Bizmut-volframát és bizmut-vanadát alakformált fotokatalizátorok előállítása és alkalmazhatóságának vizsgálata

Ph. D. értekezés

Kása Zsolt

Témavezető: Dr. Pap Zsolt
(tudományos munkatárs, SZTE, Környezettudományi és Műszaki Intézet)

Környezettudományi Doktori Iskola

Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Környezettudományi és Műszaki Intézet, Környezetkémiai Kutatócsoport

Szeged
2019
Tartalomjegyzék

1. Bevezetés .. 6

2. Irodalmi áttekintés ... 7
 2.1. Nagyhatékonyságú oxidációs eljárások .. 7
 2.2. Heterogén fotokatalizis és alkalmazhatósági spektruma 8
 2.3. Fotokatalizátorok alkalmazása eltérő célvegyület-csoportok esetében 11
 2.3.1. Festékanyagok fotokatalitikus átalakítása ... 11
 2.3.2. Gyógyszerhatóanyagok ártalmatlanítása fotokatalitikus úton 12
 2.3.3. Fenolos szennyezők ártalmatlanítása ... 13
 2.3.4. Fertőtlenítés fotokatalizátorok alkalmazásával .. 13
 2.3.5. Fotokatalizátorok ismert rögzítési módszerei ... 14
 2.4. Látható fényben aktív fotokatalizátorok ... 15
 2.4.1. Alakformált bizmut-volframát ... 17
 2.4.2. Alakformált bizmut-volframát előállítása és fotokatalitikus alkalmazhatósága. 19
 2.4.3. A bizmut-vanadát .. 23
 2.4.4. Irányított kristályosítással előállított bizmut-vanadát fotokatalizátorok 24

3. Célkitűzés .. 27

4. Kísérleti rész ... 28
 4.1. Felhasznált anyagok ... 28
 4.2. Módszerek .. 28
 4.2.1. A bizmut-volframát előállítása .. 28
 4.2.2. A bizmut-vanadát előállítása és a szelektív rézleválasztás 29
 4.2.3. Anyagvizsgálati módszerek ... 30
 4.2.4. Fotokatalitikus aktivitás vizsgálatának módszerei és eszközei 32
 4.2.5. A szenzoros viselkedés vizsgálata során használt anyagok és módszerek 33

5. Eredmények és értékelésük ... 34
5.1. A kristályosítási idő és a kalcinálás hatása a bizmut-volframát tulajdonságaira

5.1.1. Röntgendiffrakciós mérések és a fajlagos felület meghatározása

5.1.2. Morfológiai vizsgálatok

5.1.3. Optikai tulajdonságok vizsgálata

5.1.4. A fotokatalitikus tulajdonságok vizsgálata látható és UV-fény megvilágítással

5.1.5. A fotokatalitikus anomália magyarázata

5.1.6. IR spektroszkópiai mérések – a felület tisztasága és az RhB adsorpciója

5.1.7. Röntgen-fotoelektron spektroszkópiai mérések

5.2. A változó polaritású adalékanyag hatása a bizmut-volframátra

5.2.1. A Hückel-módszer alkalmazása az adalékanyagokra

5.2.2. Röntgendiffrakciós mérések

5.2.3. A fotokatalitikus aktivitás vizsgálata látható és UV-fény megvilágítása mellett

5.2.4. A Hückel polaritás és a fotokatalitikus aktivitás kapcsolata

5.2.5. Optikai tulajdonságok vizsgálata

5.2.6. Mikromorfológiai sajátosságok vizsgálata pásztázó elektronmikroszkóppal

5.2.7. A SEM felvételek újraértelmezése és az R_{SDC} egyenlet megalkotása

5.2.8. A felületi érdesség és a periodicitás vizsgálata

5.2.9. Az R_{SDC} és a fotokatalitikus aktivitás kapcsolata

5.2.10. Kitekintés a szenzoros tulajdonságok felé

5.3. A bizmut-vanadát fotokatalizátorok jellemzése

5.3.1. Röntgendiffrakciós vizsgálatok

5.3.2. Morfológiai vizsgálatok

5.3.3. Optikai tulajdonságok vizsgálata

5.3.4. A bizmut-vanadát fotokatalitikus aktivitásának vizsgálata

5.3.5. Dinamikus fényszórás mérése

5.3.6. A bizmut-vanadát fotokatalizátor stabilitásának vizsgálata
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összefoglalás</td>
<td>81</td>
</tr>
<tr>
<td>Summary</td>
<td>85</td>
</tr>
<tr>
<td>Köszönetnyilvánítás</td>
<td>88</td>
</tr>
<tr>
<td>Irodalomjegyzék</td>
<td>89</td>
</tr>
<tr>
<td>Mellékletek</td>
<td>94</td>
</tr>
</tbody>
</table>
Rövidítések jegyzéke

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Magyar leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOP</td>
<td>Advanced Oxidation Processes – nagyhatékonyságú oxidációs eljárások</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet – ultraibolya fény</td>
</tr>
<tr>
<td>Vis</td>
<td>Visible light – látható fény</td>
</tr>
<tr>
<td>VB</td>
<td>Valance Band – vegyérték sáv</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction Band – vezetési sáv</td>
</tr>
<tr>
<td>P25</td>
<td>Kereskedelmi forgalomban kapható titán-dioxid: anatáz (89%), rutil (11%)</td>
</tr>
<tr>
<td>RhB</td>
<td>Rhodamine B – rodamin B festékanyag</td>
</tr>
<tr>
<td>TRX</td>
<td>Triton™ X-100 – (Oktil-fenol-etiléter) nemionos felületaktív anyag</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy – pásztázó elektronmikroszkópia</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffractometry – röntgendiffraktometria</td>
</tr>
<tr>
<td>ICDD</td>
<td>The International Center for Diffraction Data</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standards</td>
</tr>
<tr>
<td>COD</td>
<td>Crystallography Open Database</td>
</tr>
<tr>
<td>DRS</td>
<td>Diffuse Reflectance Spectroscopy – diffúz reflexiós spektroszkópia</td>
</tr>
<tr>
<td>IR</td>
<td>InfraRed spectroscopy – infravörös spektroszkópia</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy – röntgen-fotoelektron spektroszkópia</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence spectroscopy – röntgenfluoreszcencia spektroszkópia</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic Light Scattering – dinamikus fényszórás (spektroszkópia)</td>
</tr>
</tbody>
</table>
1. Bevezetés

Doktori disszertációm írása előtt megfogadtam, hogy nem kezdem úgy a dolgozatot, hogy „napjainkban”, hisz számomra ez csak a téma aktualizálására szolgáló kifejezés. Nos, ez sikerült is, de mégis kénytelen vagyok ezzel folytatni, ugyanis napjainkban valóban egyre nagyobb problémát okoz a tiszta víz hiánya, bárme rre is járunk a világban. Saját tapasztalatom mondja velem, hogy a fejlődő országokban jelenleg is azért küzdenek, hogy emberi fogyasztásra alkalmas ivóvizet állítsanak elő, s a jogi szabályozások és határértékek közel sincsenek az európai normákhoz képest.

