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Introduction
Software systems have become more complex over the years. We developed additional abstrac-
tion levels to leverage the complexity developers have to face. We are now using high level
programming languages to ease the writing of such complex tasks. Since humans are involved
as the most important factor in the software development process, software will have faults. In
the beginning of the 21st century, software bugs cost the United States economy approximately
$60 billion a year. In 2016, that number is $1.1 trillion. The industrial sector often gives up
on software quality due to time pressure. A great example is the Boeing scandal in 2019. The
MCAS system that automatically adjusts the plane’s flight trajectory was faulty in its software.
It was more than just a software bug, pilots were not educated as they should had been to handle
this fault in the system. Still, the most crucial factor was the software bug itself, which caused
the death of 356 innocents.

The later the phase a bug is fixed in, the more it costs. Eliminating defects in an early stage
is the ideal scenario. Testing could serve as one of the best tools for this purpose. However,
testing should involve automated checks, where it is possible to reveal defective candidates early.
The research work behind this thesis aims to help in locating future defects with the help of bugs
fixed in the past, moreover, to provide methodology for measuring the maintainability (which is
one of the most important quality characteristics) of RPG legacy software systems.

In this respect, the thesis encapsulates two main topics: the construction and evaluation of
new bug datasets and introducing a methodology for measuring maintainability of RPG software
systems. These topics both emphasize the importance of software quality and try to give state-
of-the-art solutions in the fight against software faults.

Public bug datasets have been present for a long time. In spite of the fact that bug prediction
related studies have been rapidly growing in recent years, there are only a few datasets available.
Bug datasets are usually constructed from open-source projects that managed to store issues
with the appropriate issue tracking methods. This way, the source code elements of the systems
could be mapped with the corresponding bug(s) [10]. Datasets are usually constructed at file or
class level. The entries of the datasets are characterized somehow, in order to describe the bugs.
One possible way is to calculate static software product metrics for each entry. Currently, open-
source projects are hosted on the popular GitHub platform. We created a new, state-of-the-art
public bug dataset, the GitHub bug dataset, which includes a wide range of static source code
metrics (more than 50) to characterize the bugs. Moreover, we also gathered all existing bug
datasets and built a unified dataset on top of them. During this process, we pointed out the
inconsistencies in the datasets, and we also showed how different results could be obtained by
using another tool for the static analysis. We demonstrated the power of the built datasets by
showing their capabilities in bug prediction.

Measuring maintainability in RPG systems is a narrowed research area, which also applies
generally in the domain of legacy systems. A large amount of the systems used in the banking
sector still run on IBM mainframes, hence they use the RPG programming language as well.
Finding and eliminating bugs in these softwares could be a matter of national interest. Contrar-
ily, research trends not to reflect the importance of providing novel techniques for monitoring the
quality of such legacy systems. However, the industry could adapt different methodologies and
solutions from other domains, since usually there is a lack of underlying tools to support the anal-
ysis of legacy systems. We did not only develop a methodology for measuring the maintainability,
but also provided the appropriate tools needed to overcome these barriers.

The thesis consists of two main parts, which are also the two thesis points. In this booklet,
we summarize the results of each thesis point in the corresponding parts.
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I New Datasets and a Method for Creating Bug Prediction
Models for Java

The contributions of this thesis point are related to public bug datasets for Java systems and
their extension to provide a powerful and strong foundation for building bug prediction models.

A New Public Bug Dataset and Its Evaluation in Bug Prediction
The focus of this research area was to investigate the possible imperfections of the existing public
bug datasets (which use static source code metrics to characterize the entries in the datasets),
and to create a new bug dataset that solves these imperfections. In spite of the fact that the
trend of hosting open-source projects points in the direction of GitHub, none of the existing
datasets used it as the source of information. Available bug datasets are quite old, hence the
systems included are aged as well. Based on our findings, we constructed a new dataset for 15
projects selected from GitHub containing more than 3.5 million lines of code, more than 114,000
commits, and more than 8,700 closed bug reports in total. We collected bug data in an automatic
way and created 6-month-long time intervals for every project and accumulated bug information
for these chosen releases (105 both at file and class level). Contrary to previous bug datasets, we
aggregated bugs for the preceding release versions not for the succeeding ones. Besides the bug
dataset being our main contribution, we investigated two research questions:

RQ 1: Is the constructed database usable for bug prediction? Which algorithms or algorithm
families perform the best in bug prediction using our newly created bug dataset?

