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Chapter 1

Foreword

This doctoral thesis contains the results of the following four papers [FVZ16a,FVZ16b,
BFVZ17,FNZ18], each written with co-authors. The problems we discuss all come from
convex and discrete geometry. The common theme, beside that all are related to the
sphere, is the analytic approach. Discrete and convex geometry have very strong tra-
ditions in Hungary. The work of L. Fejes Tóth was fundamental in the development of
these fields. It comes as no surprise that several of our problems have their origins in his
papers.

Since the problems in this dissertation all have their individual histories, and the
notation is always fitted to the particular setting, we rather give separate introductions
to each chapter. Here, we only introduce the topics briefly, mentioning the main results
and a short overview of their history.

Chapter 2 is based on the paper [FVZ16b] and is about maximizing the sum of pair-
wise angles formed by lines each incident with the origin (or any other common point).
The problem dates back to 1959 when L. Fejes Tóth asked this question in the three-
dimensional Euclidean space. Solving it in the plane is rather straightforward, however,
to the best of our knowledge the problem remains unsolved for three and higher dimen-
sions (it is quite natural to extend the question to d > 3 dimensions). L. Fejes Tóth
himself conjectured that in the optimal configuration the lines together form the axes of
a Cartesian coordinate system, and the number of lines on any two axes differ by at most
one. He proved this conjecture for at most 6 lines, and he also gave an upper bound
for the sum of angles for an arbitrary number of lines. Our main result of Chapter 2 is
Theorem 2.1 in which we give an upper bound for the sum of the angles of n lines in
3-dimensional space, thus improving the general bound of L. Fejes Tóth for large n. We
note that after our paper had been published, Bilyk and Matzke [BM19] further improved
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the upper bound using a different method.
Chapter 3 contains the results of the paper [FVZ16a]. The problem discussed there

also originates from L. Fejes Tóth [FT73]. He defined the so-called zones on the 3-
dimensional unit sphere, which are belt-like domains around a great circle, just like the
surface of the Earth between the Tropics of Cancer and Capricorn. The precise definition
is the following: a zone is the intersection of the sphere with the closed domain between
two parallel planes, one of which is the reflection of the other with respect to the centre
of the sphere. The problem is finding the minimal width such that a given number of
zones of that common width can cover the whole sphere. This question is related to the
famous plank problem of Tarski [Tar32]. According to the original conjecture of L. Fejes
Tóth, this minimum width is π divided by the number of zones. This is guaranteed to
be sufficient, since one can arrange the zones in an orange-like pattern: all of the central
great circles of the zones pass through, say the North and South Poles and they are
distributed evenly, so they cover the Equator. The central great circle of a zone is the
great circle parallel to its bounding planes. It was not known until recently that at least
this width is also necessary. The main result of Chapter 3 is Theorem 3.6, in which we
give a non-trivial lower bound for the common width of the zones necessary to cover the
sphere. We note that after our work had appeared, Jiang and Polyanskii [JP17] proved
the original conjecture of L. Fejes Tóth.

Chapter 4, which is based on the paper [BFVZ17], has its roots in the same article
of L. Fejes Tóth [FT73] as Chapter 3. It deals with the problem of arranging congruent
zones in a way that no point is covered by too many of them, that is, we try to minimize
the maximum multiplicity of points in an arrangement of zones. We also consider the
same question for coverings instead of general arrangements, that is, in order to cover
the sphere with congruent zones how ‘thick’ the zones need to be placed. It is worth
noting that in the optimal (orange-like) covering minimizing the width this multiplicity
is maximal since all zones contain a neighbourhood of a pair of antipodal points. We
seek to minimize this multiplicity as a function of the common width of the zones. Our
main results in this Chapter 4 are Theorems 4.2 and 4.3 about general arrangements and
coverings with zones, respectively.

In Chapter 5 of this thesis, we present the contents of the paper [FNZ18]. In this
chapter we discuss the expectation of the square of the volume of random parallelotopes
in isotropic measures, for the definition see (5.1) and (5.2). Pivovarov [Piv10] determined
this expectation under the condition that the random vectors are linearly independent
with probability 1. One of our main results is Lemma 5.2 in which we extend the state-
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ment of Pivovarov for a larger class of probability measures. Subsequently, we apply
Lemma 5.2 to so-called John decompositions of the identity, which naturally arise in con-
nection with convex bodies. We know from the famous theorem of John [Joh48] and Ball
[Bal92] that the unit ball is the unique maximum volume ellipsoid in a convex body if and
only if there is a finite set of vectors, together with some suitable positive weights, among
the contact points of the ball and the body that form an isotropic set of vectors, see (5.4),
and that are centred, see (5.5). The lemma of Dvoretzky and Rogers, cf. Lemma 5.4,
says that if we have a finite set of isotropic vectors on the unit sphere, then there is a
subset of those vectors such that the parallelotope they span has relatively large volume.
Pelczyński and Szarek [PS91] improved the volume bound of Dvoretzky and Rogers. Us-
ing Lemma 5.2 and the fact that each finite set of isotropic vectors contains a subset of
limited size which is also isotropic (with different weights), we give a probabilistic proof of
the improved bound of Pelczyński and Szarek, and provide a probabilistic interpretation
of the volume bound in the Dvoretzky–Rogers lemma. We also show that for isotropic
vector sets of small cardinality the improvement is better, and in some cases even sharp.
Our result regarding this is stated in Theorem 5.5. We finish this chapter by giving
a lower bound on the probability that the volume of a random parallelotope from an
isotropic set of vectors is at least as large as the bound of Pelczyński and Szarek, see
Proposition 5.6.
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Chapter 2

On the angle sum of lines

2.1 Introduction

This chapter is based on the paper [FVZ16a] written jointly with F. Fodor and V. Vígh.
We start with a general overview and history of the problem, and also mention some
recent developments on this topic that happened after the publication of the article. The
original question we study in this part of the dissertation was raised by L. Fejes Tóth,
as were many of the most important questions of discrete geometry of the 20th century.
This particular question belongs to the family of problems that concern arrangements of
points on the sphere in which the aim is to find configurations of a given number of points
that maximize or minimize a certain quantity that depends on their mutual positions.
Such quantities include, for example, the sum of Euclidean distances (or their powers)
between the points, or the sum of spherical spherical distances. These problems are also
connected to sphere packings; we will discuss some related questions in Chapter 3.

Consider n lines in the d-dimensional Euclidean space Rd which all pass through the
origin o. We note that the origin does not really play an important role here, we just
essentially assume that the lines are concurrent. What is the maximum S(n, d) of the
sum of the pairwise (non-obtuse) angles formed by the lines? This question was originally
raised by L. Fejes Tóth in 1959 in [FT59] for d = 3. It is very natural to ask the same
question in higher dimensions as well. For general d, the problem is formulated, for
example, in [Pet14]. One of the difficulties in this question is that the non-obtuse angle
between two undirected lines behaves differently from the angle of two vectors or directed
lines.

The conjectured maximum of the angle sum is attained by the following configuration:
Let n = k ·d+m (0 ≤ m < d), and denote by x1, . . . , xd the axes of a Cartesian coordinate
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system in Rd. Take k + 1 copies of each one of the axes x1, . . . , xm, and take k copies of
each one of the axes xm+1, . . . , xd. The sum of the pairwise angles in this configuration is[

d(d− 1)k2

2
+mk(d− 1) +

m(m− 1)

2

]
π

2
.

L. Fejes Tóth stated this conjecture only for d = 3, however, it is quite natural to extend
it to any d (see [Pet14]). To the best of our knowledge, this problem is unsolved for d ≥ 3.

In the case d = 3, L. Fejes Tóth [FT59] proved the conjecture for n ≤ 6. He determined
S(n, 3) for n ≤ 5 by direct calculation, and he obtained S(6, 3) using the recursive upper
bound S(n, 3) ≤ nS(n − 1, 3)/(n − 2) and the precise value of S(5, 3), see pp. 19 in
[FT59]. The recursive upper bound and S(6, 3) together yield that S(n, 3) ≤ n(n−1)π/5

for all n. We further note that L. Fejes Tóth’s recursive upper bound on S(n, 3) can also
be extended S(n, d), that is, S(n, d) ≤ nS(n− 1, d)/(n− 2) for any meaningful n and d.

The planar case is known, the value of S(n, 2) is given in Theorem 2.2. Our main
result in this chapter is an upper bound for S(n, 3) summarized in the following theorem.

Theorem 2.1. Let l1, . . . , ln be lines in R3 which all pass through the origin. If we denote
by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
3
2
k2 · π

2
, if n = 2k,

3
2
k(k + 1) · π

2
, if n = 2k + 1.

Notice that the bound in Theorem 2.1 is exactly 3/2 times the bound in Theorem 2.2.
This factor comes from a projection averaging argument.

We note that the conjectured maximum for d = 3 is asymptotically equal to n2π/6

as n → ∞. The upper bound in Theorem 2.1 is asymptotically 3n2π/16 as n → ∞,
improving L. Fejes Tóth’s bound, which is n2π/5 as n→∞.

We also note that if one could prove that S(8, 3) is equal to the conjectured value, then
combining it with L. Fejes Tóth’s recursive upper bound on S(n, 3), one would obtain an
upper bound on S(n, 3) that is asymptotically equal to the one in Theorem 2.1. However,
proving the optimality of a configuration with a specific number of lines, even as small
as 8, is notoriously difficult.

After our paper [FVZ16a] had appeared, the upper bound was improved by Bilyk and
Matzke [BM19]. They showed that in any dimension the sum of the angles is asymptot-
ically at most

(
π
4
− 69

100d

)
n2, which for d = 3 yields a slightly better upper bound since

π
4
− 69

300
= 0.555398 . . . < 0.589048 . . . = 3π

16
.

For comparison, we mention that the related problem, in which one seeks the max-
imum of the sum of the angles of n rays emanating from the origin of Rd, is solved for any d
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and n. This is the same question as to maximize the sum of the mutual spherical distances
of n points on the sphere, or the sum of the pairwise angles of n concurrent directed lines.
This problem was also posed in the same paper of L. Fejes Tóth [FT59] for d = 3. The
3-dimensional problem was fully solved as of 1965, see [Fro53,FT59,Spe60,Lar62,Nie65].
The proof of Nielsen [Nie65] uses a projection averaging argument. We note that this
argument can be modified so as to obtain a solution of the general case of the problem
for every n and d. Our proof of Theorem 2.1 also uses this projection averaging idea,
however, the details are much more intricate due to the different behaviour of the angles
of undirected lines. We note that the undirected version (that is, the one we study in
this chapter) can also be considered as a maximization problem on the elliptic plane.

One of the motivations for these arrangement problems on the sphere (and also in the
ball) comes from physics and chemistry, where, for example, the points may represent
charged particles that mutually repel each other. One is interested in finding the equilibra,
or (locally) minimal energy positions of such point systems. The various settings, with
regards to functions that one wants to maximize or minimize, may correspond to different
forces between atoms, molecules, or other particles.

2.2 The planar case

Before we prove Theorem 2.1, we solve the problem in the plane. This result is probably
known [Pet14], however, we were unable to find any other reference, thus, we decided to
include a short proof for the sake of completeness. The related problem for rays in the
plane was analysed by Jiang [Jia08] in 2008. He reproved the known upper bound and
gave a full description of the extremal configurations in terms of balanced set of vectors.

We say that a line l′ is to the right of l if l′ is obtained from l by a rotation about
the origin with angle α, where −π/2 < α < 0. Similarly, if 0 < α < π/2, then l′ is to
the left of l. If l′ = l or l′ is perpendicular to l, then l′ is neither to the left nor to the
right of l. We say that a configuration l1, . . . , ln of n lines is balanced if for any line
l 6= l1, . . . , ln the number of lines to the left of l and the number of lines to the right of l
differ by at most 1. We remark that Jiang defined balanced systems of vectors in [Jia08].
Our definition of a balanced configuration of lines is similar to but not the same as that
of Jiang.

Theorem 2.2. Let l1, . . . , ln be lines in R2 which all pass through the origin. If we denote

10



by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
k2 · π

2
, if n = 2k,

k(k + 1) · π
2
, if n = 2k + 1.

Equality holds if, and only if, l1, . . . , ln is balanced.

Proof. The idea of the proof is similar to that of Jiang [Jia08, Theorem 1]. Note that
a simple compactness argument guarantees that the maximum of the angle sum exists,
and it is attained by some configuration.

Observe that if l and l′ are two perpendicular lines and l′′ is an arbitrary third line,
then the angle sum determined by l, l′, and l′′ is always π. This implies that if we have a
perpendicular pair in a configuration of lines, then the pair can be freely rotated about
the origin while the total sum of the angles remains unchanged.

Let k = bn/2c, then n = 2k or n = 2k + 1. We are going to show that any config-
uration of n lines can be continuously transformed, so that it is the disjoint union of k
perpendicular pairs (and possibly one remaining line in arbitrary position) and the angle
sum does not decrease during the transformation. This clearly proves Theorem 2.2.

Assume that (l1, l2), . . . , (l2m−1, l2m), m < k is a maximal set of pairwise disjoint
perpendicular pairs in l1, . . . , ln. During the transformation we will keep each already
existing perpendicular pair. By the above observation, we may disregard these pairs as
the angle sum of l1, . . . , ln is independent of their positions.

Let ln be vertical (it coincides with the y-axis), see Figure 2.1. By symmetry, we may
clearly assume that there are at least as many lines to the right of ln as to the left. The
case l2m+1 = l2m+2 = . . . = ln being obvious, we may assume that there is at least one
line to the right of ln.

Observe that rotating ln by a small positive angle ε > 0, the sum of the angles in
l1, . . . , ln does not decrease. Thus, we may rotate ln until it becomes perpendicular to a
line on its right-hand side. In this way, we have created a new perpendicular pair that is
disjoint from (l1, l2), . . . , (l2m−1, l2m). This completes the proof of Theorem 2.2.

We only sketch the analysis of the equality case. It is clear that if equality holds then
the configuration of lines must be balanced. One can see that if n = 2k, then a balanced
configuration of n lines consists of k pairs of perpendicular lines. On the other hand, a
balanced configuration of n = 2k+ 1 lines, similarly as in the proof of the inequality, can
be continuously transformed into a disjoint union of k perpendicular pairs of lines and
one remaining line in arbitrary position such that the angle sum does not change during
the transformation. The details are left to the reader. This yields that for a fixed n the
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Figure 2.1: Rotating l1

angle sum is the same in any balanced configuration of n lines. This finishes the proof of
the equality case.

2.3 Proof of Theorem 2.1

Let S2 be the unit sphere of R3 centred at the origin. We denote the Euclidean scalar
product by 〈·, ·〉 and the induced norm by |·|. For u,v ∈ S2, we introduce vu = (u×v)×u,
which is the component of v perpendicular to u. Let v1,v2 ∈ S2, and let ϕ = ∠(v1,v2)

denote the angle formed by v1,v2. Introduce ϕu = ϕu(v1,v2) for the angle formed by vu
1

and vu
2 , and write

ϕu
∗ (v1,v2) := min{ϕu(v1,v2), π − ϕu(v1,v2)}.

