣∣∣∣∣ ≤ 2,

(3.2.4)
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which implies the bound |Xk| ≤ 2.
Let Rk−1 := {S ∈ R : S[k − 1] = F0[k − 1]} and Rk := {S ∈ R : S[k] = F0}.

Denote by (h, h′) the unique ordered pair in F0 \ F0[k − 1] and define

S :=
{

(S, S ′) ∈ Rk−1 ×Rk :

S(h) = h′ and S \
{
{h, h′}S

}
= S ′ \ {(h, h′)}

or S(h) 6= h′ and |S 4 S ′| = 4
}
.

Note that the pairs (S, S ′) ∈ S that satisfy S(h) 6= h′,|S 4 S ′| = 4, have the
properties S ′(S(h)) = S(h′) and

S \
{
{h, S(h)}S, {h′, S(h′)}S

}
= S ′ \

{
(h, h′), {S(h), S(h′)}S′

}
.

For each S ∈ Rk−1 with S(h) = h′ there is a unique S ′ ∈ Rk with (S, S ′) ∈ S
and for each S ∈ S with S(h) 6= h′ the cardinality of the set {S ′ ∈ Rk : (S, S ′) ∈
S} is 2. For each S ′ ∈ Rk the sets {S ∈ Rk−1 : S(h) = h′, (S, S ′) ∈ S} and
{S ∈ Rk−1 : S(h) 6= h′, (S, S ′) ∈ S} have 2 and 8(e(G) − k) elements, respectively.
To see that the last claim is true, note that given an S ′ ∈ Rk one can obtain an
S ∈ Rk−1 with S(h) 6= h′, (S, S ′) ∈ S by choosing a pair (f, f ′) ∈ S ′ \ S ′[k] and let
{S(h), S(h′)} = {f, f ′}. The term 8 comes from the two possible choices of S(h) = f

or f ′ and the ordering of the pairs. Define a function c on Rk−1 by c(S) := 2 if
S(h) = h′ and c(S) := 1 otherwise. Denote s :=

∑
(S,S′)∈S c(S), which satisfies

s = 2|Rk−1| = (4 + 8(e(G) − k))|Rk| by the cardinalities of the sets mentioned
above. Using these notations we obtain∣∣∣∣E(|Mmax(G(R))|

∣∣∣R[k] = F0

)
− E

(
|Mmax(G(R))|

∣∣∣R[k − 1] = F0[k − 1]
)∣∣∣∣

=

∣∣∣∣∣∣
∑
S′∈Rk

|Mmax(G(S ′))|
|Rk|

−
∑

S∈Rk−1

|Mmax(G(S))|
|Rk−1|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
S′∈Rk

(
4 + 8(e(G)− k)

)
|Mmax(G(S ′))|

s
−

∑
S∈Rk−1

2|Mmax(G(S))|
s

∣∣∣∣∣∣
≤

∑
(S,S′)∈S

∣∣∣|Mmax(G(S))| − |Mmax(G(S ′))|
∣∣∣c(S)

s
(3.2.5)

For any pair (S, S ′) ∈ S the graphs G(S) and G(S ′) differ by at most four edges in
such a way that both of the graphs can be obtained from the same graph by adding
at most two edges to it. By Lemma 3.2.2 we have in this case

∣∣∣ |Mmax(G(S))| −

|Mmax(G(S ′))|
∣∣∣ ≤ 2 which combined with (3.2.5) proves the bound |Xk| ≤ 2. �

3.2.1 Concentration of the matching ratio in preferential at-
tachment graphs

In the next theorem, we show a strong concentration of the matching ratio around
its expected value in preferential attachment graphs. The orientations of the edges
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of this class of graphs are given naturally by the recursive definition, and differ
significantly from the independent random orientation. Thus we cannot apply the
results of Theorem 3.2.1.

Theorem 3.2.3 (Concentration of the matching ratio of preferential attachment
graphs). Let Gn be a random graph sequence obtained by the preferential attachment
rule with parameter r. Then m(Gn) is concentrated around its expected value: for
any c > 0 we have

P (|m(Gn)− E(m(Gn))| > c) ≤ 2 exp

{
−c

2n

8r2

}
.

In the proof, we use similar methods to that of Theorem 3.2.1, but we should take
into account the different probabilities of the configurations given by the preferential
attachment rule.

Proof. Fix n and denote by Gn[k] the subgraph of Gn spanned by the vertices
{1, . . . , k}. Let

Xk := E
(
|Mmax(Gn)|

∣∣∣Gn[k]
)
− E

(
|Mmax(Gn)|

∣∣∣Gn[k − 1]
)
. (3.2.6)

We will show that |Xk| ≤ 2r almost surely for all k ∈ [n]. Since Yk := E
(
|Mmax(Gn)|

∣∣∣Gn[k]
)

is a martingale, we can apply the Azuma–Hoeffding inequality (Theorem 2.3.9) to
the random variables Xk. It follows that for any c > 0 we have

P (|m(Gn)− E(m(Gn))| > c) = P (|X1 + · · ·+Xn| > cn)

≤ 2 exp

{
− (cn)2

2
∑n

k=1 ‖Xk‖2
∞

}
≤ 2 exp

{
− c

2n2

8nr2

}
.

What remains to show is that for any fixed pair of directed graphs F and F ′ on
the vertex set [k] with F [k − 1] = F ′[k − 1], the inequality∣∣∣∣E(|Mmax(Gn)|

∣∣∣Gn[k] = F
)
− E

(
|Mmax(Gn)|

∣∣∣Gn[k] = F ′
)∣∣∣∣ ≤ 2r (3.2.7)

holds. This implies |Xk| ≤ 2r.
Fix F and F ′ as above. For any possible configuration of Gn, denote by

h(Gn) := {(`, j) ∈ E(Gn) : ` > k, (k, j) /∈ E(F ) ∪ E(F ′)}

the subset of the edges of Gn with tails in {k+1, . . . , n} that do not have a common
head with the edges in the graphs F or F ′ with tail k. The proof of inequality (3.2.7)
is based on two observations: first, by the definition of the preferential attachment
graph, the distribution of h(Gn) conditioned on {Gn[k] = F} is the same as condi-
tioned on {Gn[k] = F ′} (note the symmetry in F and F ′ in the definition of h(Gn)).
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Second, for any configuration of Gn with Gn[k] = F , the size of the maximal match-
ing changes by at most 2r if we fix h(Gn), set Gn[k] := F ′ and vary arbitrarily the
heads of the edges with tails in {k + 1, . . . , n} that are not in h(Gn). This follows
from Lemma 3.2.2 by the following argument. For any fixed H we obtain any graph
in the set {Gn : Gn[k] = F, h(Gn) = H} by adding new edges with heads in the set
{j : (k, j) ∈ E(F ) ∪ E(F ′)} of size at most 2r to the graph GH with V (GH) := [n]

and E(GH) := E(F [k − 1]) ∪H. It follows from Lemma 3.2.2 that

|Mmax(GH)| ≤ E
(
|Mmax(Gn)|

∣∣∣Gn[k] = F, h(Gn) = H
)

≤ |Mmax(GH)|+ 2r, (3.2.8)

and the same holds with F ′ in the place of F . This proves the second observation.
Using the first observation and (3.2.8) the left hand side of (3.2.7) can be estim-

ated from above by∑
H

∣∣∣∣E(|Mmax(Gn)|
∣∣∣Gn[k] = F, h(Gn) = H

)
P
(
h(Gn) = H

∣∣∣Gn[k] = F
)

− E
(
|Mmax(Gn)|

∣∣∣Gn[k] = F ′, h(Gn) = H
)
P
(
h(Gn) = H

∣∣∣Gn[k] = F ′
) ∣∣∣∣

≤
∑
H

P
(
h(Gn) = H

∣∣∣Gn[k − 1] = F [k − 1]
)

·
∣∣∣∣E(|Mmax(Gn)|

∣∣∣Gn[k] = F, h(Gn) = H
)

− E
(
|Mmax(Gn)|

∣∣∣Gn[k] = F ′, h(Gn) = H
) ∣∣∣∣

≤
∑
H

P
(
h(Gn) = H

∣∣∣Gn[k − 1] = F [k − 1]
)
· 2r

=2r

3.3 Convergence of the matching ratio

The goal of this section is to prove the convergence of the directed matching ratio for
convergent sequences of random directed graphs. This convergence is understood
in the stronger sense of almost sure convergence for the most widely used graph
models, as we will see. This fact follows from the almost sure convergence of the
examined graph sequences, but the convergence in expectation holds also for more
general models. For a fixed deterministic non-directed graph sequence that is locally
convergent when a uniform root is taken, the convergence of the matching ratio is
proven by Elek and Lippner in [40] in the uniformly bounded degree case and by
Bordenave, Lelarge and Salez in [26] in the unbounded case. To prove the results
of Liu, Slotine and Barabási in [61], we need to generalize these results for directed
random graphs.
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In Subsection 3.3.1 we use the method of Elek and Lippner to prove Theorem
3.3.3 on the convergence of the expected value of the directed matching ratio of se-
quences of random graphs. In Definition 3.3.1 we give an extension of the definition
of the expected matching ratio to unimodular random rooted graphs. By [26][The-
orem 1] and our Theorem 3.3.3, our definition of the expected matching ratio equals
twice the parameter γ defined in [26].

In Subsection 3.3.2 we prove the almost sure convergence of the directed matching
ratios for the network models defined in Subsection 2.2.

3.3.1 Convergence of the mean of the matching ratio

Elek and Lippner proved that the non-directed matching ratio converges if Gn is a
convergent sequence of finite deterministic graphs with uniformly bounded degree;
see [40, Theorem 1.1]. There are three properties of our examined models, that do
not let us apply this theorem directly: our graphs do not have bounded degrees,
and they are directed and random graphs. Although the degrees are not bounded
in the examined models of convergent graph sequences, the expected value of the
degree of the uniform random root of the random graphs has a uniform bound in
each model. In Theorem 3.3.3 we prove the convergence of the mean of the matching
ratio for convergent sequences of random directed graphs using the method of Elek
and Lippner.

One can extend the (expected) matching ratio to the class of unimodular random
(directed) graphs in a natural way. For finite random graphs, the following definition
gives the expected value of the matching ratio.

Definition 3.3.1 (Matching ratio of an infinite graph and unimodular matchings).
Let (G, o) be a unimodular random (directed) rooted graph. Then the (expected)
matching ratio of (G, o) is

mE(G, o) = sup
M

PG(o ∈ V (−)(M)),

where the supremum is taken over all random (directed) matchings of G such that
the law of the labeled graph of (G,M, o) with labels c(e) = χM(e) is unimodular and
M is almost surely a (directed) matching of (G, o). Matchings with this property will
be called unimodular matchings.

The result of Timár [78] shows that mE(Zd) = 1 and the same holds for every
bipartite Cayley graph of a non-amenable group by [67]. Both results are obtained
by factor of IID constructions; see Definition 1.2.11.

Remark 3.3.2. Let (G, o) be a random directed rooted unimodular graph and let
( ¯̄G, ¯̄o) be its bipartite representation (see Definition 1.1.1). Then Remark 3.1.2 im-
plies that mE(G, o) = mE( ¯̄G, ¯̄o).
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Theorem 3.3.3. Let Gn be a sequence of random finite (directed) graphs that con-
verges to the random (directed) rooted graph (G, o) that has finite expected degree.
Then

lim
n→∞

E(m(Gn)) = mE(G, o).

The proof of Theorem 3.3.3 follows the method of [40]. The main differences to
that proof come from the lack of uniform bound on the degrees. We will define the
matchingsM(T ) in Lemma 3.3.5 as factor of IID (Definition 1.2.11), which helps us
handle the case of unbounded degrees. For graphs with unbounded degrees, Lemma
4.1 of [40] (Lemma 3.3.8) does not apply, hence we will have to proceed through
Lemma 3.3.9.

Recall from Remark 1.2.12, that given a unimodular random rooted graph (G, o),
any factor of IID process on G gives a unimodular labeled rooted graph. In partic-
ular, every factor of IID matching M of a unimodular graph satisfies that (G,M, o)

is unimodular.

Definition 3.3.4 (Factor of IID matching). A random subset M ⊆ E(G) is called
a factor of IID (directed) matching if there is a factor of IID process (Xa)

such that an edge e is in M if and only if Xe = 1 and M is a matching of G with
probability 1 with respect to the distribution of G equipped with the IID labels.

Lemma 3.3.5. (1) For any locally finite graph G and any T > 0 there is a factor
of IID matching M(T ) that has no augmenting paths of length at most T .
(2) If (G, o) is a random unimodular rooted graph, then

lim
T→∞

PG (o ∈ V (M(T ))) = mE(G, o).

Remark 3.3.6. The above lemma holds for directed graphs as well: the statements
of the lemma remain true for the pre-images of the matchings M(T ) by the bijection
defined in Remark 3.1.2.

The proof of part 1) of Lemma 3.3.5 is similar to that of Lemma 2.2 of [40],
but for the sake of completeness we present it here. The main difference is that for
graphs with unbounded degrees we cannot define the matchings M(T ) using Borel
colorings, which were used in [40]. To handle the case of unbounded degrees we
define M(T ) as factor of IID matchings. Our language is also different, although
all the claims stated for Borel matchings in [40] hold for factor of IID matchings as
well.

We need the following lemma for the proof of part 2) of Lemma 3.3.5.

Lemma 3.3.7. Let (G, o) be a unimodular random rooted graph. Then if a unim-
odular matching M of G satisfies that there are no augmenting paths of length at
most k, then

P(o ∈ V (M)) ≥ mE(G, o)− 1/k.
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Proof. We show that for every ε and k, any unimodular matching M that has no
augmenting path of length at most k satisfies

P(o ∈ V (M)) ≥ mE(G, o)− ε− 1/k. (3.3.1)

This implies the statement of the lemma. Let Mε be a fixed unimodular matching
that satisfies mE(G, o)−P(o ∈ V (Mε)) ≤ ε. Consider the symmetric differenceM4
Mε, that is a disjoint union of paths and cycles, which alternately consists of edges
of M and Mε by the definition of matchings. We will bound P(o ∈ V (Mε) \ V (M))

from above by 1/k, which implies (3.3.1) by

P(o ∈ V (M)) ≥ P(o ∈ V (Mε))− P(o ∈ V (Mε) \ V (M)).

If a vertex x of G is in V (Mε) \ V (M), then there is an alternating path consisting
of at least 2k + 2 edges in M 4 Mε starting from x with an edge of Mε by the
assumption on M . Define the following mass transport: let f(x, y, (G,M 4Mε))

be 1, if x ∈ V (Mε) \ V (M) and y is at distance at most k − 1 from x in the graph
metric induced by Mε 4M (there is exactly k such y, by our previous observation
on the alternating path starting from x). Let f(x, y, (G,M 4Mε)) be 0 otherwise.
Note that each vertex receives mass at most 1. The labeled graph (G,M 4Mε, o)

is unimodular, hence we have by the Mass Transport Principle that

kP(o ∈ V (Mε) \ V (M)) = E

 ∑
x∈V (G)

f(o, x, (G,M 4Mε))


= E

 ∑
x∈V (G)

f(x, o, (G,M 4Mε))

 ≤ 1.