Egy lehetséges kiút lehet, ha eltekintünk a hagyományos víztisztítási technológiáktól, s alternatív módon a nagyhatékonyságú oxidációs eljárásokkal próbáljuk meg a szennyezett vizeket megtisztítani. Egy ilyen technológiai megközelítés a heterogén fotokatalízis is, mely egy félvezető fotokatalizátoron kívül csupán a napfény segítségével képes a víztisztítást megvalósítani, ám ennek hatékonysága elmarad a jelenleg használt, s drágább eljárásoktól. Noha igen költségesnek és távolinak tűnik a megfelelő fotokatalizátor kifejlesztése, amellyel már gazdaságosan megvalósítható lehet az alternatív víztisztítás, ám a tendencia azt mutatja, hogy hatalmas potenciál lakozik a fotokatalizátorokban.

Egykori tanáromtól, Dr. Halász Jánostól megtanultam, hogy „Beruhzáni csak egyszer kell, üzemeltetni folyamatosan…”. Így a magasnak tűnő költségek ellenére is megéri a fotokatalizátorok fejlesztésével foglalkozni, noha nem minden eredményt tudunk adaptálni a gyakorlatba, hisz az eredmények sokszor csak egy nagyobb kirakós darabjaiként szolgálnak, s aki megtalálja a kirakós utolsó darabját és teljes egészében látja a képet, az hozhatja meg az áttörést.

Doktori disszertációmban látható fényre aktív fotokatalizátorok fejlesztésével, nél szerint bizmut-volfraamát és bizmut-vanadát előállításával és vizsgálatával foglalkozom, s hogy a fenti hasonlattal éljék, csupán néhány puzzle darabbal egészítem ki a méretetlenül nagy kirakoást, ezzel – remélyeim szerint – íranyt mutatva a későbbi kultatóknak és persze saját magamnak is, hogy melyik fejlesztési irány hozhatja meg az igazán nagy áttörést. A fotokatalizátorok tulajdonságai, mint a fotokatalitikus hatékonyság rengeteg paramétertől függ, s itt is érvényes a „minden összefügg mindennel” elv. Éppen ezért próbálok meg feltáíni ezeket az összefüggéseket, ezzel a fotokatalizátorok alkalmazhatóságát, vagy épp annak korlátait megkeresni.
2. Irodalmi áttekintés

2.1. Nagyhatékonyságú oxidációs eljárások

Míg a fejlett országokban többsnyire megoldott a fogyasztótól kikerülő szennyvíz tisztítása, addig a fejlődő országokban komoly problémát jelent az emberi fogyasztásra alkalmas ivóvíz előállítása is. Számos esetben, még kis hazánkban sem használható a hagyományos víz- és szennyvízisztítási eljárás, ugyanis temérdek mennyiségben fordulnak elő vizeinkben antropogén eredetű, a mikroorganizmusok számára lebonthatatlan, vagy toxikus eredetű szennyezők, mint például a fenolos szennyezők, a különböző festékanyagok, a gyógyszermaradványok és peszticidek, melyeket sokszor feleslegesen juttatunk ki a környezetünkbe [1]. Mindezt olyan mértékben, amellyel már a természet sem tud mit kezdeni. Így nélkülözhetetlenvé vált olyan kémiai víztisztítási módszer kidolgozása, mely ezeket az antropogén eredetű szennyező anyagokat képes környezetbarát módon ártalmatlanítani [2].

A jelenkor egyik legdinamikusabban fejlődő és a legtöbbet kutatott víztisztítási eljárásainak, a nagyhatékonyságú oxidációs eljárásoknak (AOP-k) egyike jó megoldás lehet a szerves szennyezők eltávolítására. Az AOP-k nagy előnye, hogy a vízben igen kis koncentrációban található szennyező anyagokat, azaz a mikroszenyezőket is képesek eltávolítani. Két fő csoportjuk ismeret: a vegyszeres és vegyszermentes AOP. A vegyszeres kezelés során erős oxidálószert (vagy szereket) juttatunk a kezelendő vízbe. Ilyen módszer az ózonnal és/vagy hidrogén-peroxiddal (O₃/H₂O₂) történő vízkezelés, míg a radiolízis, az UV- és vákuum ultraibolya (UV/VUV) fotolízis, valamint a heterogén fotokatalízissel megvalósított víztisztítás a vegyszermentes eljárások közé tartozik [3-5].

E módszerek közös tulajdonsága, hogy a folyamat során reaktív gyököket hozunk létre, melyek képesek a kezelendő vízben lévő szerves szennyezőkkel reagálni, így degradálni, adott esetben mineralizálni, azaz szén-dioxiddá, vízzé és szervetlen ionokká alakítani azokat. Ha az üzemeltetési költségeket tekintjük, s sem előtt tartjuk a környezet terhelését, akkor a heterogén fotokatalízis kiemelkedik a többi nagyhatékonyságú oxidációs eljárás közül, noha hatékonysága kisebb. Viszont nem árt tisztában lenni azzal, hogy a heterogén fotokatalízis, bár még gyerekcipőben jár, a gyengébb hatékonysága felzárkózni látszik a többi eljáráséhoz.

Ezen okok miatt doktori diszsertációmban a heterogén fotokatalízis témakörével foglalkozom részletesebben.

2.2. **Heterogén fotokatalízis és alkalmazhatósági spektruma**

A heterogén fotokatalízis egy környezetbaráttnak mondható folyamat, amely a természetben is lejátszódik, legfőképpen a talaj legfelső rétegében felülsúlt ásványoknak köszönhetően (anatáz, rutil, ilmenit, hematit, szfalerit stb.), melyek a talaj szerves anyagait igen lassan, de képesek lebontani [6].

A fotokatalitikus folyamatok alapja egy félvezető részecske, amely speciális sávszerkezetének köszönhetően szigetelőként és vezetőként is viselkedhet, amit, ha a megfelelő energiájú elektromágneses sugárzással gerjesztünk, akkor a részecske vegyérték sávból (VB) a vezetési sávba (CB) „kényszerítünk” egy elektront (e⁻), a félvezető vezetővé válik, s a vegyérték sávban hátramarad egy pozitív töltésű lyuk (h⁺). Ehhez azonban a gerjesztési energiának el kell érni a félvezetőre jellemző minimumot, ami a VB és a CB között van, különben a félvezető szigetelő marad. Ezt nevezzük tiltottsáv-szélességnek, melyet tipikusan elektronvoltban fejezünk ki (eV). Ha a gerjesztés fényvel történik (UV, látható, infravörös), akkor a gerjesztő foton energiájának szintén nagyobbnak kell lenni, mint a tiltottsáv-szélessége. Ez az energia a fény hullámhosszától fordítottan arányos, azaz minél kisebb a hullámhossz, annál nagyobb az energia. A fény energiatartalmát a hullámhossz függvényében a Tauc-féle ábrázolásmóddal, vagy a Kubelka-Munk függvényel adhatjuk meg [7, 8].