Let
I(v1,v2) = I(ϕ) :=

1

4π

∫
S2

ϕu
∗ (v1,v2)du,

where the integration is with respect to the spherical Lebesgue measure. We will use the
following lemma of Fáry [Fár49].

Lemma 2.3 (Fáry, Lemme 1. on pp. 133 in [Fár49]).

ϕ =
1

4π

∫
S2

ϕudu for any 0 ≤ ϕ ≤ π.
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We start the proof of Theorem 2.1 with two lemmas. The main aim of these lemmas
is to verify that I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. From that fact Theorem 2.1 follows
quickly through an integral averaging argument. As a first step, we calculate the exact
values of I(ϕ) at the endpoints of the interval at ϕ = 0 and ϕ = π/2.

Lemma 2.4. With the notation introduced above,

I(0) = 0 and I(π/2) = π/3.

Proof. The statement I(0) = 0 is clearly true, so we need to calculate I(π/2) only. Let
v1 = (1, 0, 0), v2 = (0, 1, 0) and define A = {(x, y, z) ∈ S2 | xy ≤ 0}, AC = {(x, y, z) ∈
S2 | xy > 0}, and AC+ = {(x, y, z) ∈ S2 | xy > 0, x > 0}. Then the following holds

I(π/2) =
1

4π

∫
S2

ϕu
∗ (v1,v2)du =

1

4π

∫
A

ϕudu +
1

4π

∫
AC
π − ϕudu

=
1

4π

∫
S2

ϕudu− 1

4π

∫
AC
π − 2ϕudu

=
π

2
+

1

4π

∫
AC
πdu− 2 · 1

4π

∫
AC
ϕudu

= π − 4 · 1

4π

∫
AC+

ϕudu

using Lemma 2.3. Obviously, it is enough to show that∫
AC+

ϕudu =
2π2

3
.

Introduce the following spherical coordinates

u = u(θ, ψ) = (sin θ cosψ, sin θ sinψ, cos θ),

where 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π. It is easily seen that

ϕu(v1,v2) = arccos
〈(u× v1)× u, (u× v2)× u〉
|(u× v1)× u| · |(u× v2)× u|

= arccos
〈u× v1,u× v2〉
|u× v1| · |u× v2|

.

Straightforward calculations yield that u × v1 = (0, cos θ,− sin θ sinψ) and u × v2 =

(− cos θ, 0, sin θ cosψ), and hence

〈u× v1,u× v2〉 = − sin2 θ sinψ cosψ,

|u× v1| · |u× v2| =
√

cos2 θ + sin4 θ sin2 ψ cos2 ψ.

13



Thus ∫
AC+

ϕudu =

∫ π

0

∫ π/2

0

arccos
− sin2 θ sinψ cosψ√

cos2 θ + sin4 θ sin2 ψ cos2 ψ
· sin θ dψ dθ

= 2 ·
∫ π/2

0

∫ π/2

0

(
π − arctan

cos θ

sin2 θ sinψ cosψ

)
· sin θ dψ dθ

= π2 − 2

∫ π/2

0

∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θ dθ dψ. (2.1)

The inner integral in (2.1) can be directly calculated as follows. Let

g(θ, ψ) =
1

2
tanψ · ln (2 cos(2θ) cos(2ψ) + 2 cos(2θ)− 2 cos(2ψ) + 6)

+
1

2
cotψ · ln (−2 cos(2θ) cos(2ψ) + 2 cos(2θ) + 2 cos(2ψ) + 6)

− cos θ · arctan
cos θ

sin2 θ sinψ cosψ
.

One can check by a tedious but straightforward calculation that

∂g(θ, ψ)

∂θ
= arctan

cos θ

sin2 θ sinψ cosψ
· sin θ.

Now, for a fixed 0 < ψ < π/2, we obtain∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θ dθ

=
1

2
tanψ · ln (cos(π − 2ψ) + cos(π + 2ψ)− 2 cos(2ψ) + 4)

+
1

2
cotψ · ln (− cos(π − 2ψ)− cos(π + 2ψ) + 2 cos(2ψ) + 4)

−
[

1

2
tanψ · ln (cos(−2ψ) + cos(2ψ)− 2 cos(2ψ) + 8)

+
1

2
cotψ · ln (− cos(−2ψ)− cos(2ψ) + 2 cos(2ψ) + 8)− π/2

]

=
1

2
tanψ · ln(4(1− cos(2ψ))) +

1

2
cotψ · ln(4(1 + cos(2ψ)))

+ π/2− ln 8

2
(tanψ + cotψ)

=
1

2

(
π + tanψ ln(sin2 ψ) + cotψ ln(cos2 ψ)

)
=
π

2
+ tanψ ln(sinψ) + cotψ ln(cosψ).
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We turn to the outer integral in (2.1).∫ π/2

0

∫ π/2

0

arctan
cos θ

sin2 θ sinψ cosψ
· sin θ dθ dψ

=

∫ π/2

0

π

2
+ tanψ ln(sinψ) + cotψ ln(cosψ) dψ

=
π2

4
+

∫ π/2

0

tanψ ln(sinψ) dψ +

∫ π/2

0

cotψ ln(cosψ) dψ.

Using the substitution u = sinψ in the first integral and u = cosψ in the second integral,
we obtain that∫ π/2

0

tanψ ln(sinψ) dψ =

∫ π/2

0

cotψ ln(cosψ) dψ =

∫ 1

0

u lnu

1− u2
du.

Integration by parts gives∫ 1

0

u lnu

1− u2
du =

− lnu ln(1− u2)
2

∣∣∣∣1
0

+
1

2

∫ 1

0

ln(1− u2)
u

du,

where − lnu ln(1−u2)
2

∣∣∣1
0

= 0 by L’Hospital’s rule. Now, the substitution x = u2 yields

1

2

∫ 1

0

ln(1− u2)
u

du =
1

4

∫ 1

0

ln(1− x)

x
dx =

−1

4

∫ 1

0

Li1(x)

x
dx

=
−1

4
Li2(1) =

−π2

24
,

where in the last two steps we used the polylogarithm functions Lis(z) and their well-
known properties. For more information on the polylogarithm functions we refer to
[Zag89]. This finishes the proof of Lemma 2.4.

Lemma 2.5. The function I(ϕ) is concave on [0, π/2], and

I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. (2.2)

Before we turn to the proof of Lemma 2.5, for the sake of completeness, we recall
some definitions and a theorem from [Bru64].

The function f : [a, b]→ R is superadditive on [a, b] if for any positive h < b− a and
x ∈ [a, b− h], f(a+ h)− f(a) ≤ f(x+ h)− f(x), cf. Definition 2.2 on pp. 61 in [Bru64].
We call f locally superadditive on [a, b] if for every x0 ∈ [a, b], there exist arbitrarily
small neighbourhoods of x0 on which f is superadditive, cf. Definition 2.3 on pp. 62 in
[Bru64].
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Theorem 2.6 (Bruckner, Theorem 3.1. on pp. 62 in [Bru64]). Let f be locally super-
additive and differentiable on an interval [a, b], with f ′ continuous almost everywhere in
[a, b]. Then f is convex.

Proof of Lemma 2.5. Obviously, I(ϕ) is a continuously differentiable function of ϕ on
[0, π/2].

Fix 0 ≤ α ≤ β ≤ π/2, a small 0 ≤ δ ≤ π/2−β, and a vector u ∈ S2. Let ∠(·, ·) denote
the angle formed by two vectors. Choose four coplanar vectors w1,w2,w3,w ∈ S2 such
that ∠(w1,w2) = α, ∠(w1,w3) = β, ∠(w1,w) = δ, ∠(w,w2) = α + δ, and ∠(w,w3) =

β + δ. As before, we use the abbreviations αu = αu(w1,w2) and αu
∗ = αu

∗ (w1,w2), and
similarly for the other angles.

We claim that
(α + δ)u∗ − αu

∗ ≥ (β + δ)u∗ − βu
∗ . (2.3)

To prove (2.3), we write the left-hand side, and, respectively, the right-hand side as
follows:

(α + δ)u∗ − αu
∗ =


−δu, if αu > π/2,

π − 2αu − δu, if αu ≤ π/2 and (α + δ)u > π/2,

δu, if (α + δ)u ≤ π/2,

(2.4)

and

(β + δ)u∗ − βu
∗ =


−δu, if βu > π/2,

π − 2βu − δu, if βu ≤ π/2 and (β + δ)u > π/2,

δu, if (β + δ)u ≤ π/2.

(2.5)

To show (2.3), we consider three cases as in (2.4). If αu > π/2, then βu > π/2,
and equality holds in (2.3). If αu ≤ π/2 and (α + δ)u > π/2, then (β + δ)u > π/2,
and either the first or the second case applies in (2.5). Now, π − 2αu − δu ≥ −δu

is equivalent to αu ≤ π/2, thus it holds true. Also, from αu ≤ βu, it follows that
π − 2αu − δu ≥ π − 2βu − δu, as claimed. The only case that remains to be checked is
when (α + δ)u ≤ π/2, and thus (α + δ)u∗ − αu

∗ = δu. If, in (2.5), the first or the third
case applies, then the inequality in (2.3) clearly holds. Thus, we only need to consider
the case when (β+ δ)u > π/2. Then δu > π− 2βu− δu, which finishes the proof of (2.3).

Since (2.3) holds true for any unit vector u ∈ S2, it follows that for any 0 ≤ α ≤ β ≤
π/2, and 0 ≤ δ ≤ π/2− β, we have

I(α + δ)− I(α) ≥ I(β + δ)− I(β). (2.6)
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Hence −I is superadditive on any subinterval of [0, π/2], and thus it satisfies all the
conditions of Theorem 2.6 on the interval [0, π/2]. It follows that −I is convex, and so I
is concave, as stated. Finally, the inequality (2.2) is a simple consequence of Lemma 2.4
and of the concavity of I. This completes the proof of Lemma 2.5.

Proof of Theorem 2.1. Consider the lines l1, . . . , ln, and a vector u ∈ S2. Let S be the
plane through the origin with normal vector u, and let l′i denote the orthogonal projection
of the line li onto S. We denote by ϕu

ij the (non-obtuse) angle formed by l′i and l′j.
Applying (2.2), we obtain that

1

4π

∫
S2

∑
1≤i<j≤n

ϕu
ij du =

∑
1≤i<j≤n

1

4π

∫
S2

ϕu
ij du

≥
∑

1≤i<j≤n

2ϕij/3 =
2

3

∑
1≤i<j≤n

ϕij.

Therefore, there exists a u0 ∈ S2 with the property∑
1≤i<j≤n

ϕu0
ij ≥

2

3

∑
1≤i<j≤n

ϕij.

Finally, Theorem 2.2 implies that

∑
1≤i<j≤n

ϕu0
ij ≤

{
k2 · π

2
, if n = 2k,

k(k + 1) · π
2
, if n = 2k + 1,

which completes the proof of Theorem 2.1.

And thus, we successfully gave a better upper bound on the angle-sum of lines in 3
dimensions.
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Chapter 3

Covering the sphere by equal zones

3.1 Introduction

This chapter is based on the joint paper [FVZ16b] by F. Fodor, V. Vígh and the author of
this thesis. The question considered in this part of the dissertation belongs to the family
of problems about arrangements of great circles (and great subspheres) on the sphere.

Let S2 denote the unit sphere in 3-dimensional Euclidean space R3 centred at the
origin o. The spherical distance ds(x, y) of two points x, y ∈ S2 is defined as the length
of a (shorter) geodesic arc connecting x and y on S2, or equivalently, the central angle
∠xoy spanned by x and y. Following L. Fejes Tóth [FT73], a zone Z of half-width w in
S2 is the parallel domain of radius w of a great circle C, that is,

Z(C,w) := {x ∈ S2 | ds(x,C) ≤ w}.

Alternately, one can also define the zone Z(C,w) as the part of the sphere S2 between
two o-symmetric parallel planes whose distance is 2 sinw. We call C the central great
circle of Z.

In this chapter, we investigate the following problem.

Problem 3.1 (L. Fejes Tóth [FT73]). For a given n, find the smallest number wn such
that one can cover S2 with n zones of half-width wn. Find also the optimal configurations
of zones that realize the optimal coverings.

The problem was originally phrased in a different way in [FT73]: Minimize the max-
imum of the inradii of the regions into which the n great circles divide S2. This is clearly
equivalent to the above formulation.

We note that in the same paper [FT73] L. Fejes Tóth also asked the analogous question
with not necessarily congruent zones, and conjectured that the sum of the half-widths of
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the zones that can cover S2 is always at least π/2. Furthermore, L. Fejes Tóth [FT73]
posed the question: what is the minimum of the sum of the half-widths of n (not neces-
sarily congruent) zones that can cover a spherically convex disc on S2? Here, a compact
set in S2 with non-empty interior is a spherically convex disc if it is contained in an open
hemisphere and together with any two of its points it also contains the shorter great
circular arc connecting the points.

Notice that although a zone on the sphere is the intersection of a Euclidean plank
and the sphere, the zone itself is not spherically convex. In fact, it is bounded by small
circles. This is a source of various difficulties when dealing with zones.

These questions are somewhat similar to the classical plank problem of Tarski [Tar32].
According to the original conjecture of Tarski, if a convex body K ⊆ Rd is covered by
a finite number of planks (the part of space between two parallel hyperplanes whose
distance is the width of the plank), then the sum of their widths is not less than the
minimal width of K. The minimal width of K is the minimum of the widths of planks
that cover K. This form of Tarski’s conjecture was proved by Bang [Ban50,Ban51]. We
refer to the paper [Bez13] by K. Bezdek for a recent survey on this topic. However,
this similarity between Tarski’s problem and the zone covering problem of L. Fejes Tóth
is limited by the fact that the zones are not spherically convex, and by the different
behaviour of the width of spherically convex bodies.

L. Fejes Tóth formulated the following conjecture about the sphere and zones:

Conjecture 3.2 (L. Fejes Tóth [FT73]). For n ≥ 1, wn = π/(2n).

One can get some trivial upper and lower bounds for wn as follows. It is clear that
wn ≤ π/(2n) since n zones of half-width π/(2n), whose central great circles all pass
through a pair of antipodal points of S2 and which are distributed evenly, cover S2. On
the other hand, as the zones must cover S2, the sum of their areas must be at least
(actually, greater than) 4π, that is, wn > arcsin(1/n).

Rosta [Ros72] proved that w3 = π/6, and that the unique optimal configuration
consists of three zones whose central great circles pass through two antipodal points of
S2 and are distributed evenly. Linhart [Lin74] showed that w4 = π/8, and the unique
optimal configuration is similar to the one for n = 3.

In our paper (cf. [FVZ16b, Remark 3, pp. 487–488]) we formulated the natural
generalization of the problem for d dimensions that seeks the minimum width w(d, n)

of n congruent zones on the d-dimensional unit sphere Sd−1 that can form a covering.
Although we did venture to formulate a conjecture, we calculated that w(d, 3) = π/6 for
all d ≥ 3.
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In 2017, Jiang and Polyanskii [JP17] proved the original conjecture of L. Fejes Tóth
for d = 3, and also its generalized version in d dimensions. They also proved the following
spherical analogue of Tarski’s plank problem for symmetric bodies that originates from
the same paper of L. Fejes Tóth [FT73]: If a centrally symmetric convex body on the
sphere is covered with a finite number of zones of total width w then the body can also
be covered by a single zone of width w. Their idea of the proof is inspired by Bang’s
lemma and the result of Goodman and Goodman [GG45].