This gives the desired bound on P(o ∈ V (Mε) \ V (M)).

Proof of Lemma 3.3.5. We assign to each vertex x of G a uniform random [0, 1]-
label c(x). First we note that with probability 1 all the labels are different, so
we can assume this property. Furthermore, we can decompose each label c(x) into
countably many labels (ci,j(x))∞i,j=0 whose joint distribution is IID uniform on [0,1].
First we construct partitions VT = {VT,j : j ≥ 1}, T ≥ 1 of V such that for each T
and j inf{dist(x, y) : x, y ∈ VT,j} ≥ 6T holds. Let

VT,1 := {x ∈ V : cT,1(x) < cT,1(y) for every y ∈ BG(x, 6T )} ,

VT,j :=

{
x ∈ V \

(
j−1⋃
l=1

VT,l

)
: cT,j(x) < cT,j(y) for every y ∈ BG(x, 6T )

}
,

for j ≥ 2. Since the labels are uniform in [0, 1], we get a partition with probability
one.

We define the matchings Mn(T ) in the following way. Let M0(T ) = M(T − 1)

(and the empty matching if T = 1) and let k(n) be a fixed sequence that consists of
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positive integers and contains each of them infinitely many times. To define Mn(T )

we improve the matching Mn−1(T ) in all the balls B(x, 3T ) with x ∈ VT,k(n): we
improve using the augmenting path of length at most T lying in B(x, 3T ) with the
maximal sum of cT,0-labels of the vertices and we repeat this as long as there are
short augmenting paths. The number of vertices in B(x, 3T ) that are incident to
edges of the matching increases in each step, hence we can make only a finite number
of improvements in each ball. Since for all n the balls in {B(x, 3T ) :∈ VT,k(n)} are
disjoint, Mn(T ) is a well defined matching for every n and T .

LetM(T ) be the edge-wise limit ofMn(T ) as n→∞. We claim thatM(T ) is well
defined and has no augmenting paths of length at most T . Indeed, an edge e = {x, y}
changes its status of being in the matching or not only if there is an improvement
in B(x, 3T ). Such an improvement increase the number of vertices incident to edges
of the matching in B(x, 3T ), which is bounded above by the number of vertices in
the ball, thus the number of changes is bounded above as well. The lack of short
augmenting paths follows trivially from the construction of M(T ).

We note that every factor of IID matching M of a unimodular random rooted
graph (G, o) satisfies that (G,M, o) is unimodular, hence Lemma 3.3.7 implies the
second statement of the theorem. �

Since we do not assume the existence of a uniform bound on the degrees, we
need a lemma that plays the role of Lemma 4.1 of [40], which can be formalized in
our language as follows.

Lemma 3.3.8. [40, Lemma 4.1] Let (G, o) be a labeled unimodular random graph
with law µ and degrees bounded above by d. Then for any n and any measurable event
H, we have µ(Hn) < (d + 1)nµ(H), where Hn := {(ω, x) : (ω, o) ∈ H, distω(o, x) ≤
n}.

Our Lemma 3.3.9 extends Lemma 3.3.8 to unimodular graphs with a bound only
on the expected degree, which is the case in the graph models examined in the thesis.

Lemma 3.3.9. Let (G, o) be a labeled (directed) unimodular random graph with
law µ and finite expected degree. Then for any ε > 0 and any n there is a δ

such that if a measurable event H satisfies µ(H) < δ, then µ(Hn) < ε, where
Hn := {(ω, x) : (ω, o) ∈ H, distω(o, x) ≤ n}.

Proof. Fix ε and define D = D(ε) to be the smallest positive integer that satisfies
E
(
1{deg o>D} deg o

)
< ε/4. We define the following mass transport: let f(x, y, ω) =

1, if (ω, x) ∈ H, (ω, y) /∈ H, {x, y} ∈ E(ω) (or in the directed case (x, y) or (y, x) ∈
E(ω)), and let f(x, y, ω) = 0 otherwise. Then by the Mass Transport Principle

µ(H1 \H) ≤
∫ ∑

x∈V (G)

f(x, o, ω)dµ(ω, o) =

∫ ∑
x∈V (G)

f(o, x, ω)dµ(ω, o)

≤ E
(
deg o · 1{o∈H}

)
≤ E

(
D · 1{o∈H,deg o≤D}

)
+ E

(
deg o · 1{o∈H,deg o>D}

)
≤ Dµ(H) + ε/4,
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which is less then ε/2 if µ(H) < ε
4D(ε)

:= ε1. It follows that µ(H1) < ε. We
define recursively εk := εk−1

4D(εk−1)
for k ≥ 2. Then the same argument shows that if

µ(H) < εn, then µ(Hn) < ε.

Proof of Theorem 3.3.3. First we note that by Remark 3.1.2 and Proposition 2.1.4
it is enough to prove the theorem for non-directed graphs.

Denote the law of the limit graph (G, o) endowed with IID uniform labels c(x)

by µ. Fix T and let εT > 0 be such that if an event H satisfies µ(H) < εT , then
µ(H2T+1) < 1/T , as provided by Lemma 3.3.9. Let M(T ) be a matching as defined
in Lemma 3.3.5.

We define the following events: let X0 := {degM(T ) o = 0} and let Xi,j be the
event that there is an edge {o, x} ∈M(T ), such that x has the ith largest label among
the neighbors of o and o has the jth largest label among the neighbors of x. Note
that the above events are disjoint, µ

(
X0 ∪

(⋃
i,j Xi,j

))
= 1 and if {x, y} ∈ M(T )

then (G, x) ∈ Xi,j if and only if (G, y) ∈ Xj,i. We can find constants r = r(T )

and d = d(T ) which satisfy the following: there are disjoint events Yi,j, i, j ∈ [d]

and Y0 =
(
∪i,j∈[d]Yi,j

)c determined by the labeled neighborhood of radius r such

that µ (H) < εT where H := (Y04X0) ∪
(⋃

i,j≤d(Yi,j 4Xi,j)
)
∪
(⋃

max{i,j}>dXi,j
)
,

furthermore if degG o > d, then (G, o) ∈ Y0. Denote by B(Yi,j) the isomorphism
types of neighborhoods of radius r which determine Yi,j.

Now we give all vertices of Gn uniform random [0,1] labels independently and
denote the joint law of Gn and the labels by µn. We define the random matching
MT (Gn) using the labels and the sets B(Yi,j): let an edge {x, y} be in MT (Gn) iff
there is a pair (i, j) such that BGn(x, r) ∈ B(Yi,j), y has the jth largest label among
the neighbors of x, and BGn(y, r) ∈ B(Yj,i), x has the ith largest label among the
neighbors of y. The edge set MT (Gn) is a matching, because the events B(Yi,j) are
disjoint. We can define a matchingMT (G) of G in the same way. Note, thatMT (G)

does not necessarily coincide with M(T ) but it satisfies |µ(o ∈ V (M(T ))) − µ(o ∈
V (MT (G)))| < 2εT by the definition of MT (G). It follows by Lemma 3.3.7 that
limT→∞ µ

(
o ∈ V (MT (G))

)
= limT→∞ µ

(
o ∈ V (M(T ))

)
= mE(G, o).

Denote by QT the event that there is an augmenting path for MT of length less
than T starting from the root. Let QT (Gn) be the random set of vertices v of Gn

such that (Gn, v) ∈ QT and let qT (Gn) := |QT (Gn)|
|V (Gn)| . The event (Gn, x) ∈ QT depends

on BGn(x, r+2T +1) by the definition ofMT . Furthermore, in the limiting graph G,
an augmenting path of length less than T can start from o only if there is a vertex
x on that path with (G, x) ∈ H, hence we have QT (G, o) ⊆ H2T+1. It follows from
the convergence Gn → (G, o) that

lim
n→∞

E(qT (Gn)) = lim
n→∞

µn(QT (Gn, o)) ≤ µ(H2T+1) <
1

T
,

hence E(qT (Gn)) < 2/T for n large enough. We have by [40, Lemma 2.1], that

|MT (Gn)|
|V (Gn)|

≤ m(Gn) ≤ T + 1

T

|MT (Gn)|
|V (Gn)|

+ qT (Gn). (3.3.2)
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Taking expectation in (3.3.2) with respect to µn, we have for n large enough that

µn (o ∈ V (MT (Gn))) =E
(
|MT (Gn)|
|V (Gn)|

)
≤ E(m(Gn)) ≤T + 1

T
µn (o ∈ V (MT (Gn))) +

2

T
,

where o is a uniform random vertex of Gn. Since the event {o ∈ V (MT (Gn))}
depends only on the (r(T ) + 1)-neighborhood of x, the convergence of the graph
sequence implies limn→∞ µn(o ∈ V (MT (Gn))) = µ(o ∈ V (MT (G))). It follows by
letting T →∞ that E(m(Gn)) converge to limT→∞ µ(o ∈MT (G)) = mE(G, o). �

3.3.2 Almost sure convergence of the directed matching ratio

In this section, we examine the most widely used network models and the oriented
versions of them: random d-regular graphs, Erdős–Rényi random graphs, the ran-
dom configuration model and preferential attachment graphs. As referred in Section
2.2, each model has a local weak limit, hence Theorem 3.3.3 shows that the expected
values of the directed matching ratios converge. The results of Section 2.3 imply
that for these graph models, the almost sure convergence of the matching ratio holds
as well. In this section, we list these consequences.

Theorem 3.3.10 (Almost sure convergence of the matching ratio). 1) Let Gn be
a sequence of undirected finite graphs defined on a common probability space that
converges almost surely in the local weak sense and let

#  »

Gn be a sequence of random
directed graphs obtained from Gn by giving each edge a random orientation inde-
pendently. Then m(

#  »

Gn) converges almost surely to the constant limn→∞ E(m(
#  »

Gn)).
2) Let Gn be the sequence of random directed graphs given by the preferential at-

tachment rule. Thenm(Gn) converges almost surely to the constant limn→∞ E(m(Gn)).

Proof. The result of Theorem 3.3.3 on the convergence of the expected value of
the directed matching ratio and Lemma 2.3.6 on the almost sure convergence of
an almost sure convergent undirected sequence with independently oriented edges
imply Part 1).

The second part of the theorem follows from Theorem 3.3.3 and Theorem 2.3.8
on the almost sure local weak convergence of preferential attachment graphs.

The directed versions of the sequences of random d-regular graphs, Erdős–Rényi
random graphs or sequences given by the random configuration model are obtained
by orienting the edges of the non-directed versions independently. Since these graph
sequences are known to converge almost surely in the undirected case (see Examples
2.3.5 and 2.3.4), it follows by Part 1) of Theorem 3.3.10 that their directed matching
ratios converge almost surely. By our Proposition 2.1.4 and [26, Theorem 2] on the
limit of the matching ratio of convergent graph sequences, one can compute the
value of the limit of the directed matching ratio when the limit is a unimodular
Galton–Watson tree. In Corollaries 3.3.12 and 3.3.13 we also present the results
given by this argument.
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Corollary 3.3.11 (Almost sure convergence of the directed matching ratio of the
random configuration model). Let

#»

Gn be a sequence of random directed graphs given
by the random configuration model with degree distribution ξ satisfying E(ξp) < ∞
for some p > 2. Then

#»

Gn converge almost surely in the local weak sense to
#          »

UGW (ξ)

and m(
#  »

Gn) converges almost surely to mE(
#          »

UGW (ξ)).

The sequence of random directed d-regular graphs is a special case of the random
configuration model (with degree distribution ξ being constant d). The connected
component of the root ¯̄o of the bipartite representation ¯̄Td has law UGW (Binom(d, 1/2)),
hence we have the following:

Corollary 3.3.12 (Almost sure convergence of the directed matching ratios of dir-
ected random regular graphs). Let

#»

Gn be the sequence of random d-regular graphs on
n vertices with randomly oriented edges. Then the matching ratios converge almost
surely to the constant

lim
n→∞

m(
#»

Gn) = mE

(
UGW (Binom(d, 1/2))

)
.

For directed Erdős–Rényi graphs one can compute the exact value of the almost
sure limit of the matching ratio, using the results of [57] or [26, Theorem 2].

Corollary 3.3.13. Let
#»G n,2c/n be a sequence of directed Erdős–Rényi graphs with

parameter 2c. Then almost surely

lim
n→∞

m(Gn,2c/n) = 1− tc + e−ctc + ctce
−ctc

2
(3.3.3)

where tc ∈ (0, 1) is the smallest root of t = e−ce
−ct.

Proof. According to Example 2.3.4 and Lemma 2.3.6, the sequence of directed
Erdős–Rényi random graphs converge almost surely in the local weak sense to
#          »

UGW (Poi(2c)), and hence limn→∞m(
#»G n,2c/n) = mE(

#          »

UGW (Poi(2c))), where Poi(2c)
denotes the Poisson distribution with parameter 2c. The connected component of
the root in the bipartite representation of

#          »

UGW (Poi(2c)) has law UGW (Poi(c)),
which is the almost sure local weak limit of the non-directed Erdős–Rényi random
graphs Gn,c/n with parameter c. It is known (see [57] or [26, Theorem 2]), that for
this graph sequence limn→∞m(Gn,c/n) equals the right hand side of (3.3.3) almost
surely. By Remark 3.3.2 we have

lim
n→∞

m(Gn,c/n) = mE(UGW (Poi(c))) = mE(
#          »

UGW (Poi(2c))).

This proves (3.3.3).

56



Chapter 4

Percolation critical probabilities and
unimodular random graphs

4.1 Introduction

The notion of local weak convergence was introduced for sequences of finite graphs.
However, the definition also applies for sequences of infinite random rooted graphs
and the same question arises naturally: do certain parameters of infinite graphs
converge along local weak convergent sequences? In this chapter, we examine critical
parameters related to percolation, originally defined for deterministic infinite graphs.
The results of this chapter have been published in Beringer, Pete and Timár [20].

4.1.1 Motivation and results

There are several definitions of the critical probability for percolation on the lattices
Zd, which have turned out to be equivalent not only on Zd, but also in the more
general context of arbitrary transitive graphs [70, 2, 47, 10, 35]. One of our goals is
to investigate the relationship between these different definitions when the graph G
is an extremal unimodular random graph [17, 4], which is the natural extension of
transitivity to the disordered setting. We examine the generalizations of pc = sup{p :

Pp(there is an infinite cluster) = 0}, pT = sup {p : Ep(|Co|) <∞} and p̃c defined by
Duminil-Copin and Tassion in [35]. The last quantity was in fact designed to give
a simple new proof of pc = pT for transitive graphs, and to address the question of
locality of critical percolation: whether the value of pc depends only on the local
structure of the graph.