RQ 2: Which machine learning algorithms or algorithm families perform the best in bug cover-
age?

Table 1: F-measures at class level

Project SGD Simple
Logistic SMO PART Random

Forest

Android Universal I. L. 0.6258 0.5794 0.5435 0.6188 0.7474
ANTLR v4 0.7586 0.7234 0.7379 0.7104 0.8066
Broadleaf Commerce 0.8019 0.8084 0.8081 0.7813 0.8210
Eclipse p. for Ceylon 0.6891 0.7078 0.6876 0.7283 0.7503
Elasticsearch 0.7197 0.7304 0.7070 0.7171 0.7755
Hazelcast 0.7128 0.7189 0.6965 0.7267 0.7659
jUnit 0.7506 0.7649 0.7560 0.7262 0.7939
MapDB 0.7352 0.7667 0.7332 0.7421 0.7773
mcMMO 0.7192 0.6987 0.7203 0.6958 0.7418
Mission Control T. 0.7819 0.7355 0.7863 0.6862 0.8161
Neo4j 0.6911 0.7156 0.6835 0.6731 0.6767
Netty 0.7295 0.7437 0.7066 0.7521 0.7937
OrientDB 0.7485 0.7359 0.7310 0.7194 0.7823
Oryx 0.8012 0.7842 0.8109 0.7754 0.8059
Titan 0.7540 0.7558 0.7632 0.7301 0.7830

Avg. 0.7346 0.7312 0.7248 0.7189 0.7758
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For answering RQ 1, we built 13 different prediction models using a machine learning frame-
work called Weka. During our training and testing process, we used 10-fold cross validation with
random undersampling to equalize the number of buggy and non-buggy source code elements [4].
We applied random under sampling 10 times and calculated the averages. The results of the
top five algorithms can be seen in Table 1. Random Forest seemed to perform the best in this
task, which is proven by the high F-Measure values. We achieved a 0.77 average at class level.
Similar, but little lower F-measure values were obtained at file level with an average of 0.71.
File level results are limited due to the narrow set of source code metrics. These results imply
a positive answer to this research question, and we can state that the GitHub Bug Dataset is a
good candidate for being the training set in bug prediction.

For answering RQ 2, we reused the previously built 10 models (from the random under
sampling cases) and evaluated them on the whole dataset (without random under sampling).
During the evaluation, we used majority voting for an element (if more than five models predict
the element to be faulty then we tagged it as faulty, otherwise we tagged it as non-faulty). It is
important to note that we count a bug covered if at least one corresponding source code element
is marked as buggy. Perfect or nearly-perfect bug coverage could be reached by tagging around
31% of the source code elements as buggy in case of RandomTree and RandomForest, which are
quite promising results. The same is true for file level as well, however, more entries have to be
marked as buggy to achieve perfect bug coverage. If precision is preferred over recall then using
Naive Bayes could be a good option.

The GitHub Bug Dataset can be downloaded at: http://www.inf.u-szeged.hu/~ferenc/
papers/GitHubBugDataSet/

A Unified Public Bug Dataset and Its Assessment in Bug Prediction
During the process of collecting existing public bug datasets, we realized that there is a need to
validate the built bug prediction methods on a larger and more general dataset, thus we identified
a goal to unite all the public bug datasets into a larger one. Starting with a literature review, we
performed an exhaustive search for all available public bug datasets. We collected 5 candidates,
which includes the PROMISE Dataset, the Eclipse Bug Dataset, the Bug Prediction Dataset, the
Bugcatchers Bug Dataset, and our own GitHub Bug Dataset. We merged these datasets into a
grandiose one to fulfil the need for a large, more general dataset. We used an open-source static
source code analyzer, named OpenStaticAnalyzer (OSA), to extract more than 50 static source
code metrics for all the systems included in the Unified Bug Dataset. This way, we obtained a
uniform metric suite for the whole dataset, in which we kept the original bug numbers for each
entry (pairing the original entries with the results of OSA was based on standard class names and
filenames). We investigated the root causes of the inability to match entries from the original
datasets with the results of OSA. One major cause was the presence of entries in the original
datasets which are not real Java source files (Scala sources or package-info files). In some cases,
we could not find the proper source code for the given system, so two different, but close versions
of the same system might be conjugated. We were unable to match 624 class level entries and 28
file level entries out of 48,242 and 43,772 entries, respectively. This means that only 0.71% (652
out of 92,014) of the elements were left out from the unified dataset.