The rest of this chapter is organized as follows. In Section 3.2, we determine the
area of the intersection of two congruent zones as a function of their half-widths and the
angle of their central great circles under some suitable restrictions (that the intersection
is not connected). In Section 3.3, we use the currently known best upper bounds for
the Tammes problem (a classical packing problem on the sphere, see the details later) in
which one seeks the maximum of the minimal pairwise spherical distances of n points in
S2. Subsequently, we estimate from above the contribution of the zones in an optimal
covering one-by-one. Adding up these estimated contributions, we obtain a lower bound
for wn. The main result of this chapter is stated in Theorem 3.6. The reason why the
main theorem is only phrased at the end of the chapter is that its formulation requires
a number of definitions and notations that are introduced only in the argument. We
finish the chapter by calculating some numerical values of the established lower bound
and comparing them with the trivial and conjectured bounds.

3.2 Intersection of two zones

We start with the following simple observation. Consider two zones Z1 and Z2 of half-
width w whose central great circles make an angle α. If α ≥ 2w, then the intersection
of Z1 and Z2 is the union of two disjoint congruent spherical domains. These domains
are symmetric to each other with respect to o, and they resemble to a rhombus which
is bounded by four small circular arcs of equal (spherical) length. If α ≤ 2w, then the
intersection is a connected, band-like domain. Let 2F (w, α) denote the area of Z1 ∩ Z2.

Lemma 3.3. Let 0 ≤ w ≤ π/4 and 2w ≤ α ≤ π/2. Then

F (w, α) = 2π + 4 sinw arcsin

(
1− cosα

cotw sinα

)
+ 4 sinw arcsin

(
1 + cosα

cotw sinα

)
(3.1)

− 2 arccos

(
cosα− sin2w

cos2w

)
− 2 arccos

(
− cosα− sin2w

cos2w

)
.

Moreover, F (w, α) is a monotonically decreasing function of α in the interval [0, π/2].
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Proof. First, we prove (3.1). Let Z1 be the zone of half-width w whose central great circle
C1 is the intersection of the xy-plane with S2. Let c1 and c3 denote the small circles which
bound Z1 such that c1 is contained in the closed half-space z ≥ 0.

Let Z2 be the zone of half-width w whose central great circle C2 is the intersection
of S2 with the plane which contains the y-axis and which makes an angle α with the
xy-plane as shown in Figure 3.1. Let c2 and c4 be the small circles bounding Z2, cf.
Figure 3.1.

The intersection Z1∩Z2 is the union of two connected components R1 and R2. Assume
that R1 is contained in the closed half-space y ≤ 0. Let c′i, i = 1, . . . , 4 denote the arc of
ci that bounds R1. Observe that c′1, . . . , c′4 are of equal length; we denote their common
arc length by l(w, α). The radii of c1, . . . , c4 are all equal to cosw.

Assume that the boundary ∂R1 of R1 is oriented such that the small circular arcs
follow each other in the cyclic order c′1, c′2, c′3, c′4. For i ∈ {1, . . . , 4}, let ϕi(w, α) denote
the turning angle of ∂R1 at the intersection point of c′i and c′i+1 with the convention that
c5 = c1. Notice that the signed geodesic curvature of ∂R1 (in its smooth points) is equal
to − tanw.

By the Gauss–Bonnet Theorem it holds that

F (w, α) = 2π + 4 tanw · l(w, α)−
4∑
i=1

ϕi(w, α).

Next, we calculate the ϕi(w, α). Note that ϕi(w, α) = ϕi+2(w, α) for i = 1, 2.
Let Π1 be the plane whose normal vector is u1 = (0, 0, 1) and contains the point

(0, 0, sinw). Let Π2 be the plane which we get by rotating Π1 around the y-axis by angle
α so its normal vector is u2 = (− sinα, 0, cosα), see Figure 3.1. Note that S2 ∩ Π1 = c1

and S2 ∩ Π2 = c2.

Π1 : z = sinw

Π2 : − x sinα + z cosα = sinw

Now let L1 = Π1∩Π2 and L1∩S2 = {l1, l′1}, such that l1 has negative y-coordinate. Then

l1 =

(
sinw(cotα− cscα),−

√
1− sin2w(1 + (cotα− cscα)2), sinw

)
.

Let Π be the plane that is tangent to S2 in l1, and let E1 = Π1∩Π and E2 = Π2∩Π. Then
ϕ1 is one of the angles made by E1 and E2. Let v1 = l1 × u1 and v2 = l1 × u2. Then v1
and v2 are vectors parallel to E1 and E2, respectively, such that their orientations agree
with that of ∂R1.

v1 =

(
−
√

1− sin2w(1 + (cotα− cscα)2),− sinw(cotα− cscα), 0

)
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Figure 3.1: Orthogonal projection onto the xz plane
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v2 =

(
− cosα

√
1− sin2w(1 + (cotα− cscα)2),− cosα sinw(cotα− cscα)−

− sinα sinw,− sinα
√

1− sin2w(1 + (cotα− cscα)2)

)
.

We only need to calculate the lengths of v1 and v2 and their scalar product. By routine
calculations we obtain

ϕ1 = arccos
〈v1, v2〉
|v1||v2|

= arccos

(
cosα− sin2w

cos2w

)
.

The angle ϕ2 can be evaluated similarly; one only needs to write π − α in place of α in
the above calculations. Then

ϕ2 = arccos

(
− cosα− sin2w

cos2w

)
.

To finish the calculation, we need to find l(w, α). Let li := c′i ∩ c′i+1 for i = 1, 2, 3, 4

with c′5 = c′1. Let di, i = 1, . . . , 4 be the absolute value of the y-coordinate of li. Simple
trigonometry shows that

d1 =
1− cosα

cotw sinα
,

and
d4 =

1 + cosα

cotw sinα
.

Then the length of c′1 is equal to the following

l(w, α) = cosw arcsin d1 + cosw arcsin d4 (3.2)

= cosw arcsin

(
1− cosα

cotw sinα

)
+ cosw arcsin

(
1 + cosα

cotw sinα

)
.

In summary,

F (w, α) = 2π + 4 sin(w) arcsin (tan(w)(csc(α) + cot(α)))

+ 4 sin(w) arcsin (tan(w)(csc(α)− cot(α)))

− 2 arccos

(
cos(α)− sin2(w)

cos2(w)

)
− 2 arccos

(
cos(α) + sin2(w)

− cos2(w)

)
(3.3)

Finally, we prove that F is monotonically decreasing in α. This is obvious in the
interval [0, 2w].

Let α ≥ 2w and ε > 0 be sufficiently small with α + ε ≤ π/2. Consider the spherical
“rhombus” R∗1 which is obtained as the intersection of Z1 and another zone Z∗2 of half-
width w whose central great circle C∗2 is the intersection of S2 with the plane which
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contains the y-axis and which makes an angle α+ ε with the xy-plane, similarly as for Z2

above. Let F1 be the area of R1 \R∗1 and F ∗1 be the area of R∗1 \R1. For the monotonicity
of F (w, α) in α, we only need to show that F1 > F ∗1 .

The region R1 \ R∗1 consists of two disjoint congruent connected domains (in fact,
two triangular regions bounded by arcs of small circles). Note that one such region, say
P , is fully contained in the positive hemisphere of S2 (z ≥ 0), and the other region
is contained in the negative hemisphere (z ≤ 0). Similarly, let Q be the one of the two
connected, congruent and disjoint regions whose union is R∗1\R1 and which has a common
(boundary) point with P . Let q = P ∩ Q, then q has positive z-coordinate. It easily
follows from the position of q that the arc c2 ∩ Q is longer than c2 ∩ P , and, similarly,
c∗2∩Q is longer than c∗2∩P , so the area of Q is larger than the area of P , which completes
the proof of the Lemma.

Remark 3.4. Let Z1 and Z2 be two zones of half-width w ∈ (0, π/4] which make an
angle α. Then it is clear that the area of Z1 ∪ Z2 is a monotonically increasing function
of α for α ∈ [0, 2w].

3.3 A lower bound for the minimal width

We start this section by discussing the Tammes problem, which belongs to the family of
questions about arrangements of points on the sphere that we mentioned in the previous
chapter of this dissertation. For an integer n ≥ 3, let dn denote the maximum of the
minimal pairwise (spherical) distances of n points on the unit sphere S2. Finding dn

is a long-standing problem of discrete geometry which goes back to the Dutch botanist
Tammes (1930) (see [Tam30]). He was originally interested in the beautifully symmetric
arrangements of orifices on grains of pollen. This is a notoriously hard problem which
is solved only for a few special (small) values of n, and for other n there are only some
general bounds. More precisely, as of now, the exact value of dn is only known in the
following cases, see Table 3.1 below.

Alternate proofs were given by Hárs [Hár86] for the case n = 10, and by Böröczky
[Bör83] for the case n = 11.

For n ≥ 3, L. Fejes Tóth (see [FT72]) proved the following upper estimate

dn ≤ δ̃n := arccos

(
cot2

(
n
n−2

π
6

)
− 1

2

)
, (3.4)

where equality holds exactly in the cases n = 3, 4, 6, 12 (see table below). Moreover,
limn→∞ δ̃n/dn = 1, that is, δ̃n provides an exact asymptotic upper bound for dn as n→∞.
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n dn

3 2π/3 L. Fejes Tóth [FT43]

4 1.91063 L. Fejes Tóth [FT43]

5 π/2 Schütte, van der Waerden [SvdW51]

6 π/2 L. Fejes Tóth [FT43]

7 1.35908 Schütte, van der Waerden [SvdW51]

8 1.30653 Schütte, van der Waerden [SvdW51]

9 1.23096 Schütte, van der Waerden [SvdW51]

10 1.15448 Danzer [Dan86]

11 1.10715 Danzer [Dan86]

12 1.10715 L. Fejes Tóth [FT43]

13 0.99722 Musin, Tarasov [MT12]

14 0.97164 Musin, Tarasov [MT15]

24 0.76255 Robinson [Rob61]

Table 3.1: Known (approximate) values of dn

Robinson [Rob61] improved the upper estimate (3.4) of L. Fejes Tóth as follows.
Assume that the pairwise distances between the n points on the sphere are all at least
a where 0 < a < arctan 2. Let ∆1(a) denote the area and α̃ the internal angle of an
equilateral spherical triangle with side length a, and ∆2(a) denote the area of a spherical
triangle with two sides of length a making an angle of 2π − 4α̃. Let δn be the unique
solution of the equation 4n∆1(a) + (2n − 12)∆2(a) − 12π = 0. Then (cf. [Rob61])
dn ≤ δn ≤ δ̃n for n ≥ 13.

Let d∗n := min{π/2, dn} for n ≥ 2, and let

δ∗n :=

d∗n for 3 ≤ n ≤ 14 and n = 24,

δn otherwise.
(3.5)

We will also need a lower bound on dn for our argument. We note that, for example,
van der Waerden [vdW52] proved a non-trivial lower bound on dn, however, for our pur-
poses the following simpler bound is sufficient. Set %n := arccos(1 − 2/n), and consider
a maximal (saturated) set of points p1, . . . , pm on the unit sphere S2, such that their
pairwise spherical distances are at least %n. By maximality it follows that the spherical
circular discs (spherical caps) of radius %n centered at p1, . . . , pm cover S2. As the (spher-
ical) area of such a cap is 4π/n, we obtain that m · 4π/n ≥ 4π, that is, m ≥ n, which
implies that %n := arccos(1 − 2/n) ≤ dn. As x ≤ arccos(1 − x2/2) for 0 ≤ x ≤ 1, the
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following inequality is immediate

2√
n
≤ d∗n ≤ δ∗n. (3.6)

For 0 ≤ α ≤ π/2 and n ≥ 3 we introduce f(w, α) = 4π sinw − 2F (w, α) and

G(w, n) = 4π sinw +
n∑
i=2

f(w, δ∗2i).

Lemma 3.5. For a fixed n ≥ 3, the function G(w, n) is continuous and monotonically
increasing in w in the interval [0, δ∗2n/3]. Furthermore, G(0, n) = 0 and G(δ∗2n/3, n) ≥ 4π.

Proof. The continuity of G and that G(0, n) = 0 are obvious. First we show that the
function f(w, α) is monotonically increasing in w for 0 ≤ w ≤ α/3. This clearly implies
that G(w, n) is also monotonically increasing in the interval stated in the lemma. As
n ≥ 3, we may and do assume that w ≤ δ∗6/3 = π/6.

Note that f(w, α) is the area of a zone of half-width w minus the area of its intersection
with a second zone of half-width w whose central great circle makes an angle α with the
central great circle of the first zone. With the same notations as in the proof of Lemma 3.3,
it is clear that for sufficiently small ∆w > 0, the quantity f(w + ∆w, α) − f(w, α) is
(roughly) proportional to 2l(c1) − 4l(c′1) − 4l(c′2) = 2(l(c1) − 4l(c′1)). Notice that, for
a fixed w ∈ [0, π/4], the function l(c′1) = l(w, α) is monotonically decreasing in α for
α ∈ [2w, π/2]. Thus, using 3w ≤ α,

l(c1)− 4l(c′1) ≥ l(c1)− 4l(w, 3w) =

= 4 cosw

(
π

2
− arcsin

(
1− cos(3w)

cotw sin(3w)

)
− arcsin

(
1 + cos(3w)

cotw sin(3w)

))
.

One can check that if w ∈ (0, π/6], then both arguments in the above arcsin functions
take on values in [0, 2/3]. By the monotonicity and convexity of arcsin, we obtain that

arcsin

(
1− cos(3w)

cotw sin(3w)

)
+ arcsin

(
1 + cos(3w)

cotw sin(3w)

)
≤ arcsin(2/3)

3 tanw

sin(3w)

≤ arcsin(2/3)
3 tan(π/6)

sin(π/2)
=

2
√

3

3
<
π

2
,

which shows the monotonicity of G(w, n).
Finally, we show that G(δ∗2n/3, n) ≥ 4π. For n ≤ 24, this statement can be checked

by direct calculation, thus we may assume n ≥ 25. Using the definitions of G and f , and
Lemma 3.3, we obtain that

G

(
δ∗2n
3
, n

)
= n · 4π sin

δ∗2n
3
− 2 ·

n∑
i=2

F

(
δ∗2n
3
, δ∗2i

)
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≥ 4nπ sin
δ∗2n
3
− 2

n∑
i=2

F

(
δ∗2n
3
, δ∗2n

)
= 4nπ sin

δ∗2n
3
− 2(n− 1)F

(
δ∗2n
3
, δ∗2n

)
≥ 4nπ sin

δ∗2n
3
− 2(n− 1)F

(
δ∗2n
3
,
2δ∗2n

3

)
. (3.7)

Note that δ∗2n = δ2n for n ≥ 25. Elementary trigonometry yields that

F
(α

2
, α
)

= 4 sin
α

2
arcsin

(
tan2 α

2

)
+ 2π sin

α

2
− 2 arccos

(
1− 2 tan2 α

2

)
.