More precisely, Schramm’s “locality conjecture”, stated first explicitly in [16], says
the continuity of percolation critical probability in the class of transitive graphs:

Conjecture 4.1.1 (Schramm). If Gn is a sequence of vertex-transitive infinite
graphs such that Gn converges locally to G and supn pc(Gn) < 1 then pc(Gn)→ pc(G)

holds.

Typically, however, the natural setting for such locality statements is not the
class of transitive graphs, but the class of unimodular random graphs. Indeed, there
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are several interesting probabilistic quantities, most often related in some way to
random walks, which have turned out to possess locality, mostly in the generality
of unimodular random graphs: see [17, 65, 67, 31, 12, 49] for specific examples,
and [75, Chapter 14] for a partial overview. Therefore, it is natural to investigate
Schramm’s conjecture in the setup of unimodular random graphs and see what the
proper notion of critical probability may be from the point of view of locality.

The conjecture has been proven for some special transitive graphs: Grimmett
and Marstrand [46] proved that pc

(
Z2 × {−n, . . . , n}d−2

) n→∞−−−→ pc(Zd). Benjamini,
Nachmias and Peres [16] verified that the convergence holds if (Gn) is a sequence of
d-regular graphs with large girth and Cheeger constants uniformly bounded away
from 0. Martineau and Tassion [69] proved that the convergence holds if (Gn) is
a sequence of Cayley graphs of Abelian groups converging to a Cayley graph G

of an Abelian group. Hutchcroft [55] showed that the statement is true for graph
sequences with a uniform exponential lower bound on their volume growth.

The lower semicontinuity of the critical probability, i.e., the inequality

lim inf
n→∞

pc(Gn) ≥ pc(G)

is known for any convergent sequence of transitive graphs; see [75, Section 14.2],
and [35].

In Subsection 4.1.2, we define the generalized critical probabilities pc, pT , p̃c,
paT , and p̃ac for unimodular random graphs; somewhat simplistically saying, the first
three will be quenched versions of the quantities mentioned above, while the last
two will be annealed versions. In Section 4.2, we examine the relationship between
these different generalizations. Our results are summarized in Table 4.1. The one
sentence summary is that pc = p̃c always holds, but otherwise almost anything can
happen, unless the random graph satisfies some very strong uniformity conditions;
one that we call “uniformly good” suffices for most purposes.

In Section 4.3, we investigate the extension of Schramm’s conjecture for unim-
odular random graphs:

Question 4.1.2. Does pc(Gn) converge to pc(G) if Gn is a sequence of unimodular
random graphs, Gn → G in the local weak sense and sup pc(Gn) < 1?

First we note (Example 4.3.2) that locality holds for unimodular Galton-Watson
trees with bounded degrees, but not in general; this shows that it is natural to
restrict one’s attention to bounded degree unimodular random graphs. In Subsec-
tion 4.3.2, we give conditions which imply lim pc(Gn) = pc(G). In Subsection 4.3.3,
we show by examples that there are sequences of unimodular random graphs such
that Gn → G but pc(G) > lim pc(Gn) or pc(G) < lim pc(Gn) < 1. These examples in-
dicate a negative answer to Question 4.1.2, i.e., Schramm’s conjecture does not hold
in the generality of unimodular random graphs, although many such statements,
formulated originally for transitive graphs, extend to this class. A recent result of
Angel and Hutchcroft [8] provides counterexamples from the class of unimodular
random graphs for two further classical conjectures related to percolation.
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A corollary to our positive results is that if G is a transitive graph of sub-
exponential volume growth, then there exists a sequence of invariant bi-Lipschitz
spanning subgraphs Gn such that pc(Gn) → 1. As we will explain in Section 4.4,
this is a strengthening of the simple fact that groups of sub-exponential growth
have cost 1, as defined in [59], studied further in [43, 44]. We do not know if
this strengthening holds for all groups of cost 1, which class includes, besides all
amenable groups, direct products G×Z for any group G, and SL(d,Z) with d ≥ 3.
A related question is whether every amenable transitive graph has an invariant
random Hamiltonian path. This is the invariant infinite version of what is known
as Lovász’ conjecture, namely, that every finite transitive graph has a Hamiltonian
path, even though he has not conjectured a positive answer. The best general results
seem to be [11] and [74].

4.1.2 Percolation and critical probabilities

In this section, we define the basic notions related to percolation theory that we will
need in this chapter.

The study of percolation started with the work of Broadbent and Hammersley
in 1957 [30] who introduced percolation as a probabilistic model for the flow of a
fluid through a porus medium. Classical percolation theory examines percolation on
transitive graph, especially in lattices, such as Zd; see the books of Kesten [58] and
Grimmett [47] for an introduction to percolation theory. The most basic definition
is the following:

Definition 4.1.3 (Percolation on a graph). Let G be a graph with countably many
vertices and edges and fix a parameter p ∈ [0, 1].

Bernoulli bond percolation with parameter p is a random subgraph ω of G
with vertex set V (ω) = V (G) and a random edge set E(ω) given by the following
distribution: each edge e ∈ E(G) is present in E(ω) with probability p, and is in
E(G) \ E(ω) with probability 1− p, independently for the edges.

Bernoulli site percolation with parameter p is a random subgraph ω of G
induced by a random vertex set given by the following distribution: each vertex is
in ω with probability p and is not in ω with probability 1− p, independently for the
vertices.

Site percolation is in some sense more general than bond percolation: bond
percolation on a graph G can be modeled by site percolation of the line graph of
G, which is the graph with vertex set E(G) where two vertices are adjacent iff
the corresponding edges share a vertex. The converse does not hold, there are
graphs such that site percolation on them is not equivalent to any bond percolation.
However, many statements for bond percolation hold also for site percolation.

The name Bernoulli indicates that the edges or vertices are independently re-
moved. The definition can be generalized in many ways: the probability of keeping
a vertex or edge can be different for some set of vertices or edges, or the condition of
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independence can be substituted with some kind of dependence. Such more general
models are the oriented percolation introduced by Broadbent and Hammersley [30],
the random cluster model [42, 48] and the Ising model.

For simplicity, we will consider only bond percolation processes on unimodu-
lar random graphs. We refer to Bernoulli bond percolation with parameter p as
Bernoulli(p) percolation for short. For a fixed configuration ω of the random
graph G let Pωp be the probability measure obtained by the Bernoulli(p) bond per-
colation on ω and let Eωp be the expectation with respect to Pωp . The percolation
cluster (i.e., the connected component) of the root o will be Co.

A fundamental and long studied question in percolation theory is the value of the
critical probabilities pc = sup {p : Pp(|Co| =∞) = 0} first defined by Hammersley
and pT = sup {p : Ep(|Co|) <∞} introduced by Temperley. These quantities have
natural generalizations to extremal unimodular random graphs. Let (G, o) be an
extremal unimodular random graph. In this case, the critical probability pc(ω) of
an instance of (G, o) is almost surely a constant and the same holds for pT (see [4],
Section 6.). Hence one can define

pc = inf
{
p : µ

(
Pωp (|Co| =∞) > 0

)
= 1
}

= sup
{
p : µ

(
Pωp (|Co| =∞) = 0

)
= 1
}

and
pT = sup

{
p : µ

(
Eωp (|Co|) <∞

)
= 1
}

= inf
{
p : µ

(
Eωp (|Co|) =∞

)
= 1
}
.

It may happen that although Eωp (|Co|) < ∞ for µ-almost every ω, the expectation
of these quantities with respect to µ is infinite. This provides a second natural
extension of pT to unimodular random graphs concerning the average size of Co:

paT = sup
{
p : E

(
Eωp (|Co|)

)
<∞

}
= inf

{
p : E

(
Eωp (|Co|)

)
=∞

}
.

It follows from the definitions that pc ≥ pT ≥ paT . It is known that pc = pT in the
case of transitive graphs; see [70, 2, 10, 35]. For unimodular random graphs (even
with sub-exponential volume growth), the three critical probabilities can differ; we
will present such graphs in Examples 4.2.10 and 4.2.11.

Duminil-Copin and Tassion [35] introduced the following local quantity for trans-
itive graphs: let (G, o) be a rooted graph, S ∈ S(G) be a finite subgraph containing
the root, and define

φp(S) :=
∑
e∈∂ES

pPp(o
S←→ e−) ,

the expected number of open edges on the boundary of S such that there is an open
path from o to e− in S. Then, they defined the critical probability

p̃c := sup{p : there is an S ∈ S(G) s.t. φp(S) < 1}
= inf{p : φp(S) ≥ 1 for all S ∈ S(G)} .

(4.1.1)
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They proved that transitive graphs satisfy pc = p̃c.
How to generalize this definition to unimodular random graphs is not a priori

clear. The simplest way to define a similar critical probability seems to be a quenched
version: find a suitable Sω ∈ S(ω) for almost every configuration ω. For a subgraph
S ∈ S(ω) denote by

φωp (S) :=
∑
e∈∂ES

pPωp
(
o

ω,p←→
S
e−
)

the expected number of open edges on the boundary of S in ω such that there is an
open path from o to e− in the percolation on ω with parameter p. Then let

p̃c := sup
{
p : µ

({
ω : ∃Sω ∈ S(ω) s.t. φωp (Sω) < 1

})
= 1
}
. (4.1.2)

Remark 4.1.4. Suppose p satisfies the following: for almost every ω there is an
Sω ∈ S(ω) with φωp (Sω) < c. Then unimodularity implies [4, Lemma 2.3.] that for
almost every ω and every vertex x there is some finite connected set Sω,x 3 x such
that

φω,xp (Sω,x) := p
∑

e∈∂ESω,x

P
(
x

ω,p←−→
Sω,x

e−
)
< c.

In the original definition of p̃c (equation (4.1.1)), there is no control on what
the set S could be, which makes the definition rather ineffective. This becomes
particularly problematic in the random graph case (equation (4.1.2)), where a bad
neighborhood of o may force Sω to be huge and hard to find. However, it will
follow from our Lemma 4.2.3 that, for transitive graphs, the existence of an S with
φp(S) < 1 is equivalent to the existence of a positive integer r with φp(B(o, r)) < 1.
This provides a second natural extension of the definition of p̃c to the random case:
we consider the ball of radius r in the random graph ω and we take the expectation
of φωp (Bω(o, r)) with respect to µ. Then the following critical probability is another
extension of the definition of p̃c, an annealed version of p̃c:

p̃ac := sup{p : ∃r such that E
(
φωp (Bω(o, r))

)
< 1}.

4.2 Relationship of the critical probabilities of un-
imodular random graphs

We start by proving in Theorem 4.2.1 that all bounded degree unimodular graphs
satisfy pc = p̃c. This will be useful in many of our later results.

In the transitive case, the quantity φp(S) in the definition of p̃c can be used to
give a short proof (see [35]) of Menshikov’s theorem [70]: if Γ is a transitive graph
and p < pc(Γ), then there exist a ϕ(p) such that

Pp (o↔ B(o, r)c) ≤ e−ϕ(p)r. (4.2.1)

If a graph satisfies this exponential decay for each p < pc and has sub-exponential
volume growth, then it is easy to see that pT = pc. In Lemma 4.2.3, we give
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a condition for unimodular random graphs that implies (4.2.1), and we prove in
Corollary 4.2.6 that this condition implies pc = pT = paT if the graph has uniform
sub-exponential volume growth. However, in Examples 4.2.10 and 4.2.11 we present
unimodular random graphs with uniform polynomial volume growth and pT < pc
and paT < pT , respectively. This shows that Menshikov’s theorem is not true in the
generality of unimodular graphs.

The results of this section are summarized in the following table:

p̃c = pc bounded degree
pc ≥ pT ≥ paT always
pc = paT bounded degree uniformly good with sub-exp. growth
pc > pT Example 4.2.10, with polynomial growth
pT > paT Example 4.2.11, with polynomial growth
pc ≤ p̃ac bounded degree uniformly good
pc < p̃ac Example 4.2.7, bounded degree uniformly good
pc > p̃ac Example 4.2.8, not uniformly good

Table 4.1: Relationship of the critical probabilities

4.2.1 Positive results

Our first result is indispensable to the rest of the chapter. The second part of the
proof is a slight modification of the proof in [35] for our setting, while the first part
depends on new ideas. The main difficulty is that we cannot find isomorphic sets
Sω,x for different vertices x, and hence we cannot bound Pp (o↔ B(o, r)c) in terms
of r. We build instead a tree T ω using the sets Sω,x, and bound the probability
that the subtree given by the percolation survives. The survival of that subtree is
equivalent to the infinite size of the cluster of the root in the percolation on G.

Theorem 4.2.1. If G is a bounded degree unimodular random rooted graph, then
pc(G) = p̃c(G).

Proof. We prove first that p̃c ≤ pc. Fixing p < p̃c, we will show that p ≤ pc. We
claim that there exists a constant c = c(p) < 1 such that we can find for almost every
ω a set Sω ∈ S(ω) that satisfies φωp (Sω) ≤ c. Let p′ := p+p̃c

2
< p̃c. Let Sω ∈ S(ω) be

such that φωp′(Sω) < 1. The sets Sω satisfy

φωp (Sω) =
∑

e∈∂ESω

pPωp (o↔ e−) ≤ p

p′

∑
e∈∂ESω

p′Pωp′(o↔ e−)

=
p

p′
φωp′(Sω) ≤ p

p′
=: c .

Recall the definition of φω,xp (Sω,x) from Remark 4.1.4. Unimodularity implies that
almost every ω satisfies the following: for each x ∈ ω there is a set Sω,x containing
x such that φω,xp (Sω,x) ≤ c. Fix such an Sω,x in an arbitrary measurable way.
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Fix ω and denote by T ω the following recursively defined tree: the vertices of the
tree are finite sequences of vertices of ω. The root of the tree is (o). If (x0, x1, . . . , xk)

is a vertex of T ω, its children are the sequences (x0, x1, . . . , xk, xk+1) such that for
all j = 1, . . . , k + 1, we have xj ∈ ∂out

V Sω,xj−1
, and there exist vertices x′j ∈ ∂in

V Sω,xj−1

such that x′j ∼ xj, with paths from xj−1 to x′j in Sω,xj−1
that are disjoint from each

other and from the edges {x′j, xj}, as j = 1, . . . , k+ 1. We say that the union of the
above paths and edges is a good path through x0, x1, . . . , xk, xk+1. See Figure 4.1.
Denote by Ln := {(x0, x1, . . . , xn) ∈ T ω} the vertex set of T ω on the nth level.