We also pointed out that the metric definitions and the metric namings can severely differ
between datasets. Even in the case of Logical Lines of Code, the metric values significantly
differed, which is due to using byte code and source code based analyzer tools in different datasets.

We evaluated the datasets according to summary meta data and functional criteria. Summary
meta data includes the investigation of the used static analyzer, granularity, bug tracking and
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version control system, the set of used metrics, etc. As functional criteria, we compared the
prediction capabilities of the original metrics, the unified ones, and both together. We used the
J48 decision tree algorithm (an implementation of C4.5) from Weka to build and evaluate bug
prediction models per projects with 10-fold cross validation in the Unified Bug Dataset. We
achieved 0.892 and 0.886 F-measure values at class level using the original and the OSA metrics,
respectively. The same insignificant difference could be found at file level, however with lower
F-measure scores. Applying both metric suites at the same time makes a small but negligible
increase in F-measure at class level, but not at file level. Inconsistencies between the original
and OSA metrics could cause lower values. It is important to note, that the generally higher
F-measure values come from the fact, that we did not use random undersampling in this case,
since we were only interested in the differences of the bug prediction capabilities when we use
the original and the OSA metrics.

As an additional functional criterion, we used different software systems for training and for
testing the models, also known as cross project training. We performed this step on all the
systems of the various datasets. Results achieved on the GitHub Bug Dataset are the most
consistent, which is shown in Table 2. The darker the color, the higher the F-measure value is.

Altogether, our experiments showed that the Unified Bug Dataset can be used effectively
in bug prediction, achieving higher than 0.8 F-measure values in cross project learning. We
encourage researchers to use this large and public unified bug dataset in their experiments and
we also welcome new public bug datasets. The Unified Bug Dataset is accessible at:
http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet.

The Author’s Contributions
The author designed the methodology for extracting bug information from GitHub and the idea
behind the construction of the GitHub bug dataset. He performed the literature review in the
field of public bug datasets, and collected all relevant datasets and their characteristics. He took
part in the process of defining criteria for the projects to be included in the GitHub bug dataset.
In case of the unified bug dataset, the author constructed all statistics for the gathered datasets
and projects, moreover, performing static source code analysis on the subject systems is also the
author’s work. Collecting and comparing the metric suites, as well as gathering the summary
meta data on datasets are the author’s own results. The author also participated in the building
of bug prediction models for the GitHub bug dataset and for the unified bug dataset as well.
The author formed the final machine learning results for both datasets, and the conclusions were
drawn by him.

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database of Github
Projects and Its Application in Bug Prediction. In Proceedings of the 16th International
Conference on Computational Science and Its Applications (ICCSA 2016), Beijing, China.
Pages 625-638, Published in Lecture Notes in Computer Science (LNCS), Volume 9789,
Springer-Verlag. July, 2016.

♦ Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy. A
Public Unified Bug Dataset for Java. In Proceedings of the 14th International Conference
on Predictive Models and Data Analytics in Software Engineering, PROMISE’18. Oulu,
Finland. Pages 12–21, ACM. October, 2018.
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II Methodology for Measuring Maintainability of RPG Soft-
ware Systems

The contributions of this thesis point are related to measuring maintainability in RPG systems.
Giving a solution for analyzing RPG software systems was an industrial need. We performed
this research in consortium with R&R Software Ltd. who has a long history in developing RPG
software systems. They drew attention to the need for an RPG static source code analyzer
and a methodology to properly measure maintainability of RPG systems. The research artifacts
described in this thesis point were supported by the Hungarian national grant GOP-1.1.1-11-
2012-0323.