Thus (3.7) is equal to

4π sin
δ2n
3

+ 4(n− 1)

(
arccos

(
1− 2 tan2 δ2n

3

)
− 2 sin

δ2n
3

arcsin

(
tan2 δ2n

3

))
.

As n ≥ 25, we have that 0 < δ2n < 0.75. Using that cosx ≥ 1− x2/2 for x ∈ [0, π/2],
we obtain that

arccos

(
1− 2 tan2 δ2n

3

)
≥ 2 tan

δ2n
3
.

Similarly, as for 0 < x < 0.16 we have that x < 1.01 sinx, we obtain that

2 sin
δ2n
3

arcsin

(
tan2 δ2n

3

)
< 2.02 tan3 δ2n

3
.

Finally, using that x− 1.01x3 > x− 1.01 · 0.42 · x > 0.8x for 0 < x < 0.4, we obtain that
(3.7) can be estimated from below as follows

G

(
δ∗2n
3
, n

)
≥ 6.4(n− 1) tan

δ2n
3
> 2.1(n− 1)δ2n.

By (3.6) we know that δ2n >
√

2/
√
n, and thus the proof of Lemma 3.5 is complete.

Now, we are ready to state our main theorem.

Theorem 3.6. For n ≥ 3, let w∗n denote the unique solution of the equation G(w, n) = 4π

in the interval [0, δ∗2n/3]. Then arcsin(1/n) < w∗n ≤ wn.

Proof. Let Zi(wn, Ci), i = 1, . . . , n be zones that form a minimal covering of S2 with
respect to w. For i ∈ {1, . . . , n}, let pi be one of the poles of Ci and let pn+i = −pi. Then
there exist two points pi1 , pj1 ∈ {p1, . . . , p2n} with i1 < j1 and j1 6= n + i1 (that is, pi1
and pj1 are poles of two different great circles) such that ds(pi1 , pj1) ≤ d∗2n. Observe that
the area of the part of Zi1 that is not covered by any Zk with i1 6= k is at most f(w, δ∗2n)

by Lemma 3.3, inequality (3.6) and Remark 3.4. Now, remove Zi1 from the covering and
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repeat the argument for the remaining zones. Note that in the last step of the process,
there is only one zone left Zin , so the area of the part of Zin not covered by any other
zone is 4π sinw.

If for k = 1, . . . , n we add the areas of Zik not covered by any Zil for l > k, then the
sum is obviously bounded from above by G(w, n). Since Z1, . . . , Zn cover S2, therefore
G(w, n) ≥ 4π, which shows that w∗n ≤ wn. It is also clear form the argument that
arcsin(1/n) < w∗n. This finishes the proof of Theorem 3.6.

Note that instead of Robinson’s bound δn, one may use the original bound δ̃n of L.
Fejes Tóth, and prove Theorem 3.6, obtaining a lower bound w̃∗n for wn. Clearly, this
bound is slightly weaker than w∗n, that is, w̃∗n ≤ w∗n ≤ wn. However, thanks to the explicit
formula (3.4), w̃∗n can be computed more easily than w∗n. The difference between w∗n and
w̃∗n is shown in Table 3.2 for some specific values of n.

We also mention that for certain values of n Robinson’s upper bound has been im-
proved, see for example Böröczky and Szabó [BS03] for the cases n = 15, 16, 17. These
stronger upper bounds, if included in the calculations, would provide only a very small im-
provement on w∗n, so we decided to use only the known solutions of the Tammes problem
and Robinson’s general upper bound.

n arcsin(1/n) w̃∗n w∗n π/(2n)

5 0.20135 0.22983 0.22983 0.31415

6 0.16744 0.18732 0.18732 0.26179

7 0.14334 0.15824 0.15824 0.22439

8 0.12532 0.13692 0.13692 0.19634

9 0.11134 0.12063 0.12067 0.17453

10 0.10016 0.10782 0.10787 0.15707

15 0.06671 0.07044 0.07048 0.10471

20 0.05002 0.05229 0.05232 0.07853

24 0.04167 0.04335 0.04337 0.06544

25 0.04001 0.04157 0.04159 0.06283

50 0.02000 0.02050 0.02051 0.03141

100 0.01000 0.01016 0.01017 0.01570

Table 3.2: A few bounds for wn
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Chapter 4

On the multiplicity of arrangements of

congruent zones on the sphere

4.1 Introduction

This chapter of the thesis is based on the paper [BFVZ17] written jointly with A. Bezdek,
F. Fodor, and V. Vígh. The topic is essentially the same as in Chapter 3, where we studied
coverings of the sphere by spherical zones. In this part of the dissertation we investigate
arrangements of zones from a different point of view. The conjecture of L. Fejes Tóth
for finding the minimum width of n congruent zones that can cover the sphere can be
considered as a problem minimizing the density of coverings by equal zones. Here we
will also try minimize the number of mutually intersecting zones. If a point of the sphere
belongs exactly k zones, then we say that its multiplicity (in this arrangement) is k. Our
aim is to minimize the maximum multiplicity of points in an arrangement.

Our motivation comes, in part, from the classical paper of Erdős and Rogers [ER61],
where they investigated the multiplicity of coverings of Rd and Sd by convex bodies. They
proved, using a probabilistic argument, that Rd (d ≥ 3) can be covered by translates of a
given convex body such that the density of the covering is less than d log d+d log log d+4d

and no point of Rd belongs to more than e(d log d + d log log d + 4d) translates. Later,
Füredi and Kang [FK08] gave a different proof of the result of Erdős and Rogers using
John ellipsoids and the Lovász Local Lemma. Böröczky and Wintsche [BW03] showed
that for d ≥ 3 and 0 < ϕ < π/2, Sd can be covered by spherical caps of radius ϕ such
that the multiplicity of the covering is at most 400d ln d.

Our aim is to minimize, or at least control, both the density (the total surface area
of zones divided by the surface area of the sphere) and the multiplicity. Our method is
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also probabilistic.
Recall from the previous chapter that a plank in the Euclidean d-space Rd is a closed

region bounded by two parallel hyperplanes. The width of a plank is the distance between
its bounding hyperplanes. A (spherical) zone is the intersection of an origin-symmetric
Euclidean plank with Sd−1. The spherical half-width of the zone is arcsin(w/2), where w
is the width of the plank.

L. Fejes Tóth asked in [FT73] the exact value w(3, n) of the width of n congruent
zones that can cover S2. He conjectured that in the optimal configuration the central
great circles of the zones all go through an antipodal pair of points and they are distributed
equally. His conjecture (and its generalization to d-dimension) was recently proved by
Jiang and Polyanskii [JP17]as we have mentioned in the previous chapter. It turns
out that the optimal configuration is just as conjectured by L. Fejes Tóth, and thus
w(d, n) = π/n.

Here, we examine arrangements of congruent zones on Sd−1 from the point of view
of multiplicity. The multiplicity of an arrangement is the maximal number of zones with
nonempty intersection. We seek to minimize the multiplicity for given d and n as a
function of the common width of the zones. It is clear that for n ≥ d, the multiplicity of
any arrangement with n congruent zones is at least d and at most n. Notice that in the
Fejes Tóth configuration the multiplicity is exactly n, that is, maximal.

We start with a discussion regarding lower bounds on the multiplicity. If d = 3 and
n ≥ 3, then the multiplicity of any covering of S2 by n congruent zones is at least 3. Our
first result is a very slight strengthening of this simple fact for the case when n ≥ 4.

Theorem 4.1. Let n ≥ 1 be an integer, and let S2 be covered by the union of n congruent
zones. If each point of S2 belongs to the interior of at most two zones, then n ≤ 3.
Moreover, if n = 3, then the three congruent zones are pairwise orthogonal.

The first statement of theorem can be rephrased as follows: If n ≥ 4 congruent zones
cover S2, then there is a point that belongs to the interior of at least three zones. Note
that Theorem 4.1 does not imply that the multiplicity of a covering of S2 with n ≥ 4

congruent zones would have to be larger than 3. In fact, one can cover S2 with 4 zones
such that the multiplicity is 3. For this, consider three zones whose central great circles
pass through a pair of antipodal points (North and South Poles) and are distributed
evenly. Let the central great circle of the fourth zone be the Equator. The common
width can be chosen in such a way that there is no point contained in more than three
zones. Also, one can arrange five zones such that the multiplicity is still 3. We start with
the previously given four zones, and take another copy of the zone whose central great
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circle is the Equator. Now slightly tilt these two zones. It is not difficult to see that the
multiplicity of the resulting configuration is 3.

We further note, see Remark 4.6, that the statement of Theorem 4.1 can probably be
extended to all d ≥ 3. In particular, it certainly holds for 3 ≤ d ≤ 100.

Now, we turn to the question of finding upper bounds on the multiplicity of arrange-
ments of zones on Sd−1. This is a more technical result that needs some notations, some
of which will only be explained later. Let α : N→ (0, 1] be a positive real function with
limn→∞ α(n) = 0. For a positive integer d ≥ 3, let md =

√
2πd + 1. Let k : N→ N be a

function that satisfies the limit condition

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= β < 1, (4.1)

where
C∗d =

4(md + 1)(d− 1)κd−1
dκd

.

The following theorem is essentially the main result of this chapter. Note, however,
that it concerns not only coverings of the sphere by congruent zones but also arrangements
in general that may not cover Sd−1.

Theorem 4.2. For each positive integer d ≥ 3, and any real function α(n) described
above, for sufficiently large n, there exists an arrangement of n zones of spherical half-
width mdα(n) on Sd−1 such that no point of Sd−1 belongs to more than k(n) zones.

The following statement provides an upper bound on the multiplicity of coverings of
the d-dimensional unit sphere by n congruent zones.

Theorem 4.3. For each positive integer d ≥ 3, there exists a positive constant Ad such
that for sufficiently large n, there is a covering of Sd−1 by n zones of half-width md

lnn
n

such that no point of Sd−1 belongs to more than Ad lnn zones.

Below we list some interesting special cases of Theorem 4.3 according to the size of
the function α(n).

Corollary 4.4. With the same hypotheses as in Theorem 4.2, the following statements
hold.

i) If α(n) = n−(1+δ) for some δ > 0, then k(n) = const.. Moreover, if δ > d− 1, then
k(n) = d.

ii) If α(n) = 1
n
, then k(n) = Bd

lnn
ln lnn

for some suitable constant Bd.
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We note that Theorem 4.3 and an implicit version of Theorem 4.2 were proved by
Frankl, Nagy and Naszódi for the case d = 3, see [FNN16, Theorem 1.5 and Theorem 1.6]
and also the proof of Theorem 1.5 therein. They provided two independent proofs, one of
which is a probabilistic argument and the other one uses the concept of VC-dimension.
We further add that the weaker upper bound of O(

√
n) on the minimum multiplicity of

coverings of S2 was posed as an exercise in the 2015 Miklós Schweitzer Mathematical
Competition [KN16] by A. Bezdek, F. Fodor, V. Vígh and T. Zarnócz (cf. Exercise 7).

Our proofs of Theorems 4.2 and 4.3 are based on the probabilistic argument of Frankl,
Nagy and Naszódi [FNN16], which we modified in such a way that it works in all dimen-
sions. In the course of the proof we also give an upper estimate for the constant Ad whose
order of magnitude is O(d).

Obviously, there is a big gap between the lower and upper bounds for the multiplicity
of coverings of Sd−1 by congruent zones. At this time, it is an open problem if the
minimum multiplicity of coverings of Sd−1 by n congruent zones is bounded or not, and it
also remains unknown whether the multiplicity is monotonic in n, see the corresponding
conjectures of Frankl, Nagy and Naszódi on S2 in [FNN16, Conjectures 4.2 and 4.4].

4.2 Proofs

4.2.1 Proof of Theorem 4.1

Assume that n ≥ 3 and S2 is covered by n congruent zones such that no point of S2

belongs to the interior of more than two zones. Then the n central great circles of the
zones divide S2 into convex spherical polygons. As no three such great circles can pass
through a point of S2, every such polygon has at least three sides.

In contrast to the Euclidean plane, the incircle of every convex spherical polygon is
uniquely determined. The inradius of each such polygon is less than or equal to the
half-width of the zones.

We will use the following lemma.

Lemma 4.5. Every convex spherical polygon with k > 3 sides and inradius r contains a
point P whose distance from at least three sides is less than r.

Proof. Denote the incircle by C and denote its centre by O.
Case 1. There are at least three sides tangent to the incircle C.

Among the tangent sides there are two, say e and f , which are not adjacent on the
boundary of C. The extensions of e and f form a spherical 2-gon. Start moving the centre
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O along the diagonal of this 2-gon towards its closest endpoint. Then the distance of O
from the extended sides e and f continuously decrease and O eventually gets arbitrarily
close to an additional side. When this happens O is closer than r to at least three sides.
Case 2. There are exactly two sides tangent to the incircle C.

Let e and f be the only two sides tangent to the incircle C. Consider again the 2-gon
whose sides are the extensions of e and f . Notice that C is also the incircle of this 2-
gon. Thus, moving O along the diagonal towards either of the two endpoints continuously
decreases the distance of O from the extended sides e and f . At least one of the directions
will take O arbitrarily close to an additional side. When this happens O is, again, closer
than r to at least three sides.

Lemma 4.5 yields immediately that each spherical polygon determined by the n central
great circles of the zones is a spherical triangle. The vertices and sides of these triangular
domains form a planar graph G on S2. The number v of vertices is 2

(
n
2

)
, and the number

of edges is 2n(n− 1). By Euler’s formula, the number f of faces (the number of spherical
triangles) is

f = e+ 2− v = n2 − n+ 2.

Furthermore, the degree of each vertex is four, thus 4v = 3f , which yields that

n2 − n− 6 = 0.

The only positive root of the above quadratic equation is n = 3.
Let n = 3, and assume that the central great circles of two zones intersect in the

North and South poles of S2. The part of S2 not covered by these two zones is the
union of two or four spherical 2-gons bounded by small circular arcs that are parts of
the boundaries of the zones. If the uncovered part consists of only two such 2-gons, then
there must be a point of S2 which belongs to the interior of all three zones. As the
vertices of the uncovered 2-gons that are on the same hemisphere (say the Northern one)
must be on one of the bounding small circles of the third zone, they must be coplanar.
This is only satisfied when the first two zones are perpendicular. This finishes the proof
of Theorem 4.1.

Remark 4.6. Consider now n congruent zones on Sd−1 such that no point belongs to
the interior of more than d− 1 zones. Then the central great spheres of the zones divide
Sd−1 into convex spherical polytopes similar to the 3-dimensional case. We note that
the argument of Lemma 4.5 can be generalized to arbitrary d, only one has to consider
d− 1 cases instead of two. Thus, the central great spheres of the zones divide Sd−1 into
spherical simplices.
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Now, a similar combinatorial analysis can be carried out, with the help of the Euler-
Poincaré formula, as in S2. Let fi,d(n) denote the number of i-dimensional faces determ-
ined by the central great spheres of the n zones for d ≥ 3 and n ≥ d − 1. We use the
conventions: f−1,d(n) = 1 and fd,d(n) = 1. As we have seen in the proof of Lemma 4.5,
f0,3 = 2

(
n
2

)
, f1,3(n) = 2n(n− 1), and f2,3 = n2 − n+ 2.