Ahhoz, hogy a létrejövő „elektron-lyuk” pár felhasználható legyen a szerves anyagok oxidációjára, vissza kell szorítani a rekombinációt, azaz megakadályozni, hogy a félvezető visszatérjen az alapállapotba, s a befektetett energia hővé alakuljon. A gerjesztési mechanizmust szemlélteti az 1. ábra.

![1. ábra A félvezető részecske gerjesztési mechanizmusa.](image)
A részecske gerjesztését követően (1), a vezetési sávban lévő elektron a felület közelében lévő oxigénmolekulával reagálva szuperoxid győkaniont (O2•⁻) (2), míg a pozitív „lyuk” a vízrekkedében hidroxil-győkökent (•OH) és protont (H⁺) eredményez (3). A szuperoxid győkanion a félvezető vezetési sávjában lévő elektronnal és a protonnal elreagál, aminek hatására hidrogén-peroxid (H₂O₂) jön létre (4), ami képes egy másik szuperoxid győkanionnal egyesülni, ami tovább növeli a vízben lévő •OH koncentrációját (5). A reakcióban létrejövő oldott oxigén molekula vagy távozik a rendszerből, vagy ismét reagál a félvezető vezetési sávjában lévő következő elektronnal, s a folyamat kezdődik eléről. A hidrogén-peroxid másik reakcióútja az, ha a vezetési sáv elektronját felvéve hidroxil-győké és hidroxidionna (OH⁻) alakul (6), utóbbi a vegyérték sávba adjja le a felesleges elektronját, így egy újabb •OH keletkezik (7). A reaktív hidroxil-győkök képesek a szerves szennyezőket ártalmatlanítani abban az esetben, ha az a felület közelében, (vagy a felületen) jelen van. Ha ez nem történik meg, akkor kettő •OH képes hidrogén-peroxidá egyesülni, mely erőteljes oxidálószerként fejti ki degradációs hatását (8) [4, 5, 9, 10]. A gyökös folyamatok természetesen ennél sokkal összetettebbek, de a fotokatalízisben ezek a kulcs lépések. A reakciók az alábbi egyenletek szerint játszódnak le [4, 5, 9, 10]:

Félvezető + hν → gerjesztett félvezető (hvb⁺ + ecb⁻) (1)

\[\text{e}^-_{cb} + \text{O}_2 \rightarrow \text{O}_2{•}^- \] (2)

\[\text{h}^+_{vb} + \text{H}_2\text{O} \rightarrow \text{H}^+ + {•}\text{OH} \] (3)

\[\text{O}_2{•}^- + \text{e}^-_{cb} + 2 \text{H}^+ \rightarrow \text{H}_2\text{O}_2 \] (4)

\[\text{O}_2{•}^- + \text{H}_2\text{O}_2 \rightarrow {•}\text{OH} + \text{OH}^- + \text{O}_2 \] (5)

\[\text{e}^-_{cb} + \text{H}_2\text{O}_2 \rightarrow {•}\text{OH} + \text{OH}^- \] (6)

\[\text{h}^+_{vb} + \text{OH}^- \rightarrow {•}\text{OH} \] (7)

\[2 {•}\text{OH} \rightarrow \text{H}_2\text{O}_2 \] (8)

A létrejövő reaktív győkök élettartama igen rövid (•OH: 10⁻⁵ s [11]), így logikus, hogy kizárólag a gerjesztett félvezető felületén, vagy annak közelében lévő szerves anyagok képesek a győkőkkel elreagálni, s így a mineralizáció rögsős útjára lépni.

Abban az esetben, ha a rekombináció nem történik meg a fotogenerált lyuk elektronnal történő betöltődése megvalósulhat a szennyező anyagtól szerzett elektronnal is. Ekkor a szennyező anyag átadja egy elektronját a félvezetőnek, ezáltal a gyökös bomlása megindul. Ezt nevezzük közvetlen oxidációnak, melynek egyszerűsített a képletelet, hogy a szennyező anyag nem csupán a felület közelében, hanem a felületen
megkötődve legyen jelen [12]. Természetesen a közvetlen oxidáció mértéke nagyban függ a félvezető típusától és a szerves molekula szerkezetétől, továbbá az adszorpciójának mértékétől [13, 14].

A fotokatalízis alkalmazhatóságára elsőként Fujishima és Honda hívt a figyelmet tanulmányával, amelyben titán(IV)-dioxid, valamint fény és elektromos áram segítségével sikerült elsőként vizet bontani hidrogénre és oxigénre, bár megjegyzendő, hogy ez fotoelektrokatalitikus folyamat volt [15]. Ezt követően rohamosan nőtt azon publikációk száma, melyek a heterogén fotokatalizissel, és annak alkalmazhatóságával foglalkoztak [16-18]. A titán-dioxid fotokatalitikus tulajdonságait is kiaknázva a kutatók számos potenciális alkalmazási területet találtak, ami bizonyította, hogy a félvezetők korunk legsokoldalább anyagcsaládja. Létrehoztak olyan szuper-hidrofób felületeket, [19, 20], melyek öntisztuló- és öntsterilizáló tulajdonságokkal rendelkeznek [21-25], sőt mi több, a kellemetlen szagokat okozó szerves molekulákat is képesek lebontani [26-30]. Egy szélsőségesnek tűnő alkalmazási terület a rákos tumorok kezelése fotokatalizátork segítségével [31-34], de használhatók még a gáztereben lévő komponensek kimutatására is, azaz gázszenzorként [35].

A félvezetők fejlesztése az energiaipar számára is kulcsfontosságú. Bár szigorúan nem a fotokatalízis témakörébe tartozik a napelemek fejlesztése, de tekintettel arra, hogy ugyanaz a fénnyel történő gerjesztés játszódik le mind a két esetben, így meg kell említeni a félvezetők fotovoltaikus rendszerekben történő alkalmazását. Ez esetben a gerjesztett félvezető vezetési sávjából elvezethetők az elektront (nem képződik gyök), így elektromos áram jön létre [36, 37].

A fotokatalízis rengeteg profitál a napelemek fejlesztéséből, hiszen az elért eredmények jelentős része jó eséllyel adaptálható a víztisztítás területén, legyen szó hatékonyságnövelésről, vagy látható fényre aktív félvezetők fejlesztéséről, hisz a félvezető gerjesztést követően mindkét folyamatban felhasználható. Természetesen ez oda-vissza működik, így a víztisztítás és az energiaipar kéz a kézben jár [38].