Comparison of Static Analysis Tools for Quality Measurement of RPG
Programs
The goal of this research was to give an exhaustive comparison about state-of-the-art RPG static
source code analyzers. The research is focused on the data obtained using static analysis, which is
then aggregated to higher level quality attributes. SourceMeter is a command line toolchain capa-
ble of measuring various source attributes like software metrics, coding rule violations, and code
clones. This toolchain is of our own development. SonarQube is a quality management platform
with RPG language support. To facilitate the objective comparison, we used the SourceMeter
for RPG plugin for SonarQube, which seamlessly integrates into the framework, extending its
capabilities. This way, the interface of the tools under examination was the same, hence the
comparison was easier to perform. We collected 179 RPG source code files to be the input of
the comparison. The evaluation is built on analysis success and depth, source code metrics, cod-
ing rules and code duplications. SourceMeter could analyze all the systems successfully, while
SonarQube was unable to handle 3 source files, because there were unsupported language con-
structs in the files (e.g. free-form blocks). SourceMeter outputs entries at four levels: System,
Program (File), Procedure, and Subroutine. Contrarily, SonarQube only works with System and
File levels. SonarQube gives a limited set of metrics, while SourceMeter also calculates static
source code metrics at a finer granularity (procedure and subroutine levels). There is a large
common set of coding rule violations, but both tools support rules which are not handled by the
other. SourceMeter provides metric-based rules as well, which are triggered when the calculated
metric values for a specific source code element exceed or fall behind a given acceptable metric
interval. In case of detecting code clones or duplicates, SonarQube can identify copy-pasted
code clones or Type-1 clones. SourceMeter uses the Abstract Syntax Tree (AST) as an input
for clone detection, hence it can detect Type-2 clones (for instance, using different identifiers
will not bypass the detector). After evaluating both tools, we investigated the effect of low level
characteristics on higher level attributes, namely the quality indices. We used technical debt
and SQALE metrics, which are provided by the SonarQube platform and are using the coding
rule violations heavily, but not other low-level characteristics (source code metrics or code du-
plications), thus these indicators can not reflect or express the overall quality of the system well.
The summary of the comparison of low-level characteristics can be seen in Table 3. We found
that SourceMeter is more advanced in analysis depth, product metrics and finding duplications,
while their performance on coding rules and analysis success is rather balanced. Considering all
these factors, we chose to apply SourceMeter in the following research areas, which use low-level
quality characteristics to calculate sophisticated high-level quality indices.
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Table 3: Overall comparison results

Aspect Result Note
Analysis success Balanced SonarQube failed to analyze some input files
Analysis depth SourceMeter SourceMeter provides statistics in lower levels
Code metrics SourceMeter SourceMeter provides much more metrics
Coding rules Balanced Large common set, balanced rule-sets
Code duplications SourceMeter SourceMeter found more duplicated code blocks

Integrating Continuous Quality Monitoring Into Existing Workflow –
A Case Study
The goal of this research was to create a general and flexible quality model [1] for the RPG
programming language, which we then applied in our case study. Having a good quality model
means having metrics at a higher level with strong descriptive capabilities such as Quality Index
and Maintainability Index. Our constructed quality model is based on the ISO/IEC 25010 stan-
dard and focuses on maintainability as the main component of quality (thus quality model and
maintainability model expressions used interchangeably). The model includes reusability, ana-
lyzability, modifiability, and testability as the subcharacteristics contributing to maintainability.
The built model is shown in Figure 1, where dark gray nodes are the subcharacteristics, light
gray nodes are helpers defined by us to ease the aggregation and grouping of sensor nodes, which
are the low-level quality attributes provided by SourceMeter.

Figure 1: RPG maintainability model

After defining a quality model, we carried out a case study, in which we integrated our
quality model into the development cycle of a mid-sized company, named R&R Software Ltd.
After fine tuning the SourceMeter for RPG tool (e.g. setting up parameters for metric based
rules, determining forbidden operations) and the quality model as well (determining the weights
in the model), we constructed a benchmark in the initial phase which consists of 4 modules.
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Figure 2: Process chain of the approach.

In the second, integration phase (depicted in Figure 2), we adapted a method to seamlessly
integrate the continuous quality monitoring into the development cycle of the company. Commits
automatically trigger source code analysis, the results of which are stored in a database for long
term access. The company intended to increase the quality of a specific module, thus a refactoring
phase was applied, in which some developers eliminated critical and major rule violations from
the system. Doing so, the maintainability of the selected module increased continuously almost
from commit to commit (shown in Figure 3).

Figure 3: Maintainability quality timeline.