Then we have the following recursions for fi,d(n) when d ≥ 4:

f0,d(n) = 2

(
n

d− 1

)
,

fi,d(n) =
n

d− i− 1
fi,d−1(n− 1) (1 ≤ i ≤ d− 2),

fd−1,d(n) =
2

d
fd−2,d(n).

As the n central great spheres are in general position, a vertex is incident with exactly
d−1 of them, which explains the formula for f0,d(n). Since the cells are simplices, counting
its facets one gets the identity 2fd−2,d(n) = dfd−1,d(n). Finally, if 1 ≤ i ≤ d − 2, then
consider a fixed central great sphere. The other central great spheres intersect the chosen
one in n − 1 great spheres (of one less dimension) that are in general position. Taking
into account that we have n great spheres and that an i-dimensional face is incident with
exactly d− i− 1 great spheres, one gets the second formula above.

Now, for a fixed d, using the Euler–Poincaré formula,
∑d

i=−1(−1)d+1fi,d(n) = 0 this
holds as we have a triangulation of Sd−1 into simplices one can obtain a polynomial
equation p(d, n) = 0 of degree at most d − 1 in n. When n = d, then n pairwise
orthogonal congruent zones satisfy all conditions, thus, n = d is always a root of p(d, n).
In particular, for 4 ≤ d ≤ 6, the reduced forms of p(d, n) in which the coefficient of nd−1

is 1 are the following

p(4, n) = (n− 4)(n+ 1)n,

p(5, n) = (n− 5)(n3 − n2 − 2n− 8),

p(6, n) = (n− 6)(n− 2)(n− 1)2n.

Thus, if d = 4 or 6, then n = d is the largest root that satisfies our conditions. In the
case d = 5 one can check that p(5, d) has two complex roots and two real roots, one real
root is 5 and the other one is smaller than 5.

We can now formulate the following conjecture.

Conjecture 4.7. Let d ≥ 3 and n ≥ 1 be integers, and let Sd−1 be covered by the union
of n congruent zones. If each point of Sd−1 belongs to the interior of at most d− 1 zones,
then n ≤ d− 1. Moreover, if n = d, then the d congruent zones are pairwise orthogonal
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By Theorem 4.1 and the above argument we have proved the first statement of Con-
jecture 4.7 for 3 ≤ d ≤ 6. If n = d, then the orthogonality of the zones can be proved
essentially the same way as in the proof of Theorem 4.1. Furthermore, we have computed
the roots of p(d, n) for 7 ≤ d ≤ 100 by computer (numerically) and observed than in each
case the largest real root is n = d, which supports our conjecture.

Finally we note that computer calculations suggest that in the case when d ≥ 6 is
even,

p(d, n) = (n− d)(n− d+ 5)
d−4∏
i=0

(n− i).

4.2.2 Proof of Theorem 4.2

For two points P,Q ∈ Sd−1, their spherical distance is the length of the shorter unit-
radius circular arc on Sd−1 that connects them. We denote the spherical distance by
dS(P,Q).

Let 0 < ω ≤ π/2. We say that the points P1, . . . , Pm ∈ Sd−1 form a saturated set for
ω if the spherical distances dS(Pi, Pj) ≥ ω for all i 6= j and no more points can be added
such that this property holds. Investigating the dependence of m on d and ω is a classical
topic in the theory of packing and covering; for a detailed overview of known results
in this direction see, for example, the survey paper by G. Fejes Tóth and Kuperberg
[FTK93].

It is clear that m is of the same order of magnitude as ω−(d−1). In the next lemma,
we prove a somewhat more precise statement. Although the content of the lemma is
well-known, we give a proof because we need inequalities for m with exact constants in
subsequent arguments, and also for the sake of completeness. Let κd denote the volume
of the d-dimensional unit ball Bd.

Lemma 4.8. Let 0 < ε < 1. Then there exists 0 < ω0 ≤ π/2 depending on ε with the
following property. Let 0 < ω < ω0, and let P1, . . . , Pm be a saturated point set for ω.
Then

(1 + ε)−1
dκd
κd−1

ω−(d−1) ≤ m ≤ (1 + ε)
8
d−1
2 dκd
κd−1

ω−(d−1).

Proof. The following formula is known for the surface area S(t) of a cap of height t of
Sd−1, cf. [BFH13, formula (3.4) on p. 796],

lim
t→0+

S(t) t−
d−1
2 = 2

d−1
2 κd−1.

Therefore, there exists 0 < t0 = t0(ε) such that for all 0 < t < t0 it holds that
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(1 + ε)−12
d−1
2 κd−1 ≤ S(t) t−

d−1
2 ≤ (1 + ε)2

d−1
2 κd−1.

Furthermore, let 0 < ω0 = ω0(ε) be such that t0 = 1− cosω0.
The spherical caps of (spherical) radius ω/2 centred at P1, . . . , Pm form a packing on

Sd−1, and the spherical caps of radius ω form a covering of Sd−1. In view of the above
inequalities for the surface area of caps, we obtain that for 0 < ω < ω0 it holds that

m(1 + ε)−1 2
d−1
2 κd−1

(
1− cos

ω

2

) d−1
2 ≤ dκd ≤ m(1 + ε)2

d−1
2 κd−1(1− cosω)

d−1
2 .

By simple rearrangement we get that

(1 + ε)−1
dκd

2
d−1
2 κd−1(1− cosω)

d−1
2

≤ m ≤ (1 + ε)
dκd

2
d−1
2 κd−1

(
1− cos ω

2

) d−1
2

.

Now, we use that for 0 < x < 1, it holds that x2/4 < 1 − cosx < x2/2, which follow
simply from the Taylor series of cosx, and obtain the desired inequalities

(1 + ε)−1
dκd
κd−1

ω−(d−1) ≤ m ≤ (1 + ε)
8
d−1
2 dκd
κd−1

ω−(d−1).

We denote a spherical zone of (spherical) half-width t by Π(t). Since, for small t, it
holds that

2(d− 1)κd−1 sin t < S(Π(t)) < 2(d− 1)κd−1 t,

it follows that
lim
t→0+

S(Π(t)) · t−1 = 2(d− 1)κd−1.

Let ε > 0. Then there exists t1 = t1(ε) > 0 such that for 0 < t < t1 the following holds

(1 + ε)−12(d− 1)κd−1 t ≤ S(Π(t)) ≤ (1 + ε)2(d− 1)κd−1 t.

Let α(n) be a given positive function with limn→∞ α(n) = 0. From now on, we fix
ε = 1, set md =

√
2πd+ 1, and assume n to be sufficiently large.

Let Q1, . . . , Qm be a saturated set of points on Sd−1 such that dS(Qi, Qj) ≥ α(n)/2

for any i 6= j. It follows from Lemma 1 that

m ≤ 2
8
d−1
2 dκd
κd−1

(α(n)/2)−(d−1)

= 2
2
d−1
2 dκd
κd−1

α(n)−(d−1)
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= cd α(n)−(d−1).

Consider n independent random points from Sd−1 chosen according to the uniform
probability distribution and consider the corresponding spherical zones
Π1, . . . ,Πn of (spherical) half-width mdα(n) whose poles are these points. Furthermore,
let Π−i , Π+

i be the corresponding planks of half-width (md − 1)α(n) and (md + 1)α(n),
respectively.

Now, we are going to estimate the probability of the event that there exists a point p
on Sd−1 which belongs to at least k = k(n) zones. The probability that a point p ∈ Sd−1

belongs to a spherical plank Π+
i can be estimated from above as follows.

P(p ∈ Π+
i ) ≤ 4(md + 1)(d− 1)κd−1

dκd
α(n) = C∗d α(n).

Note that C∗d = O(d) as d→∞.
Then

P(∃p ∈ Πi1 ∩ · · · ∩ Πik : for some 1 ≤ i1 < . . . < ik ≤ n)

≤ P(∃Qj ∈ Π+
i1
∩ · · · ∩ Π+

ik
: for some 1 ≤ i1 < . . . < ik ≤ n)

≤ m · P(Q1 ∈ Π+
i1
∩ · · · ∩ Π+

ik
: for some 1 ≤ i1 < . . . < ik ≤ n)

≤ m ·
(

n

k(n)

)
(C∗d α(n))k(n)

≤ cd α(n)−(d−1)
(

n

k(n)

)
(C∗d α(n))k(n)

An application of the Stirling-formula (cf. Page 10 of [FNN16]) yields that(
n

k

)
≤ C

nn

kk(n− k)n−k
(4.2)

for some suitable constant C > 0.
Then applying (4.2) we get that

cd α(n)−(d−1)
(

n

k(n)

)
(C∗d α(n))k(n)

≤cd α(n)−(d−1) · Cn
n(n− k(n))k(n)

(k(n))k(n)−n
(C∗d α(n))k(n)

≤c̃d α(n)k(n)−d+1

(
n

k(n)

)k(n)
(e · C∗d)k(n)

= c̃d α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
. (4.3)
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By (4.1) we obtain

lim sup
n→∞

P(∃p ∈ Πi1 ∩ · · · ∩ Πik : for some 1 ≤ i1 < . . . < ik ≤ n) < 1,

therefore the probability of the event that no point of Sd−1 belongs to at least k(n) zones
is positive for sufficiently large n. This finishes the proof of Theorem 4.2.

4.2.3 Proof of Theorem 4.3

Let α(n) = lnn
n
, and let k(n) = Ad lnn, where Ad be a suitable positive constant that

satisfies the following equation (
C∗d
x

)x
= e−d−x.

Then

(4.1) = lim
n→∞

c̃d
nd−1

(lnn)d−1
· nAd

(
C∗d
Ad

)Ad lnn
= 0. (4.4)

Furthermore, in this case the probability that an arbitrary fixed point p of Sd−1 is in
Π−i (for a fixed i) is

P(p ∈ Π−i ) ≥ 2−1 · 2(d− 1)κd−1
dκd

· (md − 1)α(n).

Using the inequality κd−1

dκd
> 1√

2πd
(cf. Lemma 1 in [BGW82]), we obtain that

P(p ∈ Π−i ) ≥ (md − 1)(d− 1)√
2πd

· lnn

n
= (d− 1)

lnn

n

Thus, the probability that ∪n1Πi does not cover Sd−1 satisfies

P(Sd−1 6⊆ ∪n1Πi) ≤ P(∃Qj /∈ ∪n1Π−i )

≤ m · P(Q1 /∈ ∪n1Π−i )

≤ cd

( n

lnn

)d−1
·
(

1− (d− 1)
lnn

n

)n
≤ 2cd

(
1

lnn

)d−1
for a sufficiently large n. Therefore

lim
n→∞

P(Sd−1 6⊆ ∪n1Πi) = 0. (4.5)

Thus, taking into account (4.4) and (4.5), the probability of the event that all Sd−1 is
covered by the zones and no point of Sd−1 belongs to more than Ad lnn zones is positive
for sufficiently large n. This finishes the proof of Theorem 4.3.
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We note that Ad = O(d) as d → ∞. Clearly, Ad can be lowered slightly by taking
into account all the factors of (4.4).

We further note that one can obtain the result of Theorem 4.3 with the help of
Theorem 1.6 of [FNN16] using the VC-dimension of hypergraphs; for more details we
refer to the discussion in [FNN16] after Theorem 1.6. However, as this alternate proof
is less geometric in nature, we decided to describe the more direct probabilistic proof
of Theorem 4.3. We leave the proof of Theorem 4.3 that uses the VC-dimension to the
interested reader. Furthermore, the direct probabilistic argument provides an explicit
estimate of the involved constant Ad, as well.

4.2.4 Proof of Corollary 1

Let α(n) = 1
n1+δ for some δ > 0. If k = k(n) > (d− 1)/δ + d− 1, then

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= lim

n→∞
n(1+δ)(d−1)

(
e C∗d n

−δ

k

)k
= lim

n→∞
n(1+δ)(d−1)−δk = 0.

This means that in this case, for sufficiently large n, we can guarantee that one can
arrange n zones of half-width mdα(n) on Sd−1 such that no point belongs to more than
k = const. zones, and the value of k only depends on d and δ. Moreover, if δ > d − 1,
then k = d suffices. Of course, in this case the zones cannot cover Sd−1. This proves i)
of Corollary 1.

Now, let α(n) = 1
n
, and let k(n) = Bd

lnn
ln lnn

, where Bd > max{e C∗d , d−1} is a positive
constant. Then

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= lim

n→∞
nd−1

(
e C∗d ln lnn

Bd lnn

)Bd lnn
ln lnn

≤ lim
n→∞

n (d−1) ln lnn
Bd lnn ln lnn

lnn

Bd
lnn

ln lnn

= 0,

as

lim
n→∞

n
(d−1) ln lnn
Bd lnn ln lnn

lnn

= lim
n→∞

exp

(
d− 1

Bd

ln lnn+ ln ln lnn− ln lnn

)
= 0.

This finishes the proof of part ii) of Corollary 1. The above statement is interesting
because α(n) = 1

n
is the smallest order of magnitude for the half-width of the zones for

which one can possibly have a covering.
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We note that the d = 3 special case of part ii) of Corollary 1 was explicitly proved
by Frankl, Nagy and Naszódi in [FNN16] (cf. Theorem 4.1) in a slightly different form
both by the probabilistic method and using VC-dimension. We also note that the general
d-dimensional statement of part ii) of Corollary 1 may also be proved from Theorem 1.6
of [FNN16].
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Chapter 5

On the volume bound in the

Dvoretzky–Rogers lemma

5.1 Introduction

This chapter is based on the paper [FNZ18] written jointly with F. Fodor and M. Naszódi.
The topic of this part of the dissertation is slightly different from the previous three

which all belong to discrete geometry. The subject of this chapter is more part of the
theory of convex bodies. The study of properties of ellipsoids associated with convex
bodies is a rich topic in convexity. One of the classical results by John states that each
convex body contains a unique ellipsoid of maximal volume. It also has a famous counter-
part according to which each convex body is contained in a unique ellipsoid (Loewner’s
ellipsoid) of minimal volume. Each convex body has an affine image in which the largest
volume ellipsoid is the unit ball Bd. This relationship can be characterized in terms of
the contact points of the convex body and the sphere, see the exact statement below, cf.
Theorem 5.3. It turns out that in this case one can select a finite set of vectors from
the contact points that, with suitable positive weights, form a so-called isotropic vector
system, for the exact definition see also below. The term isotropic refers to the property
that for an arbitrary vector of space, if one adds the weighted components of this vector
parallel to the elements of the isotropic set, then one obtains the original vector. This
means that the weighted sum of the orthogonal projections to the lines determined by
the isotropic vectors is the identity map. This property has important consequences.
One such consequence is that such a vector system contains a subset that is close to an
orthonormal basis, and thus, spans a parallelotope of large volume. This is the contents
of the Dvoretzky–Rogers lemma, cf. Lemma 5.4 which gives a lower bound for the max-
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imal volume of this parallelotope. In this chapter we look at this volume bound from a
different, in fact, probabilistic point of view.