ω

x0

Sω,x0

x′1

x1

Sω,x1

x′2

x2

Sω,x2

Figure 4.1: A “good path” that gives the vertex (x0, x1, x2) of T ω.

Let T ω(p) be the random subtree of T ω defined in a similar way using the same
sets Sω,x but allowing only good paths that are open in Bernoulli(p) percolation
on ω. It is easy to check that in fact T ω(p) ⊆ T ω. Denote by Ln(p) the set of
vertices of T ω(p) in the nth level. A self-avoiding infinite ray inside the p-percolation
configuration gives rise to a growing sequence of good paths in the percolated ω,
therefore if the cluster of the origin in the p-percolation on ω is infinite, then there
is an infinite path in T ω(p). Conversely, an infinite path in T ω(p) corresponds to
an infinite growing sequence of open good paths in the p-percolated ω, which are
necessarily parts of an infinite component containing the origin.

We claim that for almost every ω the expected number of vertices in Ln(p) con-
verges to 0 as n→∞. More precisely, the expectation of the number of vertices in
Ln(p) decreases exponentially in n. In the first two inequalities we use the notation
� for the occurrence of events on disjoint edge sets and we apply the BK inequality
([47], Theorem 2.12). We denote the event

{
x0

ω,p←→
B

xk by a good path through x0, x1, . . . , xk

}

63



by
{
x0

ω,p←−−−−−−−→
B,(x0,x1,...,xk)

xk

}
.

Eω
(
|Ln(p)|

)
=

∑
(x0,...,xn)∈Ln

Pω
(
x0

ω,p←−−−−−→
B,(x0,...,xn)

xn

)

≤
∑

(x0,...,xn−1)∈Ln−1

e∈∂ESω,xn−1

Pω
({

x0
ω,p←−−−−−−−→

B,(x0,...,xn−1)
xn−1

}
�
{
e is open

}
�
{
xn−1

ω,p←−−−→
Sω,xn−1

e−
})

≤
∑

(x0,...,xn−1)∈Ln−1

e∈∂ESω,xn−1

Pω
(
x0

ω,p←−−−−−−−→
B,(x0,...,xn−1)

xn−1

)
pPω

(
xn−1

ω,p←−−−→
Sω,xn−1

e−
)

=
∑

(x0,...,xn−1)∈Ln−1

Pω
(
x0

ω,p←−−−−−−−→
B,(x0,...,xn−1)

xn−1

)
φω,xn−1
p (Sω,xn−1) ≤ Eω (|Ln−1(p)|) c .

It follows by induction that Eω
(
|Ln(p)|

)
≤ cn. Therefore,

Pω(|Co| =∞) = Pω(T ω(p) survives) = lim
n→∞

Pω(|Ln(p)| ≥ 1) ≤ lim
n→∞

Eω|Ln(p)| = 0 ,

hence p ≤ pc.
Next we prove that p̃c ≥ pc. Let

q(p) := µ(
{
ω : φωp (S) ≥ 1 for all S ∈ S(ω)}

)
,

Note that q(p) is non-decreasing in p, and q(p) > 0 for every p > p̃c by the definition
of p̃c.

Fix ω and let H ∈ S(ω) be fixed. We will use Lemma 1.4. of [35]:

d

dp
Pωp
(
o

ω,p←→ Hc
)
≥
(

1− Pωp
(
o

H,p←→ Hc
))

inf
S:o∈S⊆H

φHp (S) ≥ C(p) inf
S:o∈S⊆H

φHp (S) ,

where C(p) = (1− p)D ≤ 1− Pω
(
o

ω,p←→ Hc
)
for every ω and H, with D being the

almost sure bound on the degree of the graph G. The probabilities above depend
only on the structure of ω inK = H∪∂out

V H, hence we can use the above inequality to
estimate the derivative of the probability µ

(
o

ω,p←→ Bω(o, r)c
)
, as follows. Consider

the following sets of finite rooted graphs: let Hr be the set of possible (r + 1)-
neighborhoods of the graphs with degree at most D, i.e.

Hr := {(K, o) : distK(o, x) ≤ r + 1 and degK(x) ≤ D , for all x ∈ V (K)} ,

and let

Hr(p) :=
{

(K, o) ∈ Hr : φKp (S) ≥ 1 , for all S ∈ S(BK(o, r))
}
.

Note that ∑
K∈Hr(p)

µ ({ω : Bω(o, r + 1) = K}) =

µ(
{
ω : φωp (S) ≥ 1 for all S ∈ S(Bω(o, r))}

)
≥ q(p),
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hence we have

d

dp
µ
(
o

ω,p←→ B(o, r)c
)

=
∑

(K,o)∈Hr

µ
(
Bω(o, r + 1) = K

) d
dp

Pp
(
o

K,p←→ BK(o, r)c
)

≥
∑

(K,o)∈Hr(p)

µ
(
Bω(o, r + 1) = K

)
C(p) inf

S:o∈S⊆BK(o,r)
φKp (S)

≥ q(p)C(p).

Integrate the above inequality on the interval
[
p+p̃c

2
, p
]
. Using the monotonicity of

q(p) and C(p), we get

µ
(
o

ω,p←→ B(o, r)c
)
≥ p− p̃c

2
q

(
p+ p̃c

2

)
C(p).

This gives a positive lower bound that is uniform in r. Thus µ
(
o

ω,p←→∞
)
> 0, and

p ≥ pc.

One advantage of the definition of p̃c for transitive graphs is that it enables one
to check whether a certain p is under p̃c using a finite witness. This characteristic
makes the next definition natural.

Definition 4.2.2. We say that a bounded degree unimodular random graph G is
uniformly good if for any p < pc there exists a positive integer r(p) such that
µG({ω : ∃Sω ⊆ Bω(o, r(p)), o ∈ Sω s.t. φωp (Sω) < 1}) = 1 .

This class of graphs includes unimodular quasi-transitive graphs (obvious) and
unimodular random trees of uniform sub-exponential growth (see Definition 4.2.5
and the proof of Proposition 4.3.6). Furthermore, uniformly good unimodular graphs
satisfy the following exponential decay of φp(Bω(o, r)) in r.

Lemma 4.2.3. Let G be a bounded degree unimodular random graph. G is uniformly
good if and only if for all p < pc there are constants c = c(p) < 1 and R(p) such
that if r ≥ R(p), then φωp (B) ≤ cr for almost every ω and every finite B ⊇ Bω(o, r).

For the proof of Lemma 4.2.3 we use the same tree T ω as in the proof of Theorem
4.2.1. The uniformly good property implies a uniform linear lower bound in r on
the distance of the root from any vertex of T ω that corresponds to a boundary point
of B (namely the points of the set π defined in the proof). This property and the
boundedness of the size of the sets Sω,x allows us to prove the estimate of the lemma.

Proof. If the constants c(p) and R(p) exist, then the sets Sω := Bω(o,R(p)) indicate
that G is uniformly good.

To prove the other direction, assume that G is uniformly good, and fix p < pc.
We can show as in the proof of Theorem 4.2.1 that there exists a constant c0 < 1

and a positive integer r0 such that for almost every ω and every x ∈ ω there exists a
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finite connected set Sω,x ⊆ Bω(x, r0) containing x that satisfies φω,xp (Sω,x) ≤ c0. Fix
an ω and the sets Sω,x as above, a positive integer r and a finite set B ⊇ Bω(o, r). We
define the trees T ω and T ω(p) as in the proof of Theorem 4.2.1. On every directed
path in T ω from o to infinity there is a first vertex (x0, . . . , xk) such that xk /∈ B.
Let π be the set of these vertices, i.e.

π := {(x0, . . . , xk) ∈ T ω : x0, . . . , xk−1 ∈ B, xk /∈ B}.

Note that π is a minimal set in T ω that separates o from infinity, hence every non-
backtracking infinite path from o has exactly one vertex in π. An argument as in
the first part of the proof of Theorem 4.2.1 shows that

Eω (|π ∩ T ω(p)|) =
∑

(x0,...,xk)∈π

Pω
(
x0

ω,p←−−−−−→
B,(x0,...,xk)

xk

)

≤
∑

(x0,...,xk)∈π

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p =: F (π, p),

where (x′1, . . . , x
′
k) denotes a sequence of vertices in ω such that x′j ∈ Sω,xj−1

and
x′j ∼ xj for any j = 1, . . . , k. First we bound φωp (B) in terms of F (π, p) using the
uniform bound on the size of the sets Sω,x, then we prove a geometric bound on
F (π, p) using a linear bound in r on the distance of o and π in T ω. These two
estimates will imply the statement of the lemma.

Denote by π̄ the set of the parents of the vertices in π, i.e.

π̄ := {(x0, . . . , xk) ∈ T ω : x0, . . . , xk ∈ B, ∃xk+1 /∈ B, (x0, . . . , xk+1) ∈ T ω}.

If for some e ∈ ∂EB the event
{
o

ω,p←→
B

e−
}
occurs, then there is some (x0, . . . , xk) ∈ π̄

such that there is a good path through x0, . . . , xk in the percolation and a disjoint
path from xk to e− in Sω,xk . For any fixed (x0, . . . , xk) the number of edges in
∂EB∩ (E(Sω,xk) ∪ ∂ESω,xk) is bounded above by |E(Sω,xk)∪∂ESω,xk | ≤ Dr0+1 where
D is the almost sure bound on the degree of the graph G. We have

φωp (B) = p
∑
e∈∂EB

Pω
(
o

ω,p←→
B

e−
)

≤
∑
e∈∂EB

∑
(x0,...,xk)∈π̄

(x′0,...,x
′
k)

Pωp
({

x0
ω,p←−−−−−→

B,(x0,...,xk)
xk

}
�
{
xk

ω,p←−−→
Sω,xk

e−
})

≤
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

) ∑
e∈∂EB∩(E(Sω,xk

)∪∂ESω,xk)

Pωp
(
xk

ω,p←−−→
Sω,xk

e−
)

≤
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

)
Dr0+1 = F (π̄, p)Dr0+1. (4.2.2)
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To estimate (4.2.2), note that F (π, p) equals

∑
(x0,...,xk)∈π̄

(x′0,...,x
′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

) ∑
xk+1:(x0,...,xk+1)∈π

x′k+1∈Sω,xk
,x′k+1∼xk+1

Pω
(
xk

ω,p←−−→
Sω,xk

x′k+1

)
p

≥
∑

(x0,...,xk)∈π̄
(x′0,...,x

′
k)

( k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

)
pr0+1 = F (π̄, p)pr0+1

by the assumption that the graph is uniformly good. Combined this with (4.2.2)
gives

φωp (B) ≤ Dr0+1

pr0+1
F (π, p). (4.2.3)

Now we show that F (π, p) ≤ c
r
r0
0 , which combined with (4.2.3) proves the lemma.

Let πn :=
⋃
m≤n (π ∩ Lm) ∪ {v ∈ Ln : v has a descendant in π}, which is a minimal

vertex set that separates the root from infinity. Let R := max{n : Ln∩π 6= ∅} <∞,
thus π = πR. Note that each πn is the disjoint union of πn+1 \ Ln+1 ⊆ π and
πn \ πn+1 ⊆ Ln. We estimate F (π, p) by summing over a larger set: the union of
πR \LR and {(x0, . . . , xR) : (x0, . . . , xR−1) ∈ πR−1 \πR, xR ∈ ∂out

V Sω,xR−1
} ⊇ πR∩LR.

That is, using the bound∑
e∈∂ESω,xR−1

Pω
(
xR−1

ω,p←−−−→
Sω,xR−1

e−
)
p = φω,xR−1

p (Sω,xR−1
) ≤ 1

for the second term in the following estimation, we have that

F (π, p) ≤
∑

(x0,...,xk)∈πR\LR

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

+
∑

(x0,...,xR−1)∈πR−1\πR
(x′1,...,x

′
R−1)

( R−1∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p

) ∑
e∈∂ESω,xR−1

Pω
(
xR−1

ω,p←−−−→
Sω,xR−1

e−
)
p

≤
∑

(x0,...,xk)∈πR−1

∑
(x′1,...,x

′
k)

k∏
j=1

Pω
(
xj−1

ω,p←−−−→
Sω,xj−1

x′j

)
p = F (πR−1, p).

A similar argument shows that F (π, p) ≤ F (πn, p) for any n ≤ R. If (x0, . . . , xk) ∈ π,
then distω(o, xk) ≥ r, hence the distance between o and π in T ω is at least r

r0
, thus

πn = Ln for any n ≤ r
r0
. If we apply the above argument for F (πn, p) with n ≤ r

r0
,

then the first term disappear, and the inequality φω,xn−1
p (Sω,xn−1) ≤ c0 gives

F (π, p) ≤ F (π r
r0
, p) ≤ F (π r

r0
−1, p)c0 ≤ · · · ≤ c

r
r0
0 .

This combined with (4.2.3) proves the lemma.

Corollary 4.2.4. If G is a uniformly good unimodular graph, then pc ≤ p̃ac .
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Proof. Let p < pc, and let c andR(p) be as in Lemma 4.2.3. We have E
(
φωp (Bω(o,R(p)))

)
≤

cR < 1, thus p ≤ p̃ac .

We will see in Example 4.2.8 that, without the assumption of uniform goodness,
the inequality pc ≤ p̃ac does not necessarily hold. Also, we will show in Example
4.2.7 that there are uniformly good graphs with pc < p̃ac . However, if a graph has
uniform sub-exponential growth, then the critical probabilities coincide, as in the
transitive case. Sub-exponential volume growth will also appear in Example 4.3.8
and Proposition 4.4.1.

Definition 4.2.5. We say that a unimodular graph G has uniform sub-exponential
volume growth if for any c < 1 and ε > 0 there is an R such that PG (ω : |Bω(o, r)|cr < ε) =

1 for any r > R.

Corollary 4.2.6. If G is a uniformly good unimodular graph with uniform sub-
exponential volume growth, then pc = pT = paT .

Proof. Let p < pc = p̃c and let c and R(p) be as in Lemma 4.2.3. Denote by D the
maximum degree of G. Let R > R(p) such that µ

(
{ω : |Bω(o, r)|cr/2 < 1}

)
= 1 for

any r > R and let ω satisfy this event for all r > R simultaneously. Then we have

Eωp (|Co|) =
∞∑
n=1

Pωp (|Co| ≥ n) =
∞∑
r=1

|Bω(o,r+1)|∑
n=|Bω(o,r)|+1

Pωp (|Co| ≥ n)

≤
∞∑
r=1

|Bω(o,r+1)|∑
n=|Bω(o,r)|+1

Pωp
(
o

p,ω←→ Bω(o, r)c
)

≤
∞∑
r=1

|Bω(o, r + 1)|min{φωp (Bω(o, r)) , 1}

≤
R+1∑
r=2

|Bω(o, r)|+
∞∑

r=R+1

|Bω(o, r + 1)|cr

≤
R+1∑
r=2

Dr +
∞∑

r=R+1

cr/2 <∞

This gives a uniform upper bound on Eωp (|Co|) thus E
(
Eωp (|Co|)

)
< ∞. It follows

that p ≤ paT , hence paT ≥ pc. The other direction follows from the definition of
paT .