A fotokatalízis segítségével lehetőség nyílik hidrogénáz előállítására, melyet vízbontással („water splitting”), vagy szerves savak bontásával érhetünk el, amely során a vízben található H⁺ ionokból hidrogénáz étallitunk elő a katalizátor felületén csupán a napenergia befektetésével [39-42]. A hidrogénáz „alapanyaga” természetesen lehet más vegyület is, mint például etanol, ami költségéktőkonyabb, és könnyebben kezelhető, mint a szerves savak. Sőt, ha a hidrogénáz felhasználási területeit vizsgáljuk meg, akkor a hidrogén gáz üzemanyagcellákban történő felhasználása során is előnyösebb az etanol, mint
H₂ alapanyag, hisz a folyamat könnyebben kivitelezhető és költséghatékonyabb is, mint a vízbontásból nyert hidrogéngáz [43].

Abban az esetben, ha a félvezetőre kettő (vagy több) elektródot kapcsolunk, képesek lehetünk a félvezető elektromos ellenállását megmérni. Ez az ellenállás különböző gázok jelenlétében változik. Ezt kihasználva a félvezetőt használhatjuk különböző gázok/gőzök detektálására, úgy mint hidrogén, kén-hidrogén, szén-monoxid, oxigén, őzon, vagy épp a légterben található szerves gőzök, mint metanol, etanol, aceton, stb. [44].

A legnagyobb érdeklődést mégis az alternatív víz- és szennyvíztisztításban való alkalmazás mutatta, melyet a következő fejezetben részletesebben tárgyalok.

2.3. Fotokatalizátorok alkalmazása eltérő célvegyület-csoportok esetében

2.3.1. Festékanyagok fotokatalitikus átalakítása

Az előző fejezet jól demonstrálja, hogy a fotokatalizis felhasználhatósága szinte határtalan, így a vizes közegben lévő szerves szennyezők lebontása is megoldható. A vizekben fellelhető szennyező anyagok egyik csoportja a textilipar által használt anionos és kationos festékek, amelyeket a fejlődő országokban sokszor tisztítás nélkül tonnaszám juttatnak ki a folyóvizekbe. A festékek azon túl, hogy esztétikai problémát jelentenek, közvetlenül, vagy a köztermékek formájában karcinogének is lehetnek. Fontos tehát az elfolyó szennyvizekből ezt a szennyezőanyag családot ártalmatlanítani [45]. Éppen ezért az általam előállított fotokatalizátorok aktivitását a textilipar által használt szerves festékek bontása során is vizsgáltam.

A leggyakrabban alkalmazott referencia festékanyag, mint modellszennyező a metilénkék, ami nagy molekulatömeggel rendelkezik (Mr=284 g/mol), ám ennek ellenére bizonyítható, hogy a metilénkék esetében is elérhető a teljes mineralizáció, ha kellően hosszú megvilágítási időt alkalmazunk [46].

Sauer és munkatársai az alkalmazott P25 titán(IV)-dioxid katalizátor szuszpenziótöménységének hatását vizsgálva megállapították, hogy az 1 g/L-es szuszpenziótöménység esetén érhető el a legnagyobb fotokatalitikus aktivitás. [47]. Természetesen a szuszpenziótöménység kivül egyéb paraméterek is szerepet játszanak a fotokatalízis hatékonyságában, mint az alkalmazott fotokatalizátor típusa, a modellszennyező szerkezete, vagy épp a szuszpenzió pH-ja [48].

Kansal és munkatársai a pH hatását vizsgálták öt különböző oxid és szulfid típusú katalizátor esetében (TiO₂, ZnO, ZnS, CdS és SnO₂) és kétféle festékanyag (metilnarancs és
rodamin-6G) bontása során UV-, látható és napfény megvilágítása mellett. Megállapították, hogy mindegyik katalizátor a semleges pH közelében a legaktivabb, továbbá a napfénnyel végzett kísérletek esetében a cink-oxid a P25 aktivitását is meghaladta [49]. Ez rávilágít arra, hogy ha a későbbiekben csupán napfényt szeretnénk használni fényforrásként, akkor a sokak által használt titán-dioxid helyett más alternatív félvezetőt érdemes alkalmazni.

A festékanyagok bontása során figyelembe kell venni magának a festékanyagnak a szerkezetét is (anionos, vagy kationos festékanyag), hiszen ez nagyban meghatározza azt, hogy fotokatalitikus úton bontható-e, vagy sem. Bizonyított tény, hogy a festékanyag felületi megkötődése egyenes arányban áll a fotokatalitikus aktivitással, így az anionos metilnarancs és a kationos rodamin B, vagy a szintén kationos metilénkék fotokatalitikus degradációja között jelentős különbség van. Természetesen az adsorpció és ezzel egyenes arányban a fotokatalitikus bomlás mértéke is nagyban függ attól, hogy milyen típusú fotokatalizátort alkalmazunk [50-52].

2.3.2. Gyógyszerhatóanyagok ártalmatlanítása fotokatalitikus úton

A festékanyagokkal ellentétben más szerves szennyezők jelenléttét a vizekben már nem olyan könnyű kimutatni, s a legtöbb esetben eltávolításuk biológiai módszerekkel egyáltalán nem megoldható, tekintve, hogy a mikroorganizmusok számára ezen anyagok halálosak lehetnek.

A P25 fotokatalizátor a leggyakrabban használt fájdalomcsillapító, a paracetamol bontása során is hatásosnak bizonyult, s az azonosított közttermékek szerkezete alapján egyértelműen kijelenthető, hogy egyszerűbb, a környezetre nézve kevésbé káros közttermékek keletkeznek, mint maga a kiindulási vegyület [53]. Szintén P25-tel lehetséges egy bakterioszatatikus, azaz a baktériumok szaporodását enzimatikus úton gátló antibiotikumot, a trimetoprin-t fotokatalitikus úton bontani [54], de sikeresen használható, a sóskafélékben és méregként viselkedő oxálsav degradációjára is [55].

A P25 alkalmas lehet egy másik gyakori, nem szteroid hatású gyulladáscsökkentő és fájdalomcsillapító hatóanyagot, a diklofenákat UV megvilágítása mellett deaktiválni. Noha a teljes mineralizáció számítások szerint több napba telne, a gyógyszerhatóanyagok esetében a deaktiválás elégséges feltétele a környezetbe történő kijuttatásnak [56]. Bizonyított tény, hogy mikroszennyezőkként a természetes vizeinkben is megtalálhatók a fogamzásgátló tabletták ösztrogén típusú hatóanyagai, mint például a 17-α-etinilősztradiol, 17-β-ősztradiol és a nomegestrol-acetát [57], melyek feldúsulva hozzájárulhatnak a halak
pusztulásához, valamint az emberi szervezetbe jutásához. E hatóanyagok ártalmatlanítása elenyésző koncentrációja miatt hagyományos módszerekkel egyáltalán nem megoldható, de a fotokatalízis segítségével ez sem lehetetlen [58].