We note that our study of (5.7) is motivated in part by the recent proof [Nas16b] of a
conjecture of Bárány, Katchalski and Pach [BKP84,BKP82], where this bound is heavily
relied on. However, in this dissertation we do not elaborate on this.

Given a set of isotropic vectors in Euclidean d-space Rd (see definition below), the
Dvoretzky–Rogers lemma states that one may select a subset of d “well spread out”
vectors. As a consequence, the determinant of these d vectors is at least

√
d!/dd. This

selection is deterministic: we start with an arbitrary element of the set, and then select
more vectors one-by-one in a certain greedy manner.

Pivovarov [Piv10, Lemma 3, p. 49], on the other hand, chooses d vectors randomly
and then computes the expectation of the square of the resulting determinant. In this
note, we extend Pivovarov’s result to a wider class of measures, and apply this extension
to obtain the improved lower bound of Pelczyński and Szarek, cf. [PS91]Proposition 2.1,
on the maximum of the volume of parallelotopes spanned by d vectors from the support
of the measure. Thus, we give a probabilistic interpretation of the volume bound in the
Dvoretzky–Rogers lemma.

We denote the Euclidean scalar product by 〈·, ·〉, the induced norm by | · |. Recall
that a compact convex set K ⊂ Rd with non-empty interior a is called a convex body.
For more information and background on the properties of convex bodies and the general
theory, we refer to the books by Gruber [Gru07] and Schneider [Sch14].

Let Idd be the identity map on Rd. For u, v ∈ Rd, let u⊗v : Rd → Rd denote the tensor
product of u and v, that is, (u⊗v)(x) = 〈v, x〉u for any x ∈ Rd. Note that when u ∈ Sd−1

is a unit vector, u⊗ u is the orthogonal projection to the linear subspace spanned by u.
For two functions f(n), g(n), we use the notation f(n) ∼ g(n) (as n → ∞) if

limn→∞ f(n)/g(n) = 1.
An isotropic measure is a probability measure µ on Rd with the following two prop-

erties. ∫
Rd
x⊗ x dµ(x) = Idd, (5.1)

and the center of mass of µ is at the origin, that is,∫
Rd
x dµ(x) = 0. (5.2)

Pivovarov [Piv10] proved the following statement about the volume of random paral-
lelotopes spanned by d independent, isotropic vectors.
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Lemma 5.1 (Pivovarov [Piv10], Lemma 3). Let x1, . . . , xd be independent random vectors
distributed according to the isotropic measures µ1, . . . , µd in Rd. Assume that x1, . . . , xd
are linearly independent with probability 1. Then

E([det(x1, . . . , xd)]
2) = d!. (5.3)

We note that Lutwak, Yang and Zhang in [LYZ04, §2] established similar results for
the case of discrete isotropic measures, which could also be used to prove the volumetric
bounds in Theorem 5.5, see, for example, [LYZ04, formula (2.5) on page 167].

We extend Lemma 5.1 to a more general class of measures in the following way.

Lemma 5.2. Let x1, . . . , xd be independent random vectors distributed according to the
probability measures µ1, . . . , µd in Rd satisfying (5.1). Assume that µi({0}) = 0 for
i=1,. . . , d. Then (5.3) holds.

We provide a simple and direct proof of Lemma 5.2 in Section 5.2.
Lemmas 5.1 and 5.2 yield the value of the second moment of the volume of random

parallelotopes with isotropic generating vectors. On the other hand, Milman and Pajor
[MP, §3.7] gave a lower bound for the p-th moment (with 0 < p < 2) of this volume in the
case when the generating vectors are selected according to the uniform distribution from
an isotropic and origin-symmetric convex body; for more general results, cf. [BGVV14,
§3.5.1]. All of the previously mentioned results hold in expectation.

As a different approach, we mention Pivovarov’s work [Piv10], where lower bounds on
the volume of a random parallelotope are shown to hold with high probability under the
assumption that the measures are log-concave.

The literature on properties of random parallelotopes and random polytopes in general
is very rich and extensive. An overview of this topic would be beyond the scope of this
dissertation. For more information, we rather refer to the book by Schneider and Weil
[SW08], the survey by Schneider [Sch], and the references therein.

In this chapter, our primary, geometric motivation in studying isotropic measures is
the following celebrated theorem of John [Joh48], which we state in the form given by
Ball [Bal92] (see also [Bal97]).

Theorem 5.3. Let K be a convex body in Rd. Then there exists a unique ellipsoid
of maximal volume contained in K. Moreover, this maximal volume ellipsoid is the d-
dimensional unit ball Bd if and only if there exist vectors u1, . . . , um ∈ bdK ∩ Sd−1 and
(positive) real numbers c1, . . . , cm > 0 such that

m∑
i=1

ciui ⊗ ui = Idd, (5.4)
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and
m∑
i=1

ciui = 0. (5.5)

Note that taking the trace in (5.4) yields
∑m

i=1 ci = d. Thus, the Borel measure µK
on
√
dSd−1 with suppµK = {

√
du1, . . . ,

√
dum} and µK({

√
dui}) = ci/d (i = 1, . . . ,m) is

a discrete isotropic measure.
If a finite system of unit vectors u1, . . . , um in Rd, together with a set of positive weights

c1, . . . , cm satisfies (5.4) and (5.5), then we say that it forms a John decomposition of the
identity. For each convex body K, there exists an affine image K ′ of K for which the
maximal volume ellipsoid contained in K ′ is Bd, and K ′ is unique up to orthogonal
transformations of Rd.

The classical lemma of Dvoretzky and Rogers [DR50] states that in a John decom-
position of the identity, one can always find d vectors such that the selected vectors are
not too far from an orthonormal system.

Lemma 5.4 (Dvoretzky–Rogers lemma [DR50]). Let u1, . . . , um ∈ Sd−1 and c1, . . . , cm >

0 such that (5.4) holds. Then there exists an orthonormal basis b1, . . . , bd of Rd and a
subset {x1, . . . , xd} ⊂ {u1, . . . , um} with xj ∈ lin{b1, . . . , bj} and√

d− j − 1

d
≤ 〈xj, bj〉 ≤ 1 (5.6)

for j = 1, . . . , d.

Consider the parallelotope P spanned by the selected d vectors x1, . . . , xd. The volume
of P is bounded from below by

(Vol(P ))2 = [det(x1, . . . , xd)]
2 ≥ d!

dd
. (5.7)

The main results of this chapter are the following two statements. Theorem 5.5 is
essentialy the same as Proposition 2.1 of Pelczyński and Szarek [PS91], however, here we
give a probabilistic proof and interpretation. In Theorem 5.5 (ii) and (iii), we also note
that when m is small the improvement on the original Dvoretzky–Rogers bound is larger.

Theorem 5.5. Let u1, . . . , um ∈ Sd−1 be unit vectors satisfying (5.4) with some c1, . . . ,
cm > 0. Then there is a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with

[det(x1, . . . , xd)]
2 ≥ γ(d,m) · d!

dd
,

where γ(d,m) = md

d!

(
m
d

)−1, and m = min{m, d(d+ 1)/2}.
Moreover, for γ(d,m), we have
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(i) γ(d,m) ≥ γ(d, d(d+ 1)/2) ≥ 3/2 for any d ≥ 2 and m ≥ d. And γ(d, d(d+ 1)/2) is
monotonically increasing, and limd→∞ γ(d, d(d+ 1)/2) = e.

(ii) Fix a c > 1, and consider the case when m ≤ cd with c ≥ 1 + 1/d. Then

γ(d,m) ≥ γ(d, dcde) ∼
√
c− 1

c

(
c− 1

c

)(c−1)d

ed, as d→∞.

(iii) Fix an integer k ≥ 1, and consider the case when m ≤ d+ k. Then

γ(d,m) ≥ γ(d, d+ k) ∼ k!ek√
2π

ed

(d+ k)k+1/2
, as d→∞.

We note that in (ii) and (iii), the improvements are exponentially large in d as d tends
to infinity.

The following statement provides a lower bound on the probability that d independ-
ent, identically distributed random vectors selected from {u1, . . . , um} according to the
distribution determined by the weights {c1, . . . , cm} has large volume.

Proposition 5.6. Let λ ∈ (0, 1). With the notations and assumptions of Theorem 5.5, if
we choose the vectors x1, . . . , xd independently according to the distribution P(x` = ui) =

ci/d for each ` = 1, . . . , d and i = 1, . . . ,m, then with probability at least (1− λ)e−d, we
have that

[det(x1, . . . , xd)]
2 ≥ λγ(d,m) · d!

dd
.

The geometric interpretation of Theorem 5.5 is the following. IfK is a convex polytope
with n facets, and Bd is the maximal volume ellipsoid in K, then the number of contact
points u1, . . . , um in John’s theorem is at most m ≤ n. Thus, Theorem 5.5 yields a
simplex in K of not too small volume, with one vertex at the origin.

In particular, consider k = 1 in Theorem 5.5 (iii), that is, when K is the regular sim-
plex whose inscribed ball is Bd. Then the John decomposition of the identity determined
by K consists of d + 1 unit vectors that determine the vertices of a regular d-simplex
inscribed in Bd, which we denote by ∆d, and note that Vol(∆d) = (d + 1)

d+1
2 /(dd/2d!).

Clearly, in this John decomposition of the identity, the volume of the simplex determined
by any d of the vectors u1, . . . , ud+1 is

Vol(∆d)/(d+ 1) =
(d+ 1)

d−1
2

dd/2d!
. (5.8)

By Theorem 5.5, we obtain that

max[det(ui1 , . . . , uid)]
2≥(d+ 1)d−1

d!
· d!

dd
=

(d+ 1)d−1

dd
,
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which yields the same bound for the largest volume simplex as the right-hand-side of
(5.8). Thus, Theorem 5.5 is sharp in this case.

We will use the following theorem in our argument.

Theorem 5.7 ([Joh48,Peł90,Bal92,GS05]). If a set of unit vectors satisfies (5.4) (resp.,
(5.4) and (5.5)) with some positive scalars c′i, then a subset of m elements also satisfies
(5.4) (resp., (5.4) and (5.5)) with some positive scalars ci, where

d+ 1 ≤ m ≤ d(d+ 1)/2 (5.9)

(resp., d+ 1 ≤ m ≤ d(d+ 3)/2).

In Section 5.4, we outline a proof of Theorem 5.7 for two reasons. First, we will use
the part when only (5.4) is assumed, which is only implicitly present in [GS05]. Second,
in [GS05], the result is described in terms of the contact points of a convex body with
its maximal volume ellipsoid, that is, in the context of John’s theorem. We, on the other
hand, would like to give a presentation where the linear algebraic fact and its use in
convex geometry are separated. Nevertheless, our proof is very close to the one given in
[GS05].

5.2 Proof of Lemma 5.2

The idea of the proof is to slightly rotate each distribution so that the probability that
the d vectors are linearly independent is 1. Then we may apply Pivovarov’s lemma, and
use a limit argument as the d rotations each tend to the identity.

Let A1, . . . , Ad be matrices in SO(d) chosen independently of each other and of the xis
according to the unique Haar probability measure on SO(d). Fix an arbitrary non-zero
unit vector e in Rd. Note that Aixi/|xi| and Aie have the same distribution: both are
uniformly chosen points of the unit sphere according to the uniform probability distri-
bution on Sd−1. A bit more is true: the joint distribution of A1x1/|x1|, . . . , Adxd/|xd|
and the joint distribution of A1e, . . . , Ade are the same: they are independently chosen,
uniformly distributed points on the unit sphere. It follows that

P(A1x1, . . . , Adxd are lin. indep.) = P(A1e, . . . , Ade are lin. indep.) = 1.

Denote the Haar measure on Z := SO(d)d by ν. Thus, we have

1 = P(A1x1, . . . , Adxd are lin. indep.) =
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∫
Z

∫
Rd

∫
Rd
. . .

∫
Rd

1{A1x1,...,Adxd are lin. indep.}(x1, . . . , xd, A1, . . . , Ad)

dµ1(x1) . . . dµd(xd) dν(A1, . . . , Ad)

=

∫
Z

P(A1x1, . . . , Adxd are lin. indep. |A1, . . . , Ad) dν(A1, . . . , Ad),

where 1 denotes the indicator function.
Thus,

1 = P

[
P(A1x1, . . . , Adxd are lin. indep. |A1, . . . , Ad) = 1

]
. (5.10)

We call a d-tuple (A1, . . . , Ad) ∈ Z ‘good’ if A1x1, . . . , Adxd are linearly independent with
probability 1. In (5.10), we obtained that the set of not good elements of Z is of measure
zero.

Thus, we may choose a sequence (A
(j)
1 , A

(j)
2 , . . . , A

(j)
d ), j = 1, 2, . . . in Z, such that

‖A(j)
i − Idd‖ < 1/j for all i and j, and (A

(j)
1 , . . . , A

(j)
d ) is good for each j.

Note that for any j,[
det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2
≤ |A(j)

1 x1|2|A(j)
2 x2|2 . . . |A(j)

d xd|2, (5.11)

and
E
[
|A(j)

1 x1|2|A(j)
2 x2|2 . . . |A(j)

d xd|2
]

= dd. (5.12)

We conclude that

E
(
[det (x1, . . . , xd)]

2) =

E

([
det lim

j→∞

(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
(a)
=

E

([
lim
j→∞

det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
(b)
=

lim
j→∞

E

([
det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
,

where, in (a), we use that the determinant is continuous. In (b), Lebesgue’s Dominated
Convergence Theorem may be applied by (5.11) and (5.12).

Fix j and let y1 = A
(j)
1 x1, . . . , yd = A

(j)
d xd. In order to emphasize that the assumption

(5.2) is not needed, and also for completeness, we repeat Pivovarov’s argument. For
k = 1, . . . , d − 1, let Pk denote the orthogonal projection of Rd onto the linear subspace
span{y1, . . . , yk}⊥. Thus,

| det(y1, . . . , yd)| = |y1||P1y2| · · · |Pd−1yd|. (5.13)

Note that with probability 1, rankPk = d−k. It follows from (5.1) that E|Pkyk+1|2 = d−k.
Fubini’s Theorem applied to (5.13) completes the proof of Lemma 5.2.
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5.3 Proofs of Theorem 5.5 and Proposition 5.6

Let u1, . . . um ∈ Sd−1 be a set of vectors satisfying (5.4) with some positive weights
c1, . . . , cm. We set the probability of each vector ui, i = 1, . . .m as pi = ci/d, and obtain
a discrete probability distribution.

Let ui1 , . . . , uid be independent random vectors from the set u1, . . . , um chosen (with
possible repetitions) according to the above probability distribution.

By Lemma 5.2, we have that

E
(
[det(ui1 , . . . , uid)]

2
)

=
d!

dd
.

Since the probability that the random vectors ui1 , . . . , uid are linearly dependent is pos-
itive,

max[det(ui1 , . . . , uid)]
2 >

d!

dd
.

Our goal is to quantify this inequality by bounding from below the probability that the
determinant is 0. Let

M2 := max[det(ui1 , . . . , uid)]
2.

Note that if an element of {u1, . . . , um} is selected at least twice, then det(ui1 , . . . , uid) = 0.
Thus,

E
(
[det(ui1 , . . . , uid)]

2
)
≤M2P1,

where P1 denotes the probability that all indices are pairwise distinct. Therefore,

M2 ≥ d!

dd
· 1

P1

.