In the discussion phase, we concluded that the maintainability characteristic of the chosen
module had increased and had acquired the GO state, since it passed the baseline value. Based
on the opinions of the developers and the management, the industrial application of our method
was a success. They were able to check coding conventions inside the company, which forces
developers to avoid undesirable solutions and to learn common practices for solving different
problems. Furthermore, they found it easy to customize our approach (creating benchmark,
weighting the edges of the quality model). According to the developers, this maintenance work
could be done effectively, because of the guidance of the SourceMeter and QualityGate tools.
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Redesign of Halstead’s Complexity Metrics and Maintainability Index
for RPG
This research is intended to extend the quality model capabilities by applying further metrics into
the model. We first proposed the definitions of the Halstead’s complexity metrics for RPG/400
and RPG IV. There is no standard way to calculate these metrics, since different programming
languages contain different language constructs that can be either operands and operators. In
case of RPG, we extended former definitions for RPG II and RPG III [3] to be complete for
RPG/400 and RPG IV, where many new language features were introduced. Next, we examined
the Halstead’s complexity metrics and four Maintainability Index metrics in detail to get more
insight about how they correlate with other software product metrics and how we could use them
to improve the capabilities of the quality model to better describe the system under investigation.
To do so, we used Principal Component Analysis (PCA) to show the dimensionality and behavior
of these metrics [5]. We found that Halstead’s complexity metrics form a strongly correlated
metric group that can be used to reveal more details about RPG software systems. Principal
Component Analysis, furthermore, outputs the so-called factor loadings, which show the linear
combination of the most dominant factors (dimensions) that captures the most variability. Factor
loadings can be seen in Table 4, from which we can see that the Halstead’s Complexity metrics are
the most dominant ones in the first factor (which captures more than the half of the variability
both at program and subroutine level).

Table 4: Factor loadings

Program Subroutine
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

CC 0,153 -0,078 0,616 0,663 0,017 -0,047 -0,081 0,947 -0,081 -0,167
HCPL 0,969 0,082 -0,090 -0,028 0,072 0,853 -0,397 -0,100 -0,193 0,069
HDIF 0,874 0,020 0,166 -0,109 -0,249 0,725 0,442 0,014 0,291 -0,199
HEFF 0,891 0,358 -0,151 -0,009 0,049 0,774 -0,198 0,035 0,530 -0,044
HNDB 0,955 0,260 -0,070 -0,039 -0,035 0,928 -0,052 0,010 0,328 -0,079
HPL 0,966 0,230 -0,074 -0,038 -0,007 0,888 -0,426 -0,064 -0,026 0,030
HPV 0,971 0,022 -0,055 -0,040 0,051 0,906 -0,245 -0,102 -0,237 0,046
HTRP 0,891 0,358 -0,151 -0,009 0,049 0,774 -0,198 0,035 0,530 -0,044
HVOL 0,956 0,259 -0,099 -0,030 0,016 0,827 -0,508 -0,071 -0,021 0,053
MI -0,771 0,580 -0,136 0,068 -0,127 -0,892 -0,285 0,065 0,305 0,032
MIMS -0,771 0,580 -0,136 0,068 -0,127 -0,891 -0,286 0,066 0,309 0,032
MISEI -0,736 0,643 0,071 -0,102 0,010 -0,887 -0,297 0,076 0,312 0,058
MISM -0,745 0,631 0,049 -0,072 0,034 -0,877 -0,313 0,076 0,323 0,061
NLE 0,602 -0,326 0,186 -0,240 -0,288 0,463 0,664 -0,097 0,035 -0,049
McCC 0,947 0,260 -0,090 -0,042 -0,020 0,678 0,393 0,092 0,478 0,044
NOI 0,297 -0,430 0,377 -0,422 -0,281 0,258 0,315 0,203 -0,036 0,782
CD 0,072 0,215 0,627 -0,516 0,412 -0,724 -0,439 0,155 0,348 0,215
CLOC 0,537 0,185 0,455 -0,065 0,150 0,771 -0,455 0,008 -0,108 0,247
NII - - - - - -0,059 0,182 0,047 0,208 0,123
LLOC 0,516 -0,502 -0,180 0,185 0,549 0,899 -0,393 -0,059 -0,033 0,046
Warning Info 0,837 0,206 0,314 0,306 -0,110 0,397 -0,012 0,897 -0,088 -0,095
Clone Metric Rules 0,768 0,209 0,379 0,362 -0,125 0,188 -0,029 0,948 -0,162 -0,129
Complexity Metric Rules 0,899 0,202 -0,101 -0,068 -0,033 0,538 0,453 0,089 0,311 0,055
Coupling Metric Rules 0,813 0,332 -0,106 -0,008 -0,028 0,156 0,191 0,201 0,028 0,829
Doc. Metric Rules 0,808 0,126 -0,312 0,053 0,081 0,439 0,125 0,002 0,199 -0,244
Size Metric Rules 0,947 0,021 -0,030 -0,105 0,001 0,705 -0,330 -0,011 0,056 0,001