2.3.3. Fenolos szennyezők ártalmatlanítása

A fenolos szennyezők közül maga a fenol, a biszfenol, a halogénezett fenolok (klórfenolok, fluorofenolok) és a nitrofenolok fordulnak elő a legnagyobb mennyiségben a vizeinkben, melyeket az ipar leginkább a műanyagok gyártása során használ [59, 60]. Saber munkatársaival remekül összefoglalta e fenolos szennyezők fotokatalitikus bomlási mechanizmusát különböző titán-dioxid alapú fotokatalizátorok jelenlétében UV-, látható és napfény megvilágítása mellett. A tanulmány rávilágított arra, hogy - egyelőre laborléptékben ugyan - de képesek lehetünk az ipari vizekben fellelhető karcinogén anyagokat is mineralizálni [59]. Napjainkban a fotokatalízis gyenge alternativája a jelenleg használt olcsó és gyors adszorciós fenoeltávolítási módszerek, ugyanakkor a fotokatalizátorokkal tovább javítható ez a hatékonyság [61]. Munkám során ezzel az anyagesaláddal nem foglalkoztam, így ezt tovább nem részletezem.

2.3.4. Fertőtlenítés fotokatalizátorok alkalmazásával

A fotokatalízis folyamata során létrejövő reaktív hidroxil-gyök képes az élő sejtfalat is megtámadni, ezáltal a fotokatalízis egy alternatív vízfertőtlenítési eljárásként is alkalmazható.

Ezt elsőként Matsunaga és munkatársai ismerték fel még 1985-ben, amikor platinával módosított titán-dioxid segítségével számos baktériumfajtát sikerült inaktiválni úgy, mint Escherichia coli, Lactobacillus acidophilus és Saccharomyces cerevisiae [62]. Az E. coli esetében titán-dioxid segítségével akár egy óra alatt elérhető a teljes inaktiválás [63], sőt a 14C-es radioizotópos vizsgálattokkal bizonyítható, hogy a fotokatalizízessel az E. coli teljes sejtyagya egészen a szén-dioxidig oxidálható, azaz mineralizálható [64].

Természetesen a létrejövő reaktív gyökök nem csupán a baktériumok sejtfalát képesek roncoslni, hanem a gombákét és a virusokat is, mint például Penicillium expansum [65], Diaporthe actinidiae [66] gombákét, vagy a bakteriofág MS2 (ATCC 15597-B1) [67] és a Hepatitis B vírusokat [68].
2.3.5. Fotokatalizátorok ismert rögzítési módszerei

A szakirodalom egy minden vízproblémára megoldást kínáló technikának állítja be a fotokatalizist, de vajon használható-e ezek az eljárások a mindennapokban? A válasz: igen. Ehhez azonban az kell, hogy a fotokatalizátorok ne csak szuszpenzióban, hanem immobilizált formában is használhatók legyenek, ellenkező esetben a félvezető és a kezelt víz szétválasztása az egyébként emelné az üzemeltetési költségeket. Ezt a kutatók is felismerték, s több módszert is kidolgoztak a katalizátor immobilizálására, azaz rögzítésére.

Joanna és munkatársai polimerragasztóval P25-öt rögzítettek egy labirintusszerű átfolyásos tesztreaktor falára, majd vizsgálták a rögzített katalizátor fotokatalitikus aktivitását fenollal szemben. Sajnos a keletkező köztermékek, és a polimerragasztó bomlása „megmérgezte” a katalizátort, ami jelentős aktivitáscsökkenést okozott [69]. Ennek ellenére a kutatás bebizonyította, hogy a tesztreaktor felépítése ideális, s erre alapozva számos olyan reaktorkonstrukcióval találkozhatunk, mely ezt az elrendezést választotta és ipari léptékben is sikeresen alkalmazta [70].

Fotokatalizátorok rögzítésével a kutatócsoport egyik tagja, Dr. Veréb Gábor doktori disszertációjában foglalkozott. Doktori értekezésében kereskedelmi titán-dioxidokat rögzített az általa kidolgozott titán-etoxidos impregnálásos módszerrel, aminek nagy előnye, hogy a ragasztóanyag a titán-etoxid hidrolíziséből származó amorf titán-dioxid, így elkerülhető a korábban említett katalizátor deaktiválódása. A rögzítési módszer kidolgozásán túl, egy tisztán napfénnyel működő „hordozható”, nagylaboratóriumi átfolyásos tesztreaktort is megalkotott (2. ábra), mely képes a nap 24 órájában működni külső áramforrás nélkül [71].

2. ábra Napfénnyel üzemeltethető víztisztító berendezés [71].
Magyarországon elsősorban a hagyományos víztisztítási módszert helyettesítő és/vagy kiegészítő lépésként használják a fotokatalizátorokat a vizek csíramentesítésére. Az InwaTech Környezetvédelmi Kft. által gyártott csőköteges vízfertőtlenítő reaktorral sterilizálják a Szegedi Vadaspark pingvinjeinek vizét, ugyanis a pingvinek kifejezetten érzékenyek a vízben található klóros vegyületekre. Ezzel a módszerrel mintegy 95 %-kal sikerült csökkenteni az állatok vizének a szabad klórtartalmát. Szintén ezt a technológiát használják a kecskeméti Mercedes-Benz gyárának vízfertőtlenítésére (3. ábra) [72].

3. ábra Immobilizált titán-dioxidot alkalmazó vízfertőtlenítő berendezés [72].

2.4. Látható fényben aktív fotokatalizátorok

Kutatások tízezrei foglalkoznak a TiO₂ fotokatalitikus tulajdonságának vizsgálatával és rögzítésével, ahogyan azt az előbbi fejezetben ezt részleteztem. Ugyanakkor a titán-dioxid legnagyobb hátránya, hogy gerjesztéséhez UV-fényre van szükség, amely a sugárzási spektrum teljes energiájának csupán 3-5 %-át teszi ki, szemben a látható komponenssel, ami átlagosan 44 %-ot fed le. Mindemellett a földfelszint érő fény intenzitása is a látható fény tartományában a legnagyobb [73]. A napfény spektrumának eloszlását a 4. ábra mutatja.
4. ábra A földfelszínt érő napfény spektruma és annak hullámhossz szerinti eloszlása az intenzitás függvényében [73].

A napsugárzás hullámhossz-intenzitás profilja jól mutatja, hogy hatalmas lehetőségek rejlenek a látható fény energiájának kiaknázásában, ezért érdemes olyan fotokatalizátort használni, amelynél a gerjesztési küszöb a látható fény tartományába esik (az infravörös sugárzással gerjeszthető fotokatalizátorok fejlesztése egyelőre még gyerekcipőben jár [74]).