Note that P1 is a degree d elementary symmetric function of the variables p1, . . . , pm.
Furthermore, p1 + . . . + pm = 1 and pi ≥ 0 for all i = 1, . . . ,m. It can easily be seen
(using Lagrange multipliers, or by induction on m) that for fixed m and d, the maximum
of P1 is attained when p1 = . . . = pm = 1/m. Thus,

P1 ≤ d!

(
m

d

)
1

md
.

In summary,

M2 ≥ d!

dd
· m

d

d!

(
m

d

)−1
.

First, we note that γ(d,m) := md

d!

(
m
d

)−1 is decreasing in m. Thus, by (5.9), we may
assume that m is as large as possible, that is, m = d(d+1)

2
proving the first part of

Theorem 5.5.
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5.3.1 Proof of Theorem 5.5 (i)

Let γ(d) := γ (d, d(d+ 1)/2). We show that γ(d) is increasing in d.
With the notation m := d(d+ 1)/2, we note that (d+ 1)(d+ 2)/2 = m+ d+ 1. Thus,

γ(d+ 1)

γ(d)
=

(m+ d+ 1)d+1m · · · (m− d+ 1)

md(m+ d+ 1) · · · (m+ 1)
=

(m+ d+ 1)d

md
· m · · · (m− d+ 1)

(m+ d) · · · (m+ 1)

Thus, we need to show that

1 +
d+ 1

m
> d

√(
1 +

d

m

)(
1 +

d

m− 1

)
· · ·
(

1 +
d

m− d+ 1

)
,

which, by the AM/GM inequality follows, if

1 +
d+ 1

m
≥ 1 + d

1
m

+ 1
m−1 + . . .+ 1

m−d+1

d
,

which is equivalent to

d

m
≥ 1

m− 1
+

1

m− 2
+ . . .+

1

m− d+ 1
.

For this to hold, it is sufficient to show that for every integer or half of an integer
1 ≤ i ≤ d/2, we have that

2d

(d− 1)m
≥ 1

m− i
+

1

m− d+ i
. (5.14)

After substituting m = d(d+ 1)/2, it is easy to see that (5.14) holds.
Finally, limd→∞ γ(d) = e follows from Stirling’s formula.

5.3.2 Proof of Theorem 5.5 (ii) and (iii)

Stirling’s formula yields both claims.

5.3.3 Proof of Proposition 5.6

Let X denote the random variable X := [det(x1, . . . , xd)]
2, E := E(X) =

d!
dd
, and q := P

(
X ≥ λE

P1

)
, where, as in the proof of Theorem 5.5, P1 :=

P(x1, . . . , xd are pairwise distinct).
In the proof of Theorem 5.5, we established

P1 ≤ (γ(d,m))−1, and thus, q ≤ P

(
[det(x1, . . . , xd)]

2 ≥ λγ(d,m) · d!

dd

)
. (5.15)
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Using the fact that X is at most one, we have

E ≤ λE

P1

P

(
X <

λE

P1

and x1, . . . , xd are pairwise distinct
)

+ P

(
X ≥ λE

P1

)
.

That is, E ≤ λE
P1

(P1 − q) + q, and thus, by (5.15)

q ≥ (1− λ)E

1− λE
P1

≥ (1− λ)d!

dd − λγ(d,m)d!
≥ (1− λ)e−d,

completing the proof of Proposition 5.6.

5.4 Proof of Theorem 5.7

First, observe that (5.4) holds with some positive scalars ci, if and only if, the matrix
Idd/d is in the convex hull of the set A = {vi ⊗ vi : i = 1, . . . ,m} in the

real vector space of d×dmatrices. The setA is contained in the subspace of symmetric
matrices with trace 1, which is of dimension d(d + 1)/2 − 1. Carathéodory’s theorem
[Sch14, Theorem 1.1.4] now yields the desired upper bound on m.

In the case when both (5.4) and (5.5) are assumed, we lift our vectors into Rd+1 as
follows. Let v̂i =

√
d
d+1

(vi, 1/
√
d) ∈ Rd+1. It is easy to check that |v̂i| = 1, and that

(5.4) holds for the vectors v̂i with some positive scalars ĉi if, and only if, (5.4) and (5.5)
hold for the vectors vi with scalars ci = d

d+1
ĉi. Now, v̂i ⊗ v̂i, i = 1, . . . ,m are symmetric

(d+ 1)× (d+ 1) matrices of trace one, and their (d+ 1, d+ 1)th entry is 1/(d+ 1). The
dimension of this subspace of R(d+1)×(d+1) is d(d+3)/2−1, thus, again, by Carathéodory’s
theorem, the proof is complete.
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Chapter 6

Summary

6.1 On the angle sum of lines

This section is based on the paper [FVZ16b].
Consider n lines in the d-dimensional Euclidean space Rd which all pass through

the origin o. What is the maximum S(n, d) of the sum of the pairwise (non-obtuse)
angles formed by the lines? The conjectured optimal configuration consists of k + 1

copies of x1, . . . , xm and k copies of xm+1, . . . , xd. The sum of the pairwise angles in this
configuration is [(

d

2

)
k2 +mk(d− 1) +

(
m

2

)]
π

2
.

L. Fejes Tóth proved the conjecture in 3-dimensional space for n ≤ 6 and gave an
upper bound using a recursive formula: S(n, 3) ≤ n(n − 1)π/5. This means that the
sum of angles is asymptotically less than n2π/5 as n → ∞. In our paper [FVZ16b], we
improved this upper bound to 3n2π/16 ≈ 0.589 · n2, and later Bilyk and Matzke [BM19]
further improved it to

(
π
4
− 69

100d

)
n2 as n→∞. We note that their result for d = 3 gives

asymptotically less than 0.556 · n2 as n→∞. However, their bound is for general d.
Our contribution to this problem is summarized in the following theorem.

Theorem (2.1). Let l1, . . . , ln be lines in R3 which all pass through the origin. If we
denote by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
3
2
k2 · π

2
, if n = 2k,

3
2
k(k + 1) · π

2
, if n = 2k + 1.

We first investigated the planar case. We say that a pencil of lines is balanced if for
every line the number of other lines making a positive angle (smaller than π/2) and the
number of other lines making a negative angle differ by at most one.
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Theorem (2.2). Let l1, . . . , ln be lines in R2 which all pass through the origin. If we
denote by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
k2 · π

2
, if n = 2k,

k(k + 1) · π
2
, if n = 2k + 1.

Equality holds if, and only if, l1, . . . , ln is balanced.

Let v1,v2 be vectors and ϕ the angle between them. Then for the 3-dimensional case
we first define the function

I : [0, π/2]→ R, I(ϕ) :=
1

4π

∫
S2

ϕu
∗ (v1,v2)du,

where ϕu
∗ (v1,v2) is the angle between the perpendicular components of the vectors v1

and v2 to u, or the complement of that angle (to π), whichever is smaller. I(ϕ) is the
average angle of the orthogonal projections of the lines to a plane with normal vector u.

Next, we show, with the help of two lemmas, that I(ϕ) ≥ 2ϕ/3 for all ϕ ∈ [0, π/2].
The first lemma states that this holds at the end points of the domain, that is, for ϕ = 0

and ϕ = π/2.

Lemma (2.4). With the notation introduced above,

I(0) = 0 and I(π/2) = π/3.

The second lemma shows that I is concave. The combination of the two statements
clearly proves our claim.

Lemma (2.5). The function I(ϕ) is concave on [0, π/2], and

I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2.

From these results our main theorem follows directly. Since the average of the sum
of the pairwise angles of the projections (the average taken with respect to the normal
vector of the projecting plane) is at least 2/3 times the sum of the original angles, there
exist a u0 such that if we project the lines to the plane with normal vector u0 then the
sum of the angles formed by the projections is greater than 2/3 times the sum of the
angles formed by the lines. Finally we know the optimum for the planar case and hence
Theorem 2.1 holds.
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6.2 Covering the sphere by equal zones

This section is based on the paper [FVZ16a].
The main problem investigated in this section originates form L. Fejes Tóth’s paper

[FT73] and it is the focus of this section.

Problem (3.1). For a given n, find the smallest number wn such that one can cover S2

with n zones of half-width wn. Find also the optimal configurations of zones that realize
the optimal coverings.

Before our work the only known general lower bound was a trivial one: The sum of
the areas of the zones must be at least 4π, so the common half-width of the zones needs
to be at least arcsin(1/n). This trivial lower bound is of course not sharp in case n ≥ 2,
since any two zones intersect, so their contribution to the covering (starting with the
second one) cannot be their whole area.

We consider a covering as it is being built up zone by zone and investigate the contri-
bution of each zone (which is less than its area) to the covering. Estimating the area of
the intersection of two zones, depending on the half-width and angle, we give an upper
bound for the contribution of each zone, and, in turn, a lower bound for wn which is
better than the trivial one.

Let 2F (w, α) denote the area of intersection of two zones. For n ≥ 3, let dn denote
the maximum of the minimal pairwise (spherical) distances of n points on the unit sphere
S2. For a few values of n the exact value of dn is known, for others, we are going to use
estimations. Let δ∗n denote the smaller of π/2 and the exact value or the best known
upper bound of dn.

For 0 ≤ α ≤ π/2 and n ≥ 3 we introduce f(w, α) = 4π sinw − 2F (w, α) and

G(w, n) = 4π sinw +
n∑
i=2

f(w, δ∗2i).

Lemma (3.5). For a fixed n ≥ 3, the function G(w, n) is continuous and monotonically
increasing in w in the interval [0, δ∗2n/3]. Furthermore, G(0, n) = 0 and G(δ∗2n/3, n) ≥ 4π.

All of the above leads us to our main theorem.

Theorem (3.6). For n ≥ 3, let w∗n denote the unique solution of the equation G(w, n) =

4π in the interval [0, δ∗2n/3]. Then arcsin(1/n) < w∗n ≤ wn.
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6.3 On the multiplicity of arrangements of congruent

zones on the sphere

This section is based on the paper [BFVZ17].
In this section we examine arrangements of equal zones on Sd−1 from the point of view

of multiplicity. The multiplicity of an arrangement is the maximum number of zones the
points of the sphere belong to. We seek to minimize the multiplicity for given d and n
as a function of the common width of the zones. First, we want to find upper bounds on
the multiplicity. For this, we need the following definitions.

Let α : N → (0, 1] be a positive real function with limn→∞ α(n) = 0. For a positive
integer d ≥ 3, let md =

√
2πd + 1. Let k : N → N be a function that satisfies the limit

condition

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= β < 1,

where C∗d is a suitable constant depending only on the dimension.

Theorem (4.2). For each positive integer d ≥ 3, and any real function α(n) described
above, for sufficiently large n, there exists an arrangement of n zones of spherical half-
width mdα(n) on Sd−1 such that no point of Sd−1 belongs to more than k(n) zones.

The following statement provides the wanted upper bound on the multiplicity of
coverings of the d-dimensional unit sphere by n congruent zones.

Theorem (4.3). For each positive integer d ≥ 3, there exists a positive constant Ad such
that for sufficiently large n, there is a covering of Sd−1 by n zones of half-width md

lnn
n

such that no point of Sd−1 belongs to more than Ad lnn zones.

There is an obviously large gap between the lower and upper bounds for the multipli-
city. The problem of finding the minimum multiplicity for zone coverings of Sd−1 remains
open.

6.4 On the volume bound in the Dvoretzky–Rogers

lemma

This section is based on the paper [FNZ18].
We say that a measure µ is an isotropic measure if it is a probability measure on Rd

with the following two properties. First its inertia tensor is the identity matrix
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∫
Rd
x⊗ x dµ(x) = Idd,

and its center of mass of µ is at the origin, that is,∫
Rd
x dµ(x) = 0.

The Dvoretzky–Rogers lemma states that one may select a d-subset of any isotropic
vector set in Rd such that the subset is well spread out, which means that the volume
of the spanned parallelepiped is large. Consequently the determinant is at least

√
d!/dd.

On the other hand we can choose the d vectors randomly then compute the expectation
of the square of the resulting determinant.

We extended Pivovarov’s result [Piv10] to a wider class of measures to obtain the
improved lower bound of Pełczyński and Szarek [PS91] on the maximum of the volume
of the spanned parallelotope and also we give a probabilistic interpretation of the volume
bound in the Dvoretzky–Rogers lemma. Our extension allows us to apply it for discrete
isotropic measures.

Lemma (5.2). Let x1, . . . , xd be independent random vectors distributed according to the
measures µ1, . . . , µd in Rd satisfying (5.1). Assume that µi({0}) = 0 for i=1,. . . , d. Then

E([det(x1, . . . , xd)]
2) = d!

holds.

The geometric motivation in studying isotropic measures is the celebrated theorem
of John [Joh48], 5.3, which states that there exists a unique maximal volume ellipsoid
in any convex body, and characterizes, that this ellipsoid is the unit ball if and only if a
subset of the contact points with certain weights form a discrete isotropic measure. If a
set of unit vectors (u1, . . . um) along with positive constants satisfies the two conditions
in John’s theorem then we say those vectors form a John decomposition of the identity.

The classical lemma of Dvoretzky and Rogers [DR50], 5.4 stated that in a John
decomposition of the identity we can always find d vectors such that they are not too far
from an orthonormal system, where not too far means that if the parallelotope P spanned
by the selected d vectors x1, . . . , xd has volume Vol (P ), then the following holds.

(Vol (P ))2 = [det(x1, . . . , xd)]
2 ≥ d!

dd
.

Our main results in this topic are the following two Theorems, the first of which
is essentially the same as Pelczyński and Szarek’s [PS91], however with a probabilistic
approach, proof and interpretation.
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Theorem (5.5). Let u1, . . . , um ∈ Sd−1 be unit vectors satisfying (5.4) with some c1, . . . ,
cm > 0. Then there is a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with

[det(x1, . . . , xd)]
2 ≥ γ(d,m) · d!

dd
,

where γ(d,m) = md

d!

(
m
d

)−1, and m = min{m, d(d+ 1)/2}.
Moreover, for γ(d,m), we have

(i) γ(d,m) ≥ γ(d, d(d+ 1)/2) ≥ 3/2 for any d ≥ 2 and m ≥ d. And γ(d, d(d+ 1)/2) is
monotonically increasing, and limd→∞ γ(d, d(d+ 1)/2) = e.

(ii) Fix a c > 1, and consider the case when m ≤ cd with c ≥ 1 + 1/d. Then

γ(d,m) ≥ γ(d, dcde) ∼
√
c− 1

c

(
c− 1

c

)(c−1)d

ed, as d→∞.

(iii) Fix an integer k ≥ 1, and consider the case when m ≤ d+ k. Then

γ(d,m) ≥ γ(d, d+ k) ∼ k!ek√
2π

ed

(d+ k)k+1/2
, as d→∞.

The following statement, which is our second main result, provides a lower bound on
the probability that d independent, identically distributed random vectors selected from
{u1, . . . , um} according to the distribution determined by the weights {c1, . . . , cm} has
large volume.