4.2.2 Counterexamples

In this section, we give examples of graphs with p̃ac > pc and p̃ac < pc; see Ex-
amples 4.2.7 and 4.2.8, respectively. These examples show that the inequality in
Corollary 4.2.4 can be strict and that without the uniformly good assumption, even
the reverse inequality can hold.
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We show in Examples 4.2.10 and 4.2.11 that there are unimodular random graphs
of uniform sub-exponential (in fact, quadratic) volume growth, but pT < pc and
paT < pT . Both constructions will use Bernoulli percolation on Z2 as an ingredient;
moreover, although we define the graph in the second example as a vertex replace-
ment of Z2, it could be defined even as an invariant random subgraph of Z2.

Our first example shows that the inequality p̃ac ≥ pc in Corollary 4.2.4 can be
strict even for a quasi-transitive graph.

Example 4.2.7. There is a quasi-transitive graph with p̃ac > pc.

Proof. LetHk,l be the following finite directed multigraph: the vertex set is {x0, x1, . . . , xk},
and we have l loops at x0, one edge from x0 to each xj, j = 1, . . . , k, and one from
each xj back to x0. Let Tk,l be the directed cover of Hk,l based at x0. Consider
two copies of Tk,l and connect the roots of them by an edge to get the infinite
quasi-transitive graph Gk,l, which has vertices of degree 2 and k + l + 1. One
can easily compute that to get a unimodular random graph one has to choose
the root according to µ(deg o = 2) = 1 − µ(deg o = k + l + 1) = k

k+2
. Hence

EGk,l
(deg o) = 4k+2l+2

k+2
. The equality EGk,l

(
φωp (Bω(o, 0))

)
= pEGk,l

(deg o) implies
that p̃ac ≥

(
EGk,l

(deg o)
)−1

= k+2
4k+2l+2

. On the other hand, the critical probability of
a directed cover of a finite graph is pc(Tk,l) = (br(Tk,l))

−1 = (growth(Tk,l))
−1 =

(λ∗(Hk,l))
−1, where λ∗(H) is the largest positive eigenvalue of the directed ad-

jacency matrix of Hk,l; see [68, Section 3.3] and [64]. One can thus compute
that pc(Gk,l) = pc(Tk,l) = 2

l+
√
l2+4k

. If we set, e.g., k = 3, l = 5, then we have

pc(G3,5) = 2
5+
√

37
< 5

24
=
(
EG3,5(deg o)

)−1 ≤ p̃ac(G3,5).

Our next example is the canopy tree, which is not uniformly good and has
exponential volume growth. This unimodular graph fails to satisfy the statements
of both Corollaries 4.2.4 and 4.2.6.

Example 4.2.8. The canopy tree Λ (see Definition 2.2.6) satisfies pc = 1 and
pT = p̃ac = 1√

2
, thus this is an example of a not uniformly good unimodular graph

with pT = pc > p̃ac .

Proof. It is easy to check that pT = 1√
2
and E(φp(B(o, r))) equals 2p(

√
2p)r if r is

even, and equals 3(
√

2p)r+1/2 if r is odd. Thus it converges to 0 for p < 1/
√

2, while
remains above 1 for p < 1/

√
2, which implies the claim.

Before presenting Examples 4.2.10 and 4.2.11, we prove a lemma which will be
useful in our examples.

Lemma 4.2.9. Let Qn be the subgraph of Z2 spanned by the box [−n, n]2. For any
ε > 0 there is a probability p1 < 1 such that for n large enough, the vertices (0,−n),
(0, n), (−n, 0), (n, 0) are in the same cluster in Bernoulli(p1) percolation on Qn with
probability at least 1− ε.
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Proof. The occurrence of the events in the following two claims implies the occur-
rence of the event in the statement of the lemma, hence we will be done by a union
bound.

Claim 1: For any p > 1/2 and n > n0(p, ε) large enough, in Bernoulli(p) percolation
on Qn, with probability at least 1− ε/2, there is a giant cluster with the following
properties: it joins all the sides of Qn, while every other cluster in Qn has diameter
at most n/5. This was proved in [9, Proposition 2.1].

Claim 2: There exists p1 < 1 such that for all n and all p > p1,

Pp
(
diam(C(0,n)) ≥ n

)
≥ 1− ε/8 .

Similarly for (0,−n), (−n, 0), and (n, 0), instead of (0, n).

Proof of Claim 2: If there is no open path in the dual percolation joining a dual
vertex in [−n+ 1

2
,−1

2
]×{n+ 1

2
} to a dual vertex in [1

2
, n− 1

2
]×{n+ 1

2
}, then there is

a primal open path from (0, n) to ({−n} × [0, n]) ∪ ([−n, n]× {0}) ∪ ({n} × [0, n]),
and hence diam(C(0,n)) ≥ n.

On the other hand, for any pair of dual vertices, x ∈ [−n+ 1
2
,−1

2
]×{n+ 1

2
} and

y ∈ [1
2
, n− 1

2
]× {n+ 1

2
}, we have

Pp
(
x

Qn←→ y by a dual-open path of length k
)
≤ (3(1− p))k .

Moreover, if the distance of x and y is larger than k, then this probability is of
course 0, hence for each k there are at most k2 relevant pairs (x, y). Therefore, for
every n,

Pp
(
diam(C(0,n)) < n

)
≤

∞∑
k=1

k2(3(1− p))k =: f(p) <∞ ,

where f(p) converges to 0 as p→ 1.

The next example shows, that the classical sharpness of the phase transition of
percolation fails in the class of unimodular graphs. The graph in Example 4.2.10 is
not uniformly good.

Example 4.2.10. There is a unimodular graph with uniform polynomial volume
growth and pT < pc. In particular, the exponential decay of two-point connection
probabilities fails for p ∈ (pT , pc) on this graph.

Proof. We define the graph G as an edge replacement (see [4], Example 9.8) of the
canopy tree (see Definition 2.2.6): each e ∈ LE(n) is replaced by (Q2n(e), (0,−2n), (0, 2n)),
where Q2n(e) is isomorphic to Q2n . It is easy to see that the volume of BG(o, r), for
any root o and radius r, is at most Cr2, for some absolute constant C <∞. Indeed,
if the root is in Q2n(e), then BG(o, r) intersects the cubes Q2l(e

′) with e′ ∈ (ξ, e) only
if l ≤ log2 r or l = n. Furthermore, each such Q2l(e

′) has more vertices than the sum
of the number of vertices of Q2k(e′′) with e′ ∈ (ξ, e′′), which are the further cubes that
may intersect BG(o, r). It follows that |BG(o, r)| ≤ max

{
r2,
∑log2 r

l=n 22l+3
}
≤ Cr2.
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We will now show that pT (G) < pc(G) = 1. Consider Bernoulli(p) percolation ω
on G and, as a deterministic function of it, define the following percolation λ on Λ:
an edge e ∈ LE(n) is open in λ if and only if the vertices (0,−n) and (0, n) ∈ Qn(e)

are connected by an open path in ω. Clearly, there exists an infinite cluster in ω if
and only if there is an infinite cluster in λ. The law of λ is stochastically dominated
by a Bernoulli(1− (1− p)3) percolation on Λ, because if e ∈ LE(n) is open, then at
least one of the edges in Qn(e) adjacent to (0, n) is open. The tree Λ has one end,
hence, for any p < 1,

PGp (∃ an infinite cluster) ≤ PΛ
1−(1−p)3(∃ an infinite cluster) = 0 .

That is, pc(G) = 1.
It can be easily computed that pT (Λ) = 1/

√
2. Now let 0 < ε < 1 − 1/

√
2.

It follows from Lemma 4.2.9 that there exists p1 < 1 and some large N such that
Pp1(e ∈ λ) ≥ 1 − ε for all e ∈ LE(n) with n ≥ N . Thus, for o ∈ L(N), the cluster
Co in λ, restricted to the levels n ≥ N , stochastically dominates Bernoulli(1 − ε)
percolation on Λ. The latter has infinite expected size, hence the expected size
of the cluster in ω of (0,−N) ∈ QN(e) for e ∈ LE(N) is also infinite. That is,
pT (G) ≤ p1 < 1.

The last example of this section shows that the critical probabilities pT and paT
can differ, even for a unimodular random graph of polynomial volume growth. The
graph in Example 4.2.11 can be viewed as a random invariant subgraph of Z2.

Example 4.2.11. There is a unimodular graph with polynomial volume growth and
paT < pT .

Proof. Let X be a positive integer valued random variable such that P(X = k) =

ck−5/2 for all k ≥ 1. Then EX < ∞ and E(X2) = ∞. We define the graph G

as a vertex replacement (see Subsection 1.2.3) of Z2 with respect to the following
labels as follow. Let {Xn, X

′
n : n ∈ Z} be iid copies of X, and for each vertex

(m,n) ∈ Z2, let G(m,n) be isomorphic to the subgraph of Z2 spanned by the vertices
in [0, 2Xm] × [0, 2X ′n], and for the edges going from (m,n) to North, East, South,
and West, let the image of ϕ(m,n) be the corresponding midpoint of the box G(m,n).
We can also think of the resulting graph as an invariant random subgraph of Z2.

Denote by Y and Y ′ half the length of the sides of the box of o in G, i.e., the
law of X0 and X ′0 biased by X0X

′
0. Then

P(Y = k, Y ′ = l) =
kl

(EX)2
P(X = k,X ′ = l),

hence Y and Y ′ are independent with distribution P(Y = k) = ck−3/2

EX .
First we show that paT = 1

2
. G is a subgraph of Z2, hence paT (G) ≥ 1

2
. Fix p > 1

2

and let ε > 0. Denote by M(Qn) the largest cluster in percolation with parameter
p in the box Qn (the subgraph of Z2 spanned by the box [−n, n]2), and let

A(Qn) :=
{
|M(Qn)| ≥ (1− ε)θ(p)|Qn|, diam(C) < ν log n ∀ open cluster C 6= M(Qn)

}
,
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where θ(p) = Pp(|Co(Z2)| = ∞), and ν is chosen as follows: by [47, Theorem 7.61],
there is an N = N(p) and ν = ν(p) such that, for any n ≥ N ,

Pp(A(Qn)) > 1− ε .

Let Z := min{Y, Y ′}, and consider the event D(G0,0) :=
{
dist(o, ∂in

V G0,0) ≥ ν logZ
}
.

If Z is large enough, then P
(
D(G0,0)

∣∣Z) ≥ 1 − ε, since o is uniform in G0,0. As-
suming that D(G0,0) occurs, choose a box QZ ⊆ G0,0 that contains o such that
dist(o, ∂in

V QZ) ≥ ν logZ. Consider percolation on Z2 ⊃ QZ . If o is in the unique
infinite cluster of this percolation on Z2, then the diameter of Co(QZ) is at least
ν logZ, hence

Pp
(
o ∈M(QZ),A(QZ)

∣∣∣Z = n,D(G0,0)
)
> θ(p)− ε

for n large enough. It follows that there is an N ′ such that

E
(
Eωp (|Co|)

)
≥

∞∑
n=N ′

Pp
(
o ∈M(QZ),A(QZ),D(G0,0)

∣∣∣Z = n
)
P(Z = n) (1− ε)θ(p)n2

≥
∞∑

n=N ′

(θ(p)− ε)(1− ε)P(Z = n) (1− ε)θ(p)n2 =∞ ,

as desired.
To show that pT > 1

2
let e be an edge in Z2, and let Ge− and Ge+ be the

subgraphs of G that correspond to the endpoints of the edge. Let x := ϕe−(e) and
y := ϕe+(e), i.e. let {x, y} be the edge in G that joins Ge− and Ge+ . If there is
an open path in G(p) through the edge {x, y}, that joins two vertices in Ge− \ {x}
and in Ge+ \ {y}, then the event J({x, y}) := {∃e′ ∈ E(Ge−) : e′ ∼ x, e′ open} ∩
{∃e′ ∈ E(Ge+) : e′ ∼ y, e′ open}∩{{x, y} open} occurs. For a fixed configuration of
G the events J({ϕe−(e), ϕe+(e)}) are independent for different edges, and

Pp(J({ϕe−(e), ϕe+(e)})) = p(1− (1− p)3)2.

This probability is strictly increasing in p and there is a p0 >
1
2
such that p(1− (1−

p)3)2 > 1
2
iff p > p0. We consider a random subset H = H (G(p)) ⊆ E(Z2) obtained

from the percolation G(p): let e ∈ H if and only if the event J({ϕe−(e), ϕe+(e)})
occurs in G(p). The law of H is the same as the law of Bernoulli(p(1− (1− p)3)2)
bond percolation. We want to estimate the expected size of Co(G) conditioned on
the size of G0,0. If Co(G) intersects a box Gv, then the connected component of o in
H contains v. Therefore

EG
(
Eωp (|Co|)

∣∣∣Y, Y ′) ≤ EG

Eωp

 ∑
v∈Z2:v∈Co(H)

|Gv|

∣∣∣∣∣∣Y, Y ′


≤ EG
(
Eωp (|Co(H)|)

)
max

{
Y 2, (Y ′)2, (EX)2

}
,

which is finite if p < p0. It follows that for almost every configuration (ω, o) of (G, o)

the expected size Eωp (Co) is finite if p < p0, hence pT ≥ p0.
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4.3 Locality of the critical probability

In this section, we examine Question 4.1.2, the question of Schramm’s locality con-
jecture for transitive graphs: does pc(Gn) converge to pc(G) if Gn → G in the local
weak sense? The original question in [16] (Conjecture 4.1.1) was phrased for se-
quences of transitive graphs that converge to a transitive graph in the local sense
and satisfy sup pc(Gn) < 1. First we provide some simple examples of unimodular
graphs where the conjecture holds. In Example 4.3.1, we note that if Gn and G are
infinite clusters of an independent percolation with appropriate parameters, then the
convergence holds. In Example 4.3.2, we discuss unimodular Galton–Watson trees,
and give sufficient and necessary conditions on the offspring distribution to satisfy
locality of pc. Then we investigate the inequality lim inf pc(Gn) ≥ pc(G), which is
known for transitive graphs; see [35] for a simple proof. In Proposition 4.3.3 we
show by a similar argument that the critical probability p̃ac satisfies this inequality
for unimodular random graphs. We show in Propositions 4.3.4 and 4.3.6 that under
certain restrictions on the graphs G and Gn the convergence lim pc(Gn) = pc(G)

is true for unimodular random graphs. Examples 4.3.7 and 4.3.8 provide graph
sequences with lim pc(Gn) < pc(G). These indicate that unimodular graphs do
not satisfy Schramm’s conjecture in general and show that both of the conditions
in Proposition 4.3.4 are necessary. We show in Example 4.3.9 a sequence with
pc(G) < lim pc(Gn) < 1. In this example, G and each Gn satisfy the conditions of
Corollaries 4.2.4 and 4.2.6, thus pc = pT = paT and also p̃ac(G) < lim p̃ac(Gn) < 1.
This shows that none of the generalizations of the critical probabilities satisfies the
extension of Schramm’s conjecture for unimodular graphs in general.