Lehm és kutatócsoportja valószínűleg először alkalmazott látható fényel gerjeszthető ruténium-bipiridin fémkomplexet, melynek segítségével hidrogéngázt fejlesztettek trietanol-amin oldatából [75]. Sajnos a fémkomplex nem mutatkozott túl stabilnak, de meghozta az áttörést, s egy évre rá, 1980-ban Tomoji és munkatársai nemesfémekkel (Pt és Pd) módosított titán-dioxid ruténium-oxid kompozitokat állítottak elő, melyet szintén hidrogéngáz fejlesztésére használtak fel. A fotokatalitikus hidrogénfeljeszést metanolból és vízből végezték látható fény megvilágítása mellett. Munkájuk zsenialitása abban rejlett, hogy a nemesfémek hozzáadásával le tudták csökkenteni a félvezető tiltottsáv-szélességet olyannyira, hogy a legjobb kompozit fényabszorpciója 470 nm lett, ami bőven a látható fény tartományába esett [76]. A nemesfém mindemellett növelheti a fotokatalitikus aktivitást, s elengedhetetlen ahhoz, hogy a hidrogén gáz leválása a katalizátor felületén megtörténjen [77].

Ezt követően számos olyan módszert kidolgoztak, mellyel a látható fény tartományába lehet csökkenteni a fotokatalizátor aktiválási energiáját, mint például az előbb említett nemesfém hozzáadásával (Au, Ag, Rh, Pt és Pd [78-80]), dopolással (például F vagy S segítségével [81, 82]), kompozitképzéssel (Ag/AgCl /TiO₂, vagy grafén/TiO₂ [83, 84]),
vagy festékkel történő érzékenyítéssel (*trisz*(4,4′-dikarboxi-2,2′-bipiridin)-ruténium(II) komplex alkalmazásával) [85, 86].

A látható fényre aktív fotokatalizátorok fejlesztésének másik irányvonalai, hogy eleve olyan félfelvezetőt választunk, amelynek sávszerkezete lehetővé teszi a 400 nm-nél nagyobb hullámhosszúságú, látható fénnyel történő gerjesztést. Ezt a kutatók is felismerték, s az utóbbi időben a figyelem középpontjába a látható fényre aktív katalizátorok fejlesztése került, mint például a kadmium(II)-szulfid [87], volfrám(VI)-trioxid [88], bizmut(III)-oxid [89], ezüst(I)-halogenidek (AgX; X=Cl, Br, I) [90], vagy a bizmut(III)-oxid tartalmú vegyesoxidok, név szerint bizmut(III)-volframát [91], bizmut(III)-molibdenát [92], bizmut(III)-vanadát [93], bizmut(III)-oxohalogenidek (BiOX; X=Cl, Br, I) [94].

Doktori diszertációim további részében a bizmut-volframát és bizmut-vanadát fotokatalizátor előállításával, tulajdonságai vala és a Bennük rejlő fotokatalitikus potenciállal foglalkozom.

2.4.1. A bizmut-volframát

A bizmut(III)-volframát (a későbbiekben bizmut-volframát) egy aürivillius fázisú, természetben is előforduló kettős rétegű perovszkit szerkezetű ásvány, ami tiszta állapotban csak ortorombos kristályfázisban fordul elő. Szerkezeti felépíthése az 5. ábrán látható.

5. ábra Az ortorombos bizmut-volframát réteges szerkezete [95].

A perovszkit szerkezet általános képlete: ABX₃. Összetettebb formában pedig: (XXIIA²⁺)(VIB⁴⁺)(X²⁻₃). Noha szigorú értelemben véve a perovszkit egy természetben is megtalálható ásvány a kálciuim-titanát (CaTiO₃), 1839-es felfedezése óta [96] több mint 400 olyan természetes és mesterséges ásványt soroltak ide, mely hasonlóságokat mutat a kálciuim-titanátta, úgy mint a ferroelektromos, [97] mágneses-, piezo- és dielektromos tulajdonsága [98-102], a szupravezetési- [103, 104], és ionvezetési képessége [105, 106]. Szerkezetének köszönhetően a szintetikus perovszkitok, mint a metil-ammonium-ólom-
halogenidek (CH$_3$NH$_3$PbX$_3$) remekül alkalmazhatók a napelemek fotovoltaikus rendszerében [107-111], mellyel akár a 22,1%-os napfénykonverzió is elérhető [112].

Az aurivillius fázis a perovszkít szerkezet egy tagja, melyben jelen van legalább egy bizmut-oxid réteg. Általános képlete AB$_{n-1}$C$_n$O$_{3n+1}$, ahol „A” maga a bizmut-oxid réteg ([(Bi$_2$O$_2$)$_{2n}$]), „B” egy nagy, 12-es koordinációs számú komplex oxoanion ellenionja (például: Na$^+$, K$^+$, Ca$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Pb$^{2+}$, Bi$^{3+}$), míg a „C” egy 6-os koordinációs számú átmeneti fém kationja (például: Ti$^{4+}$, Nb$^{5+}$, Cr$^{3+}$, W$^{6+}$, Fe$^{3+}$), az „O” pedig az oxigén atomot jelöli. Az „n” minden esetben 1 és 8 között van [113, 114]. Értelemszerűen, ha n=1, akkor a B tag kiesik, s megkaphat az aurivillius fázis legegyszerűbb tagjait, úgy mint Bi$_2$MoO$_6$ [115], Bi$_4$V$_2$O$_{11}$ [116], Bi$_2$GeO$_5$ [117], Bi$_2$SiO$_5$ [118], vagy a Bi$_2$WO$_6$ [119].

A bizmut-volframát 1938-ban Max Hey és Frederick Allen Bannister nevéhez köthető, akik elsőként azonosították be a dél-angliai Cornwall közeli volfrám bányában a volframit nevű ásványban, melyet egy angliai minerológus Sir Arthur Edward Ian Montagu Russell után russelitnek neveztek el [120]. Fotokatalitikus alkalmazhatóságának vizsgálata 1999-ben indult meg [121], s 2004 után exponenciálisan nőtt a bizmut-volframához kapcsolódó publikációk száma [122]. A bizmut-volframát kedvező ion-vezetési tulajdonságait Takahashi és munkatársai fedezte fel [123], ami a fotokatalízisban történő alkalmazáshoz elengedhetetlen.

Bizonyították, hogy a fotokatalízis során igen fontos szerepe van a kristálymorfológiának, a krisztallitok méretének és hierarchikus szerveződésnek, továbbá a fajlagos felületnek [124-127]. A kristálymorfológia alapvetően meghatározza, hogy a fotokataliziskor az oxidációs, vagy redukciós folyamatok kerülnek előtérbe, de a sarkokkal és élekkel rendelkező krisztallitok pedig kedvezően befolyásolhatják a fotokatalízis menetét. A másodlagos szerveződési szint, azaz a valamilyen formába történő rendeződés a részecske fizikai stabilitásban játszik szerepet [128]. A fajlagos felület egyenes arányban áll a fotokatalitikus aktív felülettel, hisz maga a fotokatalízis folyamata csak a felületen játszódik le, pontosan abban a felület közelében lévő néhány atom gerjesztható, míg a tömbi fázis atomjai nem [129]. Ebből eredően érthető, hogy a kisebb primer részecskek méretét nagyobb fajlagos felülettel rendelkező felülettől származik, ezáltal a fotokatalízis aktivitás növelhető.