Proposition (5.6). Let λ ∈ (0, 1). With the notations and assumptions of Theorem 5.5, if
we choose the vectors x1, . . . , xd independently according to the distribution P(x` = ui) =

ci/d for each ` = 1, . . . , d and i = 1, . . . ,m, then with probability at least (1− λ)e−d, we
have that

[det(x1, . . . , xd)]
2 ≥ λγ(d,m) · d!

dd
.

56



7. fejezet

Összefoglaló

7.1. Egyenesek szögösszegei

Ezen fejezet alapja a [FVZ16b] cikk.
Tekintsünk n egyenest a d-dimenziós Rd euklideszi térben, melyek mindegyike átmegy

az o origón. Mi az S(n, d)-vel jelölt maximális összege az egyenespárok által meghatá-
rozott nemtompa szögeknek? A sejtett optimális konfigurációban egy ortonormált bázis
elemeit az egyenesek irányvektorainak használjuk úgy, hogy minden bázisvektorhoz bn/dc
vagy bn/dc+ 1 vektor tartozik. Pontosabban, ha n = k · d+m (1 ≤ m < d) az egyenesek
száma, x1, . . . , xd pedig egy derékszögű koordináta rendszer tengelyei Rd-ben, akkor az
optimálisnak sejtett konfigurációban k+ 1-szer vesszük az x1, . . . , xm-hez tartozó egyene-
seket, és k-szor az xm+1, . . . , xd-hez tartozókat. Ekkor a szögek összege[(

d

2

)
k2 +mk(d− 1) +

(
m

2

)]
π

2
.

Fejes Tóth László igazolta a sejtést 3 dimenzióban legfeljebb 6 (n ≤ 6) egyenes esetén,
és adott egy felső korlátot egy rekurzív formula segítségével: S(n, 3) ≤ n(n − 1)π/5.
Eszerint az egyenesek szögeinek összege aszimptotikusan legfeljebb n2π/5 amint n→∞.
[FVZ16b] cikkünkben megjavítottuk ezt az aszimptotikus korlátot 3n2π/16 ≈ 0.589·n2-re,
amit Bilyk és Matzke [BM19] tovább javítottak

(
π
4
− 69

100d

)
n2-re, amint n → ∞, amiből

az is látható, hogy eredményük minden dimenzióban ad egy felső korlátot. Ez a felső
korlát d = 3 esetén 0.556 · n2 ha n→∞

A problémakörben elért eredményeinket az alábbi tétel foglalja össze.

Tétel (2.1). Legyenek l1, . . . , ln egyenesek R3-ban, melyek mindegyike átmegy az origón.
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Jelölje ϕij az li és lj által bezárt szöget. Ekkor∑
1≤i<j≤n

ϕij ≤

{
3
2
k2 · π

2
, ha n = 2k,

3
2
k(k + 1) · π

2
, ha n = 2k + 1.

Tekintsük először a síkbeli esetet. A következő tétel valószínűleg munkánk előtt is
ismert volt, de mivel nem találtunk rá bizonyítást az irodalomban, ezért úgy döntöttünk,
hogy mi magunk is bebizonyítjuk. Azt mondjuk, hogy egy sugársor kiegyensúlyozott, ha
minden egyenesre igaz, hogy a vele pozitív (π/2-nél kisebb) szöget bezáró, illetve a vele
negatív szöget bezáró egyenesek számának különbsége legfeljebb 1.

Tétel (2.2). Legyenek l1, . . . , ln egyenesek R2-ben, melyek mindegyike átmegy az origón.
Jelölje ϕij az li és lj által meghatározott szöget. Ekkor∑

1≤i<j≤n

ϕij ≤

{
k2 · π

2
, ha n = 2k,

k(k + 1) · π
2
, ha n = 2k + 1.

Továbbá pontosan akkor van egyenlőség, ha a sugársor kiegyensúlyozott.

Legyenek v1,v2 vektorok, ϕ pedig a közbezárt szögük. Ekkor a 3 dimenziós eset
tárgyalásához először is szükségünk lesz a következő függvényre:

I : [0, π/2]→ R, I(ϕ) :=
1

4π

∫
S2

ϕu
∗ (v1,v2)du,

ahol ϕu
∗ (v1,v2) a v1 és v2 vektorok u normálisú síkra vett vetületeinek a bezárt szöge,

illetve ezen szög (π-re) kiegészítő szöge közül a nem nagyobb. I(ϕ) az u normálisú síkra
vett vetületek által bezárt szögek átlaga. Ezután megmutatjuk két lemma segítségével,
hogy I(ϕ) ≥ 2ϕ/3 minden ϕ ∈ [0, π/2] esetén. Az első lemma ezt a végpontokban
igazolja, azaz ha ϕ = 0 és ϕ = π/2.

Lemma (2.4). A fenti jelöléseket használva,

I(0) = 0, illetve I(π/2) = π/3.

A második lemma segítségével megmutatjuk, hogy I konkáv, s így állításunk teljesül.

Lemma (2.5). Az I(ϕ) függvény konkáv [0, π/2]-n, és

I(ϕ) ≥ 2ϕ/3 ha 0 ≤ ϕ ≤ π/2.

Ezekből a 2.1 Tétel közvetlenül következik. Mivel a vetületek szögeinek átlaga (a
vetítősík normálvektorára átlagolva) legalább 2/3-a az eredeti szögek összegének, így
létezik egy u0, hogy ezen normálvektorú síkra vetítve a vektorokat a szögösszeg több,
mint 2/3-a az eredeti szögösszegnek. Végül mivel az optimum ismert a síkbeli esetben,
így a tételt igazoltuk.
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7.2. Gömbfedés egybevágó zónákkal

Ezen fejezet alapja a [FVZ16a] cikk.
Az ebben a fejezetben vizsgált fő kérdés Fejes Tóth Lászlótól [FT73] ered, és a követ-

kezőképp hangzik.

Probléma (3.1). Adott n esetén keressük a legkisebb wn számot, melyre igaz, hogy S2

lefedhető n egyforma wn félszélességű zónával. Határozzuk meg továbbá azt az optimális
konfigurációt, mely megvalósítja ezt a fedést.

Munkánk előtt az egyetlen ismert alsó korlát a triviális volt, miszerint a zónák terüle-
tének összege ki kell, hogy adja a 4π-t, a gömb felszínét. Természetesen ez az alsó korlát
nem éles, mivel már két zóna esetén igaz, hogy bármely két zónának van metszete, így a
másodiktól kezdve semelyik sem járul hozzá a fedéshez teljes területével. Megjegyezzük
továbbá, hogy a probléma megoldott volt n = 3, 4 zóna esetén Rosta [Ros72] és Linhart
[Lin74] munkája nyomán.

Tekintsünk egy fedésre úgy, mint ha zónánként építenénk fel, és nézzük meg a tényleges
hozzájárulását a fedéshez (ami a második zónától kezdve szigorúan kisebb, mint a zóna
területe). Két zóna metszetének területét tudjuk becsülni a szélesség és a főköreik által
bezárt szög ismeretében, így a triviálisnál jobb alsó korlátot adhatunk a minimumra.

Jelölje 2F (w, α) két zóna metszetét. Ekkor n ≥ 3-ra legyen dn az n gömbön elhelyezett
pont közötti minimális távolság maximuma. Néhány n-re ismert dn pontos értéke, míg
másokra becslést kell használnunk. Legyen δ∗n dn pontos értéke (ha ismert), vagy legjobb
felső becslése (ha nem) és π/2 közül a kisebb.

Bevezetjük 0 ≤ α ≤ π/2 és n ≥ 3 esetén az f(w, α) = 4π sinw − 2F (w, α), illetve a

G(w, n) = 4π sinw +
n∑
i=2

f(w, δ∗2i).

függvényeket. A G(w, n) függvény alulról becsüli a bemutatott gondolatmenet alapján n
w szélességű zóna hozzájárulását a fedéshez.

Lemma (3.5). Rögzített n ≥ 3 esetén G(w, n) folytonos és monoton növekvő w-ben a
[0, δ∗2n/3] intervallumon. Továbbá G(0, n) = 0 és G(δ∗2n/3, n) ≥ 4π.

A fentiek segítségével már ki tudjuk mondani fő eredményünket:

Tétel (3.6). Jelölje w∗n n ≥ 3 esetén a G(w, n) = 4π egyenlet egyetlen megoldását a
[0, δ∗2n/3] intervallumon. Ekkor arcsin(1/n) < w∗n ≤ wn.
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7.3. Egybevágó zónákból álló elrendezések multiplicitá-

sa

Ezen fejezet alapja a [BFVZ17] cikk.
Az előző részből ismert egybevágó zónákból álló elrendezéseket ebben a részben mul-

tiplicitás szempontjából vizsgáljuk az Sd−1 gömbön. Egy elhelyezés multiplicitásán azt
a legnagyobb számot értjük, melyre igaz, hogy a gömb valamely pontja ennyi zónához
tartozik. Adott d és n mellett az n zóna közös szélességének függvényében szeretnénk
minimalizálni a multiplicitást. Ehhez a következő definíciókra van szükségünk

Legyen α : N → (0, 1] egy pozitív valós függvény, melyre limn→∞ α(n) = 0. Ekkor
d ≥ 3 egészre, legyen md =

√
2πd + 1. Legyen továbbá k : N → N olyan függvény, mely

kielégíti a következőt.

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= β < 1,

ahol C∗d egy csak a dimenziótól függő megfelelő konstans.

Tétel (4.2). Minden d ≥ 3 pozitív egészre, α(n) fentebb definiált függvényre és elég nagy
n-re létezik n mdα(n) gömbi félszélességű zónából álló elrendezés Sd−1-en úgy, hogy Sd−1

semelyik pontja sem része k(n)-nél több zónának.

A következő állítás szolgáltatja a kívánt felső korlátot a d-dimenziós gömb egybevágó
sávokkal történő fedéseinek multiplicitására.

Tétel (4.3). Minden d ≥ 3 egészre létezik pozitív konstans Ad, bármely elég nagy n-re
található Sd−1 fedése n egybevágó md

lnn
n

szélességű zónával úgy, hogy Sd−1 semelyik pontja
sem tartozik Ad lnn-nél több zónához.

Egy nyilvánvalóan nagy hézag van a multiplicitásra adott alsó és felső korlátok között.
Egy zónákkal való fedés minimális multiplicitása továbbra is nyitott kérdés Sd−1-en.

7.4. A Dvoretzky–Rogers lemmában szereplő térfogat-

korlát

Ezen fejezet alapja a [FNZ18] cikk.
Azt mondjuk, hogy a µ izotróp mérték, ha olyan valószínűségi mérték Rd-n, mely

teljesíti a következő feltételeket.
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∫
Rd
x⊗ x dµ(x) = Idd,

illetve: ∫
Rd
x dµ(x) = 0.

A Dvoretzky–Rogers lemma azt mondja ki, hogy bármilyen Rd-beli véges izotróp vek-
torhalmazból kiválasztható d elem úgy, hogy az a részhalmaz elég nagy térfogatú para-
lelotópot feszít ki. Ennek következménye, hogy az általuk meghatározott determináns
abszolút értéke legalább

√
d!/dd. Másfelől kiválasztható d vektor véletlenszerűen, ahogy

Pivovarov [Piv10] cikkében olvasható, és kiszámolható a determináns négyzetének várha-
tóértéke is. Mi az ő eredményét terjesztjük ki mértékek egy bővebb családjára, így eljutva
Pelczyński és Szarek [PS91] becsléséhez, valamint egy valószínűségi értelmezést adva a
Dvoretzky–Rogers lemmában szereplő térfogatkorlátra.

Lemma (5.2). Legyenek x1, . . . , xd független véletlen vektorok a µ1, . . . , µd in Rd való-
színűségi mértékek szerint melyek kielégítik (5.1)-t. Tegyük fel, hogy µi({0}) = 0, i =

1, . . . , d esetén. Ekkor
E([det(x1, . . . , xd)]

2) = d!

A geometriai motiváció az izotróp mértékek tanulmányozásához John híres tételében
[Joh48], 5.3 keresendő, mely azt mondja ki, hogy bármely konvex testbe írható egyértel-
műen egy legnagyobb térfogatú ellipszoid, és karakterizálja, hogy ez pontosan akkor az
egységgömb, ha az érintkezési pontok egy részhalmaza valamely pozitív súlyokkal diszkrét
izotróp mértéket alkot. Ha egységvektorok egy halmaza valamilyen pozitív konstansok-
kal kielégíti a John tételében szereplő két feltételt, akkor azt mondjuk, hogy ezek egy
John-féle egységfelbontást képeznek.

Dvoretzky és Rogers híres lemmája [DR50], 5.4 azt mondja ki, hogy egy John-féle
egységfelbontásban mindig található d vektor úgy, hogy azok ne legyenek túl messze, egy
ortonormált bázistól, azaz az általuk kifeszített P paralelotóp térfogatára

(Vol (P ))2 = [det(x1, . . . , xd)]
2 ≥ d!

dd
.

teljesül.
A következő két tétel munkánk fő eredménye. Az első lényegében Pelczyński és Szarek

[PS91] becslése, csak valószínűségi megközelítésben illetve bizonyítással, ezáltal új értel-
mezést is adva a tételnek.
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Tétel (5.5). Legyenek u1, . . . , um ∈ Sd−1 egységvektorok, melyek kielégítik (5.4)-t a
c1, . . . , cm > 0 konstansokkal. Ekkor léteznek {x1, . . . , xd} ⊂ {u1, . . . , um} vektorok a
rendszerből, hogy

[det(x1, . . . , xd)]
2 ≥ γ(d,m) · d!

dd
,

ahol γ(d,m) = md

d!

(
m
d

)−1, és m = min{m, d(d+ 1)/2}.
Továbbá γ(d,m)-re igazak:

(i) γ(d,m) ≥ γ(d, d(d + 1)/2) ≥ 3/2 bármely d ≥ 2-re és m ≥ d-re. Ezen felül
γ(d, d(d+ 1)/2) monoton növekvő és limd→∞ γ(d, d(d+ 1)/2) = e.

(ii) Rögzített c > 1-re legyen m ≤ cd, hogy c ≥ 1 + 1/d. Ekkor

γ(d,m) ≥ γ(d, dcde) ∼
√
c− 1

c

(
c− 1

c

)(c−1)d

ed, as d→∞.

(iii) Rögzített k ≥ 1 konstansra legyen m ≤ d+ k. Ekkor

γ(d,m) ≥ γ(d, d+ k) ∼ k!ek√
2π

ed

(d+ k)k+1/2
, amint d→∞.

A következő állítás ad egy alsó korlátot annak valószínűségére, hogy d független,
azonos eloszlású vektor az {u1, . . . , um} halmazból {c1, . . . , cm} súlyokkal nagy térfogatú
legyen.

Állítás (5.6). Legyen λ ∈ (0, 1). Ekkor az 5.5 Tétel feltételei és jelölései szerint,
ha az x1, . . . , xd vektorokat függetlenül választjuk a P(x` = ui) = ci/d eloszlás szerint
(` = 1, . . . , d és i = 1, . . . ,m), akkor legalább (1− λ)e−d valószínűséggel

[det(x1, . . . , xd)]
2 ≥ λγ(d,m) · d!

dd
.
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