As a final statement, we suggest to involve the Halstead’s Number of Delivered Bugs (HNDB)
metric into the model to contribute to the calculation of fault proneness since it has the largest
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correlation coefficients with the warning occurrences. Furthermore, we also recommend including
the Halstead’s Program Vocabulary (HPV) metric to contribute to the Complexity aggregated
node, since it has low correlation with the McCabe’s cyclomatic complexity in case of subroutines,
but it has a large weight in the linear combination in factor loading (dominant metric), thus
McCabe’s complexity, NLE and HPV forms a unit together to describe the overall complexity of
the system.
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The author led the effort of implementing the SourceMeter for RPG toolchain that is capable
of parsing and analyzing RPG/400 and RPG IV programs. SourceMeter for RPG serves as the
basis for the comparison and for the quality model as well. He collected the most relevant studies
related to quality assurance in RPG software systems. He gathered the RPG source code to be
analyzed in the comparison research and which was also a benchmark in the case study. He also
ran the static analyzers and collected their results which he later compared exhaustively. He
participated in the organization and the implementation of the case study. Making suggestions
about the extension of the quality model and performing the Principal Component Analysis are
also the author’s work. The publications related to this thesis point are:

♦ Zoltán Tóth, László Vidács, and Rudolf Ferenc. Comparison of Static Analysis Tools
for Quality Measurement of RPG Programs. In Proceedings of the 15th International
Conference on Computational Science and Its Applications (ICCSA 2015), Banff, Alberta,
Canada. Pages 177–192, Published in Lecture Notes in Computer Science (LNCS), Volume
9159, Springer-Verlag. June, 2015.

♦ Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A Software Quality
Model for RPG. In Proceedings of 2015 IEEE 22nd International Conference on Software
Analysis, Evolution and Reengineering (SANER). Pages. 91–100. IEEE (2015).

♦ Zoltán Tóth. Applying and Evaluating Halstead’s Complexity Metrics and Maintainabil-
ity Index for RPG. In Proceedings of the 17th International Conference on Computational
Science and Its Applications (ICCSA 2017), Trieste, Italy. Pages 575-590, Published in
Lecture Notes in Computer Science (LNCS), Volume 10408, Springer-Verlag. July, 2017.
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Summary
In this thesis, we discussed two main topics, these being the construction of new bug datasets
with their evaluation in bug prediction, and a methodology for measuring maintainability in
legacy systems written in the RPG programming language.

In case of bug datsets, we collected existing public bug datasets that use static software
product metrics to characterize the bugs. These datasets often operate with the set of classic
Chidamber & Kemerer object oriented metrics but nothing more. The available set of projects
are quite old, since they were part of older datasets. These datasets encapsulate data gathered
from various platforms, such as SourceForge, Jira, Bugzilla, CVS, and SVN. GitHub, being a
trend for hosting open-source projects, was a good candidate to gather new projects from. We
constructed a new dataset in order to overcome these deficiencies and to propose a new dataset
with up-to-date bug data. Moreover, we presented a method for unifying public bug datasets,
thus they share common metrics as descriptors. We showed how heterogeneous different datasets
can be by comparing their metric suites. We also presented the capabilities of built bug prediction
models in the case of the newly created GitHub Bug Dataset and in the case of the Unified Bug
Dataset as well. We suggest that researchers should first try using existing bug datasets, and
only if none of them conforms to their needs, construct a new customized dataset for their very
specific requirements.

In the field of maintainability in RPG systems, we first introduced an in-depth comparison
of state-of-the-art static source code analyzers for RPG systems. We provided a methodology
on how to properly measure the maintainability, which is the most dominant characteristic of
software quality, for RPG legacy systems. We also performed a case study, in which we success-
fully integrated our methodology into a mid-sized company’s development lifecycle. Finally, we
showed how the measuring of maintainability can be further improved by involving Halstead’s
Complexity Metrics in the model we built.
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