4.3.1 Basic examples

We present now two natural classes of unimodular random graphs that satisfy
Schramm’s conjecture.

Example 4.3.1. Let G be a transitive unimodular graph and let pn, p0 ∈ (pc(G), 1],
such that limn→∞ pn = p0. Let Gn be the connected component of the root in the
Bernoulli(pn) percolation on G conditioned to be infinite. Then pc(Gn)→ pc(G0) <

1.

Proof. The graph Gn is an extremal unimodular graph for every n by [4, Theorem
6.15]. It follows that pc(Gn) is an almost sure constant with respect to the distribu-
tion of Gn. We have

PGn
p (|Co| =∞) =

PGppn(|Co| =∞)

PGpn(|Co| =∞)
.

This probability is 0 iff PGppn(|Co| = ∞) = 0, which holds if p < pc(G)/pn and does
not hold if p > pc(G)/pn. Since pc(Gn) needs to be a constant, it equals pc(G)/pn
almost surely, which converges to pc(G)/pn = pc(G0).
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Our second example, the class of unimodular Galton–Watson trees, is less trivial.
Recall Definition 1.2.10, X̂ from Section 2.2.1 and Proposition 2.2.11 that states
that a sequence of infinite unimodular Galton–Watson trees UGW∞(X̂n) converges
to UGW∞(X̂) in the local weak sense iff Xn → X in distribution. The random
graphs UGW∞ are extremal unimodular random graphs [4].

Example 4.3.2. Let UGW∞(X̂) be the unimodular Galton–Watson tree with degree
distribution X̂, conditioned to be infinite. If the offspring distributions Xn and X
are non-negative integer valued random variables with EXn ≥ 1 and EX ≥ 1, then
pc(UGW∞(X̂n))→ pc(UGW∞(X̂)) iff EXn → EX.

Proof. The critical probability pc(UGW∞(X̂)) equals 1
EX [68, Proposition 5.9], there-

fore pc(UGW∞(X̂n))→ pc(UGW∞(X̂)) iff EXn → EX.

Note that this example shows that pc is a continuous function of UGW∞(X̂) when
the trees have a uniform bound on their degrees (by the Dominated Convergence
Theorem), but not necessarily otherwise: if Xn → X in distribution, with EXn ≥ 1

and EX ≥ 1, but EXn 9 EX, then the critical probabilities pc(UGW∞(X̂n)) do not
converge to pc(UGW∞(X̂)). Nevertheless, Fatou’s lemma implies that the inequality
lim sup pc(UGW∞(X̂n)) ≤ pc(UGW∞(X̂)) does hold without any assumptions. That
is, if the trees do not satisfy the locality of pc, then they also fail to satisfy the
lower semicontinuity discussed in the next subsection, proved to hold in many cases,
including transitive graphs. This suggests that a uniform bound on the degrees is a
natural condition when we investigate the locality of pc for unimodular graphs.

4.3.2 Lower semicontinuity and continuity

The quantity φp(S) can be used to give a short proof that pc(G) is lower semicontinu-
ous in the local topology of transitive graphs: that is, lim inf pc(Gn) ≥ pc(G) holds;
see [35, Section 1.2]. It can be proven for transitive graphs as follows: let p < pc(G),
let S ⊂ G be a set with φGp (S) < 1 and let r be such that S ⊂ BG(o, r). For n
large enough BGn(o, r) ' BG(o, r), hence φGn

p (S) < 1, which implies p ≤ pc(Gn).
For bounded degree unimodular graphs, we will now show in a similar way that this
inequality also holds for p̃ac ; however, it fails for p̃c = pc, in general.

Proposition 4.3.3. Let Gn and G be unimodular random graphs with uniformly
bounded degrees. If Gn converges to G then lim infn→∞ p̃

a
c(Gn) ≥ p̃ac(G).

Proof. Let p < p̃ac(G) and let r be such that EG
(
φωp (Bω(o, r))

)
< 1 − ε with some

ε > 0. Let n be large enough to satisfy∑
H∈Hr+1

|µGn (Bω(o, r + 1) = H)− µG (Bω(o, r + 1) = H) | < ε

2Dr+1
,

where D is a uniform bound on the degrees of Gn and G and Hr is the set of possible
r-neighborhoods of the root in graphs with maximum degree D. Any H ∈ Hr+1
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satisfies φHp (Bω(o, r)) ≤ Dr+1. We obtain

EGn

(
φωp (Bω(o, r))

)
=

∑
H∈Hr+1

µGn (Bω(o, r + 1) = H)φHp (Bω(o, r))

≤
∑

H∈Hr+1

[
µG (Bω(o, r + 1) = H)φHp (Bω(o, r))

+ |µGn (Bω(o, r + 1) = H)− µG (Bω(o, r + 1) = H) ||∂EBH(o, r)|]

≤ EG
(
φωp (S)

)
+
ε

2
< 1.

It follows that p̃ac(Gn) ≥ p thus lim inf p̃ac(Gn) ≥ p̃ac(G).

Our next proposition states that if Gn converges to a uniformly good unimodular
graph G in a uniformly sparse way, then pc(Gn) → pc(G), i.e., the assumptions
of Proposition 4.3.4 imply a positive answer to Question 4.1.2. After the proof,
we present an example that shows how this proposition can be applied. Another
application of the proposition appears in Example 4.4.2.

Proposition 4.3.4. Let G be a uniformly good unimodular random graph. Fur-
thermore, let Gn be unimodular random graphs with uniformly bounded degrees that
converge to G in the local weak sense, in a uniformly sparse way: there is a pos-
itive integer k such that for each n there is a coupling νn of µG and µGn such
that G ⊆ Gn and there is a sequence of positive integers rn → ∞ that satisfies
|(E(Gn) \ E(G)) ∩BGn(o, rn)| ≤ k νn-almost surely. Then

lim
n→∞

pc(Gn) = pc(G).

Proof. First, G ⊆ Gn implies that pc(G) ≥ pc(Gn) for all n. For the sake of sim-
plicity, we prove the inequality lim pc(Gn) ≥ pc(G) for k = 1. It can be proved for
general k in a similar way. Let p < pc(G). Our aim is to find a subset Bn ∈ S(Gn) for
n large enough with φGn

p (Bn) < 1. Let n be sufficiently large to satisfy rn/2 > R(p)

and crn/2 < 1
3
. Fix a pair (ω, ωn) that satisfies the sparseness condition for rn.

Then, in the smaller ball Bωn(o, rn/2), there is at most one edge {x, y} ∈ ωn \ ω.
If this edge exists, let Bn := Bωn(o, rn/2) ∪ Bωn(x, rn/2) ∪ Bωn(y, rn/2); other-
wise, just let Bn := Bωn(o, rn/2). Note that Bn ⊂ Bωn(o, rn). Similarly, let
B := Bω(o, rn/2) ∪ Bω(x, rn/2) ∪ Bω(y, rn/2), omitting those terms in the union
that do not exists in ω. (Note that it may happen that x or y does not exist
in ω, but not both, since Bωn(o, rn/2) is connected.) The sets Bn and B satisfy
∂EBn = ∂EB. We claim that we have φωn

p (Bn) < 1. There are three possibilities in
terms of the edge {x, y} for an open path connecting o and a vertex e− in Bn: it
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connects o and e− in B or it connects x or y to e− in B. It follows that

φωn
p (Bn) = p

∑
e∈∂EBn

Pωn

(
o

ωn,p←−→
Bn

e−
)

= p
∑

e∈∂EBn

[
Pωn

(
o

ωn\{x,y},p←−−−−−→
Bn

e−
)

+ Pωn

(
{o ωn,p←−→

Bn

x}�
{
{x, y} open

}
�{y ωn,p←−→

Bn

e−}
)

+ Pωn

(
{o ωn,p←−→

Bn

y}�
{
{x, y} open

}
�{x ωn,p←−→

Bn

e−}
)]

≤ p
∑
e∈∂EB

[
Pω
(
o

ω,p←→
B

e−
)

+ pPω
(
{o ω,p←→

B
x}�{y ω,p←→

B
e−}
)

+ pPω
(
{o ω,p←→

B
y}�{x ω,p←→

B
e−}
)]

≤ p
∑
e∈∂EB

[
Pω
(
o

ω,p←→
B

e−
)

+ Pω
(
y

ω,p←→
B

e−
)

+ Pω
(
x

ω,p←→
B

e−
)]

= φωp (B) + φω,yp (B) + φω,xp (B) < 1

by Lemma 4.2.3. If x or y does not exist in ω, all its appearances in the above
formulas involving ω can be replaced by the other vertex, and the inequalities remain
true. It follows that p ≤ p̃c(Gn) = pc(Gn).

The following example is a graph sequence Gn where Proposition 4.3.4 applies.

Example 4.3.5. There is a uniformly good unimodular graph G and a sequence of
unimodular graphs Gn that satisfy the assumptions of Proposition 4.3.4.

Proof. Let G be a uniformly good unimodular graph of bounded degree; e.g., a
unimodular quasi-transitive graph. Let Hn ⊂ V (G) be an invariant subset (i.e.,
given by a unimodular labeling) such that min{distG(x, y) : x, y ∈ Hn} ≥ n almost
surely. Such a subset can be produced as a factor of iid process: let {ξx : x ∈ V (G)}
be iid uniform random variables on [0, 1] and let Hn := {x : ξx = min{ξy : y ∈
BG(x, n)}}. Consider now an invariant perfect matching of the points of Hn (that
is, an invariant partition of Hn into pairs) and let Gn be the union of that matching
and G. An example of such a perfect matching can be constructed as follows. Let
{ζe : e ∈ V (G)} be iid uniform random variables on [0, 1] and consider the distance
function d on V (G) defined as d(x, y) = inf

∑
e∈P ζe, where P ranges over all paths

connecting x and y. It is easy to check that the infimum exists and is in fact a
minimum; also, one can show that with the resulting metric the set Hn is discrete,
non-equidistant, and has no descending chains (see [53] for the definitions). By a
method similar to the proof of Proposition 9 in [53], one can show that the stable
matching on Hn is a perfect matching, just as desired.

For quasi-transitive graphs G, we have pT = pc. Then it is not surprising that,
for any p < pc, once n is large enough, adding the sparse perfect matching cannot
glue too many of the rather small finite clusters of G together, and hence we still
have p < pc(Gn). That is, one expects pc(Gn) → pc(G). This indeed holds by
our general proposition, while an actual direct proof would need to handle some
non-trivial technicalities.
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In the quite special setting of unimodular trees of uniform sub-exponential growth
(see Definition 4.2.5), the assumption of uniformly sparse convergence from Proposi-
tion 4.3.4 can be relaxed. This proposition gives further examples of uniformly good
unimodular graphs (see Definition 4.2.2), while the convergence part will be used in
Section 4.4.

Proposition 4.3.6. If G is a bounded degree unimodular random tree with uniformly
sub-exponential volume growth (see Definition 4.2.5), then all five critical percolation
densities equal 1, and G is uniformly good.

If Gn is a sequence of bounded degree unimodular random graphs with uniformly
sub-exponential volume growth and girth tending to infinity, then pc(Gn), p̃c(Gn),
p̃ac(Gn) all tend to 1.

Proof. We start by proving the statement about the sequence Gn with girth tending
to infinity. By the uniform sub-exponential growth, for each p < 1 there are positive
integers r = r(p) and n0(p) such that

|BGn(on, r)| pr < 1 (4.3.1)

for every n ≥ n0(p), almost surely. Now, by the girth tending to infinity, there
exists n1(p) ≥ n0(p) such that, for every n ≥ n1(p), the ball BGn(on, r) is a tree,
and therefore

φGn
p (BGn(on, r)) ≤ |BGn(on, r)| pr . (4.3.2)

Combining (4.3.1) and (4.3.2), and taking p → 1, the balls BGn(on, r) show that
p̃c(Gn) and p̃ac(Gn) tend to 1. By Theorem 4.2.1, we also have pc(Gn)→ 1.

Now, if G is a unimodular tree of sub-exponential growth, then (4.3.2) holds for
every r, hence p̃ac(G) = p̃c(G) = pc(G) = 1, and uniform goodness is also clear from
the definition. Then Corollary 4.2.6 implies pT (G) = paT (G) = 1, as well.

4.3.3 Counterexamples

Our first example will show that even if we keep the condition of uniformly sparse
convergence of Gn to G of Proposition 4.3.4, without G being uniformly good, the
conclusion may not hold. Next, Example 4.3.8 will show that keeping the limit
uniformly good but removing the condition of uniform sparseness will make the
conclusion false. Finally, Example 4.3.9 will show that the inequality of the lower
semicontinuity may be strict even when invariant subgraphs Gn of Z2 converge to
Z2.

Example 4.3.7. There exists a sequence (Gn) of invariant random subgraphs of
a Cayley graph, converging to an invariant subgraph G in a uniformly sparse way,
such that lim pc(Gn) < pc(limGn).

Proof. The first step is to construct an invariant percolation on a Cayley graph
of the lamplighter group all whose clusters are isomorphic to the canopy tree Λ

(Definition 2.2.6). In more detail:
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Consider the generators {Rs,R, sL, L} of the lamplighter group Z2 oZ = ⊕ZZ2o
Z, where R := (0, 1), L := (0,−1), and s := (e0, 0) ∈ Z2 o Z with e0 ∈ {0, 1}Z,
(e0)j = δ0,j. It is well-known (see, e.g., [83]) that the Cayley graph with respect to
these generators is the Diestel–Leader graph DL(2,2). This graph can be defined
using two trees T1 and T2 which both are 3-regular infinite rooted trees with a
distinguished end and Busemann functions hi : Ti → Z, i = 1, 2, as in Example
4.2.10. Each vertex x ∈ Ti has exactly one neighbor x̄ with hi(x̄) = hi(x)− 1, called
the parent of x. We call the other two neighbors the children of x. Now consider
the following percolation on T1: for each vertex x we delete the edge connecting x
to one of its two children, independently with equal probabilities. We get a random
subgraph of T1 consisting of infinite simple paths. We then delete the edges in the
graph DL(2,2) whose first coordinate is a deleted edge in T1. The resulting random
subgraph F ⊂ DL(2,2) is invariant under the action of the lamplighter group and
it consists of infinitely many components which are all isomorphic to the canopy
tree Λ ⊂ T. The probability that the root is in the nth level of its component
in F is clearly 2−n−1. The canopy tree with a random root chosen according to
this distribution is a unimodular random graph, as it also must be the case by
Proposition 1.2.6.