A fajlagos felület növelésén túl a felületi atomok kémiai reakciókészsége és a fotokatalitikus aktív centrumok, továbbá az esetleges kristályhibák (hibahelyek) száma legalább annyira fontos, mint maga a fajlagos felület, vagy a morfológia és a szerveződési szint. A felületen lévő pozitívabb oxidációs állapotú fématomok szintén képesek megnövelni a fotokatalitikus aktivitást [130, 131].
Ezek a tulajdonságok szorosan kapcsolódnak egymáshoz, tehát az egyik paraméter változtatása hatással van minden más tulajdonságra is. Régóta képesek vagyunk egyes paramétereket módosítani, gondoljunk egyszerűen egy fizikai örlésre, ahol a felület/terfogat arányt növeljük meg, (a szemcseméret csökken, a fajlagos felület pedig növekszik), vagy az utólagos hőkezelésre, azaz a kalcinálásra [132]. Ugyanakkor az alapvetően fizikai módszereknek megvannak saját korlátai, s ahhoz, hogy ezeket a korlátokat lehútsük, szükség van más kémiai módszerek kidolgozására. Itt kap hangsúlyt az irányított kristályosítás, aminek lényege, hogy már az előállítás során befolyásoljuk a szintézis-elegy tulajdonságait, ezáltal a kivánt minőségű fotokatalizátorokat tudjuk előállítani.

2.4.2. Alakformált bizmut-volframát előállítása és fotokatalitikus alkalmazhatósága

Csakúgy, mint ahogyan a legtöbb fotokatalizátor esetében, a bizmut-volframátot tekintve is kitüntetett szerepe van a katalizátorszemcse morfológiájának, melynek manipulálása, azaz az alakszobrászat korunk egyik legintenzívebben kultatott szakterülete.

A részecskék alakját befolyásolhatjuk a fotokatalizátor kalcinálásával, a szintézisidő változtatásával [133], vagy adalékanyagok használatával [134-136]. Az előállítás során használt prekurzorok a kristályos bizmut-volframát szintézisének egyik sarokkévét jelentik, mivel ha nem megfelelően választjuk meg a kiindulási anyagokat, akkor előfordulhat, hogy a keletkező termék nem rendelkezik fotokatalitikus aktivitással [137].

Az oldószernek hasonlóan fontos szerep jut, hiszen, ha vízmentes közegben végezzük a szintézist (ügy, mint etilén-glikol), ugyan kristályos bizmut-volframát keletkezik, de a homogén kristályorientáltság hiányából eredően az aktivitás is rosszabb, mint amikor vizes közegben történt a kristályosítás. Tehát a víz jelenléte nem feltétlenül szükséges a kristályosításhoz, viszont elengedhetetlen a kedvező morfológia kialakításához [138]. Az alakirányított kristályosítást, azaz a rendezett struktúra kialakítását elősegíthetjük adalékanyagok hozzáadásával, ami lehet polimer, felületaktív anyag, diszpergálószer, szervetlen-, vagy szerves adalék.

A felületaktív anyagok (tenzidek) és a polimerek elsődleges szerepe a habképzés, ami az „Ostwald-érés” folyamatát, azaz a nanoméretű kristályok növekedését/összenővését, majd a másodlagos kristályszerveződést, azaz a kristályrendeződést segíti elő a maga módján [139-141]. Kutatások bebizonyították, hogy felületaktív anyag nélkül a másodlagos kristályszerveződés csak speciális előállítási körülmények között történik meg, s ezen minták fotokatalitikus aktivitása messze elmarad a tenziddel előállított társaikkal szemben [142, 143].
Xue és munkatársai az alkalmazott nátrium-dodecil-benzolsulfát (SDBS) hatását vizsgálták az előállított katalizátorra. Hat különböző morfológiájú katalizátort különítették el annak függvényében, hogy jelen volt-e az SDBS, vagy sem [144]. Heshan és munkatársai cetil-trimetil-ammonium-bromid (CTAB) hozzáadásával nagymértékben meg tudták növelni a fajlagos felületet, amihez egyedi lapokból álló rózsasforma párosult. Ez tekinthető a fotokatalizátor részecskék másodlagos szerveződési szintjének, mely a szerzők szerint előnyesebb lehet, mint a különböző lapokból álló struktúra [142]. E két anyag alkalmazásával az egyedi kristállitok méretét jelentősen le lehet csökkenteni, ezáltal a fotokatalitikus aktivitást megnövelni [145]. Fontos megismételni, hogy ezek az anyagok csak a szintézis során fejtik ki alakformáló hatásukat, nem épülnek be a kristályláncba, s a kristályosítást követő tisztítás során eltávolíthatók.

Az irodalmi adatok alapján kijelenthető, hogy a megfelelően megválasztott adalékanyagok kedvező irányba képesek befolyásolni a fotokatalizátortulajdonságait.

A habképzőkön használhatunk más adalékanyagokat is, ám ezek hatása nem a hab- és micellaképzésben nyílvánul meg, hanem a növekedési mechanizmust befolyásolják, vagy a kristályláncba beépülve módosítják a katalizátortulajdonságait, ezáltal elősegíthetik a kisebb méreteloszlást, növelhetik a fajlagos felületet. A kristálynövekedés irányított gátolásával megnövelhetik egy adott kristálylap mennyiségét, vagy a fotokatalitikusan aktív centrumok számát is növelhetik [146-149].

Az adalékok segítségével előállított mezopórusos bizmut-volfírmat fotokatalitikus bontási folyamata szoros összefüggésben van a fotofizikai úton generált lyukak mennyiségével, ugyanis ezek a lyukak felelősek számos szennyező bomlásáért, mint például tetraciklin, metilénkék, vagy a rodamin B. (A festékanyagok bomlása során a hidroxilgyököknek csak másodlagos szerep jut) [137, 145, 150, 151]. A fotokémiai reakció hatásfoka és sebessége szorosan összefügg az adott szennyező adszorpciós kapacitásával. Huang és munkatársai anionos-, és kationos festékanyagok, valamint a fenol felületen történő adszorpcióját és fotokatalitikus bontását tanulmányozták. Megállapították, hogy a kationos festékanyagok, mint a metilénkék és a rodamin B adszorpciója jóval nagyobb, mint az anionosoké (például a metilnarancsé), vagy épp a fenolé, ami visszavezethető a bizmut-volfírmat elemi cella negatív, oxigénatomokkal határolt kristálylapjaira (6. ábra). A fotokatalitikus tesztek eredményeit figyelembe véve közvetlenül bizonyították, hogy a felületi adszorció a fotokatalitikus degradációval egyenes arányban áll, ugyanis a lyukakkal történő reakció a felületen adszorbeált festék molekulákkal kedvezményezettebb, mint az elektronbefogással történő bomlás, hisz a fotooxidáció egylépésben megtörténik, míg a gyök
létrejötte lassabb, többlepéses folyamat, mint a direkt oxidáció [51]. Mindemellett a lyukbefogás lokalizált, hiszen csak a felületen történik meg, míg a létrejövő gyökök hatása nem kötött a félvezető felületéhez.