The significance of the canopy tree for this construction (as in Example 4.2.10)
will be that it has one end, thus pc(Λ) = 1, while one can easily compute that
pT (Λ) = 1/

√
2.

Now let G be the free product of Z2 := Z/2Z and the lamplighter group Z2 o Z.
Let Γ be the left Cayley graph of G with respect to the generators {a,Rs,R, sL, L}
where a is the generator of the free factor Z2. Let β : G −→ Z2 o Z be the natural
projection homomorphism: if w = a1b1 . . . akbk is a word in G such that aj ∈
Z2, bj ∈ Z2 o Z, j = 1, . . . , k, then β(w) := b1 . . . bk ∈ Z2 o Z. We now define G to be
the following random spanning subgraph of Γ: let e be in E(G) iff β(e−) and β(e+)

are connected by an edge in F . The distribution of G is invariant under the action
of G and each component of G is a canopy tree, hence pc(G) = 1.

We define a sequence (Gn) of random subgraphs of Γ converging to G. We
choose an element b ∈ {0, 1, . . . n − 1} uniformly at random. For each vertex in
LT1(b+ kn), k ∈ Z we choose one of its descendants in LT1 (b+ (k + 1)n) uniformly
at random and we choose all vertices in LT2 (−b+ kn). Let Sn be the set of edges
e ∈ E(Γ) such that e is labeled by the generator a and both coordinates of β(e−) =

β(e+) are chosen vertices in the above procedure. Let Gn := G ∪ Sn.
We show that pc(Gn) ≤ 1√

2
for all n. Let p > 1√

2
= pT (Λ), let n be a positive

integer and consider Bernoulli(p) percolation on Gn. Denote by T (v) the component
of the vertex v in G and by Cv the component of the vertex v in the percolation
on Gn. Let s(v) := min{l : LT (v)(l) ∩ Sn 6= ∅}. We define a branching process
depending on the percolation on Gn. For each vertex v of Γ let Nv := {ax : x ∈
T (v) ∩ Cv ∩ Sn \ {v}, {x, ax} is open}. Let Z1 := No and let Zk+1 :=

⋃
v∈Zk

Nv.
Note that Zi 6= Zj, i 6= j and Zj ⊂ Co. The distribution of |Nv| depends only
on the level of v in T (v) and on s(v). The distribution of |Nv| conditioned on
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{o ∈ LT (o)(l), s(v) = s} with any l and s stochastically dominates the distribution of
|Nv| conditioned on the event {v ∈ LT (v)(0), s(v) = n−1}. Therefore the distribution
of |Zk| stochastically dominates the distribution of the kth generation of the Galton–
Watson process with offspring distribution |Nv| conditioned on {v ∈ LT (v)(0), s(v) =

n− 1}, which has infinite expectation. Hence µ(lim inf |Zk| > 0) > 0 which implies
µ(|Co| =∞) > 0.

Example 4.3.8. There exists a sequence (Gn) of invariant random subgraphs of a
Cayley graph such that lim pc(Gn) < pc(limGn) and limGn is uniformly good.

Proof. Let Γ be a Cayley graph of a finitely generated group such that there exists a
random subgraph Ḡ which satisfies the following: the distribution of Ḡ is invariant
under the action of the group, it consists of infinitely many infinite components and
each component has critical percolation probability p̄ < 1. (A very simple example
is that Γ is Zd and Ḡ is a lamination by copies of Zd−1, with d ≥ 3.) Let G′ be an
invariant random connected subgraph of Γ such that pc(G′) > p̄. For example, if Γ

is amenable, then one can choose G′ to be an invariant spanning tree of Γ, which
always exists and has at most two ends, and hence pc(G′) = 1; see [14], Theorem
5.3. Moreover, if Γ has sub-exponential volume growth (see Definition 4.2.5), then
so does the spanning tree G′, and it is uniformly good by Proposition 4.3.6.

Now let εn → 0 be a sequence of positive numbers and let Gn be the following
random subgraph of Γ: we remove each component of Ḡ with probability 1−εn and
keep it with probability εn independently for each component. Let Gn be the union
of G′ and the remaining components of Ḡ. It follows from Proposition 1.2.6 that
Gn is unimodular. The sequence (Gn) converges to G′, but pc(Gn) ≤ p̄ < pc(G

′) for
each n. The sequence pc(Gn) has a convergent subsequence, hence we can choose
the corresponding subsequence εk(n), and get lim pc(Gk(n)) ≤ p̄ < pc(G

′).
We get a similar example that is uniformly good if we set Γ := Z5, Ḡ :=⋃

y∈Z2{y}×Z3 and G′ :=
⋃
x∈Z3 Z2×{x}. In this example, G′ is not connected, but

each Gn is connected almost surely, and pc(Gn) ≤ pc(Z3) < pc(limGn) = pc(Z2) < 1

for each n.

Example 4.3.9. There exists a sequence (Gn) of invariant random subgraphs of a
Cayley graph such that 1 > lim pc(Gn) > pc(limGn).

Proof. We define Gn as a vertex and edge replacement (see Subsection 1.2.3 and [4,
Example 9.8]) of Z2 where we replace each vertex x by the graph Qx isomorphic
to Qn (the subgraph of Z2 spanned by the box [−n, n]2) and we replace each edge
by a path of length two that joins the middle points of the neighboring sides of the
boxes corresponding to the endpoints of the edge. The graphs Gn can be considered
as deterministic subgraphs of Z2 with a randomly chosen root. The sequence Gn

converges to Z2.
We show that 1

2
< lim pc(Gn) < 1. Denote by Gn(p) the subgraph obtained by

the Bernoulli(p) percolation on Gn, and let Hn(p) be the following percolation on
Z2: let an edge {x, y} open, iff both edges are open in the path that joins the boxes
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Qx and Qy in Gn. The existence of an infinite cluster in Gn(p) implies the existence
of an infinite cluster in Hn(p). The law of Hn equals the law of the Bernoulli(p2)
percolation on Z2, hence pc(Gn) ≥ 1√

2
for each n.

To show that lim sup pc(Gn) < 1, we define the percolation H̄n(p) on Z2. Denote
by Ax(n) the event that the vertices (0,−n), (0, n), (−n, 0), (n, 0) are in the same
cluster in Bernoulli(p) percolation on the box Qx ⊂ Gn. Let an edge {x, y} ∈ H̄n(p),
iff {x, y} ∈ Hn(p), and both of the events Ax(n) and Ay(n) occurs. The existence
of an infinite cluster in H̄n(p) implies the existence of an infinite cluster in Gn(p).
Let 1 > p0 >

1
2
be arbitrary. There is an ε > 0 such that if the marginals of a 2-

dependent percolation on Z2 are at least (1−ε)4, then this percolation stochastically
dominates Bernoulli(p0) percolation; see [60, Theorem 0.0]. Lemma 4.2.9 implies,
that we can find constants 1 − ε < p1 < 1 and N such that for any p > p1, n ≥ N

and for any vertex x ∈ V (Z2) the event Ax(n) occurs with probability at least 1−ε,
thus P(e ∈ H̄n(p)) ≥ p2

1(1 − ε)2 ≥ (1 − ε)4 for any edge e ∈ E(Z2). The events
{e1 ∈ H̄n} and {e2 ∈ H̄n} are independent if the distance of e1 and e2 is at least
2, hence H̄n(p) stochastically dominates Bernoulli(p0) percolation. It follows that
lim sup pc(Gn) ≤ p1 < 1.

4.4 On transitive graphs of cost 1

As proved in [14, Theorem 5.3], a transitive graph G is amenable if and only if it has
an invariant spanning tree T with at most two ends, hence with expected degree 2

and pc(T ) = 1. Briefly: for the existence of T for an amenable G, see the proof of
Proposition 4.4.1 below, while from an invariant connected spanning graph T with
pc(T ) = 1 it is not hard to construct an invariant mean on G, and thus deduce
amenability.

Proposition 4.3.6 tells us that, under the stronger condition of sub-exponential
growth, we get a spanning tree T with the stronger property pT (T ) = paT (T ) =

1. Moreover, we can achieve approximately 1-dimensional percolation behavior
pc(Gk) → 1 via connected spanning subgraphs that have the same large-scale geo-
metry as G.

Proposition 4.4.1. If G is a transitive amenable graph, then there is a sequence
of invariant random subgraphs Gk which satisfies the following: each Gk is a bi-
Lipschitz (in particular, connected) spanning subgraph of G, the girth of Gk tends
to infinity and Gk locally converges to an invariant random spanning tree T with at
most two ends.

If G is a transitive graph with sub-exponential volume growth, then lim pc(Gk) =

1.

Proof. We construct T as in [14], Theorem 5.3: let Fn be a sequence of Følner sets
such that

∑∞
n=1

|∂EFn|
|Fn| < 1. For each n and x ∈ V (G) choose a random gx,n ∈ Aut(G)

that takes o to x, and a random bit Zx,n that equals 1 with probability 1
|Fn| . Choose

all gx,n and Zx,n independently. Let ωn := E(G) \
⋃
x∈V (G),Zx,n=1 ∂E(gx,nFn); i.e.,
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we remove all edges in the boundaries of the translates of Fn with Zx,n = 1. Let
ω̄n =

⋂
k≥n ωk. Each ω̄n has only finite components.

To construct T and Gk, choose uniform labels Le in [0,1] independently for each
e ∈ E(G). For each finite component of ω̄1 take the minimal spanning tree of the
component with respect to the labels. Denote by T1 the union of these trees. Let
T2 be the union of T1 and the edges in ω̄2 \ ω̄1 with minimal labels such that the
components of T2 are spanning trees of the components of ω̄2. Continue inductively,
and let T :=

⋃
Tn. This is an invariant random spanning tree, which has at most 2

ends (otherwise it would have infinitely many ends, which is impossible, since G is
amenable).

To construct Gk we define a color for each edge. Let all edges in T be green. In
each component of ω̄1 do the following: consider the edge with the smallest label
which has no color. If there is a path of length at most k between its endpoints
consisting of green edges, then color it red, otherwise color it green. Continue
inductively for the edges in the component. This procedure defines a color for each
edge of ω̄1. If all edges in ω̄n have a color, then continue coloring the edges of
ω̄n+1 \ ω̄n in the same way. Let Gk be the union of the green edges. It follows from
the construction that Gk is invariant, its girth is at least k + 2 and for each edge of
G there is a path in Gk between its endpoints with length at most k. The sequence
Gk converges to T .

If G has sub-exponential volume growth, then so does T and each Gk, and all
of them are unimodular (by [77, Corollary 1] and Proposition 1.2.6 above). Thus
pc(Gk)→ 1 follows from Proposition 4.3.6.

It might be surprising at first sight that, as opposed to having a spanning sub-
graph with pc = 1, the existence of a sequence Gk as in the proposition does not
imply amenability: if we chose the graph G in the next example to be any non-
amenable Cayley graph, then G×Z is non-amenable as well. Our originial example
was the non-amenable special case when G is the 3-regular infinite tree, but it was
simplified and generalized by Yuval Peres, as follows.

Example 4.4.2. Let G be the Cayley graph of a finitely generated group. Then
G× Z has a sequence of invariant bi-Lipschitz subgraphs Gk with pc(Gk)→ 1.

Proof. Let S = {s1, . . . , sn} be the generating set of the group that defines the
Cayley graph. Consider the following subgraphs Gk ⊆ G×Z: we keep all the edges
in the subgraphs {v} × Z and the edges {e} × {nkj + ik} where j ∈ Z and e is
an edge with label si. We choose a uniform random integer b ∈ {0, . . . nk − 1}
and translate this subgraph by (id, b) to get the invariant subgraph Gk of G × Z.
Each Gk is clearly bi-Lipschitz equivalent to G × Z. On the other hand, we have
pc(Gk) → 1: either from Proposition 4.3.4, or more directly, by observing that the
universal cover Tk of Gk can be obtained from the n + 1-regular infinite tree by
replacing “ n

n+1
proportion” of the edges by a path of length at least k; for this tree,

it is easy to see that pc(Tk) → 1, while pc(Tk) ≤ pc(Gk) holds by [68, Theorem
6.47].
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So, what is the class of transitive graphs for which the existence of such a se-
quence Gk may be expected? The answer seems to have something to do with the
notion of cost from measurable group theory. The cost of a group G is defined as half
of the infimum of the expected degrees of its invariant connected spanning graphs.
The G-cost of a transitive graph G may be defined similarly, over G-invariant ran-
dom connected spanning subgraphs of G, where G ≤ Aut(G) is a vertex-transitive
subgroup of graph-automorphisms. It is not known in general that, if we first fix
a Cayley graph G of G, then the G-cost of G is always as small as the cost of G
(which is the cost of the complete graph on G). Nevertheless, we have seen that
cost 1 can be achieved inside any Cayley graph of any amenable group (since the
expected degree of an infinite unimodular tree with at most two ends is 2).

We will now show that a sequence of invariant spanning subgraphs Gk with
pc(Gk) → 1 implies that the cost is 1. The bi-Lipschitz condition does not appear
here, but it is quite possible that once we have a sequence with pc(Gk) → 1, it
can always be modified to fulfill the bi-Lipschitz property, as well. Note that the
bi-Lipschitz condition is also natural from the point of view of Elek’s combinatorial
cost for sequences of finite graphs [37].

Lemma 4.4.3. If Γ is a Cayley graph of G, and there exists a sequence of G-invariant
connected spanning subgraphs Gk ⊂ Γ with pc(Gk)→ 1, then the cost of Γ, hence of
G, is 1.

Proof. Take εk → 0 such that pc(Gk) > 1−εk. Then, all clusters of Bernoulli(1−εk)
percolation on Gk are finite almost surely. Let the set of closed edges be denoted by
ηk ⊂ Gk ⊂ Γ, an invariant percolation itself. In each finite cluster, take a uniform
random spanning tree, a subtree of Gk. The union of all these finite spanning trees
and ηk will be ωk. One the one hand, it is clear that ωk is a connected spanning
subgraph of Gk, hence of Γ. On the other hand, the expected degree of o in ωk is at
most E degηk(o) + 2 ≤ dεk + 2, where degΓ(o) = d. As k → ∞, we obtain that the
cost of Γ is 1.

We do not know if the converse of Lemma 4.4.3 holds:

Question 4.4.4. Does there exist, for any Cayley graph G of any group G of cost 1,
a sequence of G-invariant bi-Lipschitz spanning subgraphs Gk ⊂ G with pc(Gk)→ 1?
At least for amenable G?

For amenable Cayley graphs G, a first step of independent interest could be a
positive answer to the following question, mentioned in Subsection 4.1.1:

Question 4.4.5. For any amenable Cayley graph, is there an invariant random
spanning subtree of sub-exponential growth? More boldly, does there always exist an
invariant random Hamiltonian path?
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Summary

The aim of the thesis is to examine a fundamental question related to local weak
convergence: are certain parameters determined by the local structure of the graph?
After introducing random graphs and local weak convergence, we examine the con-
tinuity of two graph parameters. In Chapter 3 we investigate the concentration
and limiting properties of the (directed) matching ratio of finite random graphs.
In Chapter 4 we generalize parameters related to Bernoulli percolation to infinite
unimodular random graphs and study the convergence of them along local weak
convergent sequences.

In Chapter 1 we introduce the basic notions and the families of random graphs
that we study in the further chapters. In the thesis we consider finite random
graphs and (possibly infinite) unimodular random rooted graphs. For random rooted
graphs, unimodularity is a natural symmetry assumption that generalizes the fea-
tures of the most studied families of random graphs, such as invariant random sub-
graphs of Cayley graphs and local weak limits of finite graphs. Unimodular random
rooted graphs obeys the Mass Transport Principle which will be a useful tool in our
proofs in Chapters 3 and 4.

In Chapter 2, we present the concept of local weak convergence introduced by
Benjamini and Schramm [17]. A sequence of random rooted graphs (Gn, on) con-
verges to the random rooted graph (G, o) in the local weak sense if for every r > 0,
the distribution of the ball of radius r around the root in Gn converges to the dis-
tribution of the ball around o with radius r in G. We illustrate the definition by
several examples which will be used also later in the thesis. We present a non-trivial
example of convergence of infinite random graphs without a uniform bound on the
degrees: the sequence of infinite unimodular Galton–Watson trees converges if and
only if their offspring distributions converge. We further examine a stronger notion,
the almost sure local weak convergence of sequences of finite graphs and present a
few examples which will be important in Chapter 3. We prove that the sequence of
finite random graphs obtained by the preferential attachment rule converges almost
surely in the local weak sense.

In Chapter 3, we examine the concentration and limiting properties of the (dir-
ected) matching ratio of finite random graphs, i.e., the relative size of the maximum
size (directed) matching. This parameter is closely related to an important para-
meter in control theory, as shown by Liu, Slotine and Barabási [61]. The results
of this chapter were motivated by the observations of [61], that suggested that the
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matching ratio of directed graphs is in some cases essentially determined by the
degrees of the graphs and converges along certain local weak convergent sequences.
We formulate and prove rigorously this two main statements of [61], which were
based on numerical results and heuristics from statistical physics.

Our results on the concentration of the matching ratio are presented in Section
3.2. In Theorem 3.2.1, we give a bound on the probability that the difference
between the directed matching ratio of a directed random graph given by the random
configuration model with a fixed sequence of degrees and its expected value is larger
than ε. This probability is exponentially small in |V (G)|2/|E(G)| which implies
a strong concentration for large graphs with a degree sequence given by a random
variable with finite expected value. The theorem holds with fixed in- and out-degrees
and also when only the total degrees are fixed. In Theorem 3.2.3, we prove that
preferential attachment graphs satisfy a similar strong concentration phenomenon.

In Section 3.3, we generalize the result of Elek and Lippner [40] on the con-
vergence of the matching ratio, originally proved for deterministic graph sequences
with a uniform bound on the degrees. We show in Theorem 3.3.3 that the mean
of the directed matching ratio of local weak convergent sequences of random dir-
ected graphs with a bound only on the expected value of the degrees converges to
the properly defined matching ratio parameter of the limiting graph. This extended
theorem allows us to apply it for the most widely used families of scale-free networks,
which were the main motivation of [61]. Our results imply that the matching ratio of
Erdős–Rényi random graphs, the random configuration model and the preferential
attachment graphs converges in a strong sense: it converges almost surely.

In Chapter 4, we investigate the continuity of parameters of infinite unimodular
random graphs related to Bernoulli percolation. We examine the generalizations of
the classical percolation critical probabilities pc = sup{p : Pp(there is an infinite cluster) =

0}, pT = sup {p : Ep(|Co|) <∞} and p̃c defined by Duminil-Copin and Tassion in
[35]. The last quantity was in fact designed to give a simple new proof of pc = pT
for transitive graphs, and to address the question of locality of critical percolation:
whether the value of pc depends only on the local structure of the graph.

In Section 4.2, we examine the relationship between the generalizations of the
critical probabilities pc, pT , p̃c, originally introduced for transitive graphs, to extremal
unimodular random graphs. We also investigate two further natural generalizations,
that are annealed versions of the above critical probabilities and are denoted by paT
and p̃ac . We show in Theorem 4.2.1 that the equation pc = p̃c also holds for bounded
degree unimodular random graphs. The inequality pc ≥ pT ≥ paT follows from the
definitions, but besides this, anything can occur in the class of unimodular graphs.
As our examples in Section 4.2.2 show, the classical sharpness of the phase transition
can fail even for invariant random subgraphs of Z2, i.e. for unimodular graphs the
inequality pT < pc can hold.

In Section 4.3, we examine Schramm’s conjecture [16] in the case of unimodular
random graphs: does pc(Gn) converge to pc(G) if Gn converge to G in the local weak
sense and sup pc(Gn) < 1? In Propositios 4.3.4 and 4.3.6 we give conditions which
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imply lim pc(Gn) = pc(limGn). However, our examples in Section 4.3.3 show that
the locality conjecture does not hold in the generality of bounded degree unimodular
random graphs: there are sequences of unimodular graphs such that Gn converges
to G but pc(G) > lim pc(Gn) or pc(G) < lim pc(Gn) < 1 (Examples 4.3.7 and 4.3.9).
In fact, Example 4.3.9 shows that none of the generalized critical probabilities are
continous in the class of unimodular random graphs.

As a corollary to our positive results, we show in Proposition 4.4.1 that for
any transitive graph with sub-exponential volume growth there is a sequence Tn of
large girth bi-Lipschitz invariant subgraphs such that pc(Tn) → 1. It remains open
whether this holds whenever the transitive graph has cost 1.
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Összefoglalás

A disszertáció célja a lokális gyenge konvergenciához kapcsolódó egyik alapvető kér-
dés vizsgálata: meghatározza a gráf lokális struktúrája bizonyos paraméterek érté-
két? A véletlen gráfok és a lokális gyenge konvergencia bevezetése után két para-
méter folytonosságát vizsgáljuk. A 3. fejezetben véges véletlen (irányított) gráfok
párosítási arányának koncentrálódásával és konvergenciájával foglalkozunk. A 4. fe-
jezetben Bernoulli perkolációhoz kapcsolódó paramétereket általánosítunk végtelen
unimoduláris véletlen gráfokra, és ezek konvergenciáját vizsgáljuk lokálisan gyengén
konvergens sorozatok mentén.

Az 1. fejezetben bevezetjük az alapvető fogalmakat és a további fejezetekben
vizsgált véletlen gráfosztályokat. A disszertációban véges véletlen gráfokkal és (vég-
telen) unimoduláris gyökeres gráfokkal foglalkozunk. Véletlen gyökeres gráfok esetén
az unimodularitás egy természetes szimmetria feltevés, ami a leggyakrabban vizs-
gált véletlen gráfok, mint például Cayley gráfok invariáns részgráfjainak vagy véges
gráfok lokálisan gyenge limeszeinek tulajdonságait általánosítja. Az unimoduláris
gráfok teljesítik az úgynevezett tömeg transzportációs elvet, ami egy hasznos eszköz
lesz számunkra a 3. és 4. fejezet bizonyításaiban.

A 2. fejezetben bemutatjuk a Benjamini és Schramm [17] által bevezetett lokális
gyenge konvergencia fogalmát. Azt mondjuk, hogy gyökeres véletlen gráfok (Gn, on)

sorozata lokálisan gyengén konvergál a (G, o) gyökeres gráfhoz, ha minden r > 0

esetén a Gn gráf gyökere körüli r sugarú gömb eloszlása tart a G gráf gyökere kö-
rüli r sugarú gömb eloszlásához. A definíciót számos példával illusztráljuk, amelyek
eredményeit a későbbiekben is felhasználjuk. Bemutatunk egy nem triviális példát
végtelen gráfok egy olyan sorozatának konvergenciájára, ahol nincs egyenletes kor-
lát a fokszámokra: az unimoduláris Galton–Watson fák sorozata pontosan akkor
konvergál egy unimoduláris Galton–Watson fához, ha az utódeloszlások sorozata
is konvergál. Vizsgálunk továbbá egy erősebb fogalmat, a majdnem biztos lokális
gyenge konvergenciát, amire mutatunk néhány, a 3. fejezetben fontossá váló példát.
Bebizonyítjuk, hogy a preferential attachment gráfok sorozata majdnem biztosan
lokálisan konvergens.

A 3. fejezetben véges (irányított) véletlen gráfok párosítási arányát, azaz a ma-
ximális méretű párosítás relatív méretét vizsgáljuk. Liu, Slotine és Barabási [61]
megmutatták, hogy a párosítási arány szorosan kapcsolódik a kontrollelmélet egy
fontos paraméterhez. A fejezet eredményeit ennek a cikknek az észrevételei moti-
válták, amelyek arra utaltak, hogy az irányított gráfok párosítási arányát bizonyos
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esetekben lényegében meghatározza a fokszámeloszlás, továbbá ez a paraméter kon-
vergál egyes lokálisan gyengén konvergáló sorozatok mentén. Ezeket a numerikus
eredményeken és statisztikus fizikából származó heurisztikus módszereken alapuló
eredményeket fogalmazzuk meg precízen és bizonyítjuk be a fejezetben.

A 3.2. részben bemutatjuk a koncentrációval kapcsolatos eredményeinket. A
3.2.1. tételben becslést adunk rögzített fokszámsorozat mellett a véletlen konfigurá-
ciós modellel megadott véletlen gráf esetén annak a valószínűségére, hogy a párosítási
arány ε-nál jobban eltér a várható értékétől. Ez a valószínűség exponenciálisan kicsi
|V (G)|2/|E(G)|-ben, amiből nagy gráfok esetén egy erős koncentráció következik, ha
a fokszámsorozatot egy véges várható értékű valószínűségi változó adja meg. A tétel
teljesül rögzített ki- és be-fokok esetén, továbbá akkor is, ha csak a teljes fokszá-
mot rögzítjük. Hasonló koncentráció eredményt bizonyítunk preferential attachment
gráfok esetén a 3.2.3. tételben.

A 3.3. részben általánosítjuk Elek és Lippner tételét a párosítási arány konver-
genciájáról [40], amelyet eredetileg egyenletesen korlátos fokszámú determinisztikus
gráfsorozatokra bizonyítottak. A 3.3.3. tételben bebizonyítjuk, hogy véletlen irá-
nyított véges gráfok lokálisan gyengén konvergens sorozata esetén, melynél csak a
fokszám várható értékéről teszünk fel korlátosságot, a párosítási arány várható ér-
téke konvergál a limeszgráfon definiált megfelelő paraméterhez. Ez az általánosabb
tétel lehetővé teszi, hogy a leggyakrabban vizsgált skálafüggetlen gráfmodellekre al-
kalmazzuk, amelyek a fő motivációt jelentették Liu, Slotine és Barabási [61] számára.
Az eredményeinkből következik az alábbi gráfok párosítási arányának erős értelem-
ben vett (majdnem biztos) konvergenciája: Erdős–Rényi gráfok, véletlen konfigurá-
ciós modell, preferential attachment gráfok.

A 4. fejezetben végtelen unimoduláris véletlen gráfok Bernoulli perkolációhoz
kapcsolódó paramétereinek folytonosságával foglalkozunk. Az alábbi klasszikus kri-
tikus valószínűségeket vizsgáljuk: pc = sup{p : Pp(van végtelen fürt) = 0}, pT =

sup {p : Ep(|Co|) <∞}, továbbá a Duminil-Copin és Tassion [35] által definiált p̃c.
Ezen utóbbi mennyiség bevezetésének segítségével egy egyszerű új bizonyítást ad-
tak a pc = pT egyenlőségre tranzitív gráfok esetén, továbbá egy lehetséges eszköznek
bizonyult a perkolációs kritikus valószínűségek lokalitásának vizsgálatában, azaz an-
nak eldöntésében, hogy a pc kritikus valószínűség csak a gráf lokális struktúrájától
függ-e.

A 4.2. részben az eredetileg tranzitív gráfokra bevezetett pc, pT , p̃c kritikus való-
színűségek extremális unimoduláris véletlen gráfokra való általánosításait vizsgáljuk.
További két természetes általánosítást is vizsgálunk, amelyek a fenti kritikus való-
színűségek átlagoláson alapuló változatai, ezek paT és p̃ac . A 4.2.1. tételben megmu-
tatjuk, hogy a pc = p̃c egyenlőség minden korlátos fokú unimoduláris gráfra fennáll.
A pc ≥ pT ≥ paT egyenlőtlenség következik a definícióból, de ezen kívül bármi elő-
fordulhat az unimoduláris gráfok osztályában. Ahogy a 4.2.2 részben leírt példáink
mutatják, a klasszikus éles fázisátmenet nem teljesül még Z2 invariáns részgráfjaira
se, azaz unimoduláris véletlen gráfokra fennállhat a pT < pc egyenlőtlenség.

A 4.3. részben Schramm sejtését [16] vizsgáljuk unimoduláris gráfok esetén: tart
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a kritikus valószínűségek pc(Gn) sorozata pc(G)-hez, amennyiben Gn lokálisan gyen-
gén konvergál G-hez és sup pc < 1? A 4.3.4. és 4.3.6. állításokban feltételeket adunk,
amelyekből következik a lim pc(Gn) = pc(limGn) egyenlőség. Azonban a 4.3.3. rész-
ben leírt példáink mutatják, hogy a lokalitásról szóló sejtés nem teljesül általánosan
korlátos fokú unimoduláris gráfokra: léteznek unimoduláris gráfoknak olyan soro-
zatai, amelyekre a pc(limGn) > lim pc(Gn) vagy a pc(limGn) < lim pc(Gn) < 1

egyenlőtlenség áll fenn (4.3.7. és 4.3.9. példák). A 4.3.9. példa azt is mutatja, hogy
semelyik általánosított kritikus valószínűség sem folytonos az unimoduláris gráfok
osztályán.

A pozitív eredményeink következményeként megmutatjuk a 4.4.1. állításban,
hogy minden szubexponenciális növekedésű tranzitív gráfnak vannak olyan Tn nagy-
körű bi-Lipschitz invariáns részgráfjai, amelyekre pc(Tn) → 1 teljesül. Nyitott kér-
dés, hogy ez teljesül-e tranzitív gráfokra, melyek költsége 1.
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