6. ábra Eltérő töltéssel rendelkező szennyezők, és adsorpciós kapacitásuk bizmut-volfiramát elemi cellán. Molekulaserkezetek és azok töltései (a); adsorpciós kapacitás (b); adsorpciós mechanizmus az elemi cellán (c) [51].

Nem véletlen tehát, hogy számos kutató használja a rodamin B festékmolekulát, mint modellszennyezőt, hogy „megmérje” katalizátora fotokatalitikus aktivitását [136, 146, 147, 152-155].

Bizonyítható, hogy szoros kapcsolat van a különböző szennyezők adsorpciós és degradációs kapacitása, valamint a (010)-ás kristálylap család mennyisége között, mely kalcinálással tovább növelhető [143]. Így közvetlenül bizonyítható, hogy a szennyező anyagok megkötődése és bomlása elsősorban a (010)-ás kristálylap családhoz köthető, hisz a fotogenerált lyukak felhalmozódása itt történik meg [156]. Értelemszerűen e kristálylap család mennyiségének növelése fotokatalitikus szempontból előnyös lehet, melyet úgy érhetünk el, hogy az X és Y tengelyhez képest ultravékony anizotropikus kristályokat hozunk létre, mindezt nanoméretben, hogy a fajlagos felületet, így a festékmolekulák megkötődésének lehetőségét maximalizáljuk [143, 157]. Érdekesség, hogy anizotropikus lapokból álló mikrostruktúrát elsőként Payne és munkatársai állítottak elő hidrotermális
újrakristályosítással még 1973-ban, igaz, a lapok mérete a néhány száz mikrométeres tartományba esett [158].

Noha az anizotropikus kristályok kialakulása az „Ostwald-érés” során spontán is megtörténhet, az ultravékony lemezek fizikai stabilitásnöveléséhez elengedhetetlen az egyedi lapok magasabb szintű szerveződése, aggregációja, tömörülése. Logikus a gömb morfológia kialakulása, hiszen a természet törvényei is ezt diktálják, s a szakirodalom szerint is ez következik be. Ugyanakkor nem mindegy, hogy a lapok gömbbé történő szerveződése miként megy végbe, s milyen végzős struktúra alakul ki [51, 91, 133, 138, 142, 144, 150, 159].

Zhang és munkatársai három különálló lépésre bontották a lapok gömbbé történő szerveződését, s ezáltal a rózsafomra kialakulását, név szerint a részecske-tömörülésre, ami során kialakulnak a Bi2O22+ és WO42- rétegek, s amelyek felépítik az Bi2WO6 elemi celláját. Az „Ostwald- érés” során az elemi cellából megszületnek az egyedi lapok, majd önszerveződés és (a szerzők szerint) átkristályosodás révén a lapok egymáshoz nőnek, s kialakul a rózsafom (7. ábra) [160].

7. ábra A virágformájú bizmut-volframat részecske kialakulási mechanizmusa [160].

Az utólagos hőkezelés a fajlagos felület csökkenését vonja maga után, ám ezzel egy időben a fotokatalítikusan aktív kristálylap arányára növekszik, s ezzel együtt a fotokatalitikus hatékonysága is [160]. Az egyedi lapok mérete és elhelyezkedése (a lapok által bezárt szög, és a lapok közötti rések mérete stb.) egyéb adalékanyaggal tovább finomítható. Jinyun és munkatársai tiokarbamid hozzáadásával finomhangolták az egyedi lapok méretét. A tiokarbamid alakirányító szerepét oly módon fejti ki, hogy a létrejövő elemi bizmut-oxid réteg felületi szabadenergiáját módosítja, azáltal, hogy a szulfidionok megkötődnek a felületen, így csökkentik a kialakuló részecske méretét, valamint a fajlagos felületét megnövelik az egyedi lapok közötti távolság csökkentése révén. Ezáltal ugyanakkora térfogatrészben több kristálylap képes összenőni [146].
Sajnos a létrejövő részecskék morfológiájára egységes értékelési rendszert még nem alakult ki az irodalomban, így igen nehézkes a fizikai-kémiai paramétereken túl számszerűsíteni, ezáltal összehasonlítani a morfológiai sajátosságokat.

2.4.3. A bizmut-vanadát

A bizmut(III)-vanadát (a továbbiakban bizmut-vanadát) egy scheelit vagy cirkon szerkezetű anyag, szerkezeti képlete BiVO₄. A bizmut-vanadát a bizmut-volframáthoz hasonlóan felbontható bizmut(III)-oxidra és vanádium(V)-oxidra, de a felépítése nem réteges, hanem poliéderes, tehát kristály a csúcsuknál érintkező és kapcsolódó tetraéderes vanádium-oxid (VO₄) és dodekaéderes bizmut-oxid (BiO₈) egységekből épül fel. Minden egyes bizmut nyolc szomszédos vanádiumhoz kapcsolódik oxigénatomokon keresztül [161].

Ezt szemlélteti a 8. ábra.

8. ábra Scheelit struktúrájú, monoklin rendszerű bizmut-vanadát szerkezete [161].

A bizmut-vanadát a természetben is előforduló ásvány, melynek három kristálymodosulata van. A leggyakoribb ortoromb és pucherit, melyet 1871-ben fedeztek fel a szászországi Schneeberg - Pucher nevű településen [162], a monoklin clinobisvanit, mely nevében őrzi a kristályszimmetriáját (monoclin) és egyúttal utal az összetételére is (BISmuth és VANadate), 1974-ben fedezték fel Nyugat-ausztráliai Yinnietharra pegmatitjában [163]. A legritkábban előforduló és termodinamikailag a legkevésbé stabil a tetragonális dreyerit, ami a felfedezőjéről Gerhard Dreyer minerológusról kapta a nevét. Felfedezése csupán 1981-ben történt meg a németországi Hirschhorn-i homokköben [164].

Szintetikus bizmut-vanadátot már 1924-ben előállítottak, amire gyógyszerészeti szabadalmat is benyújtottak, de széleskörű alkalmazása csak az 1970-es években kezdődött meg. 1976-ban a Du Pont vállalat számtalan be monoklin fázisú bizmut-vanadát előállítási lehetőségeiről és a keletkező részecské kedvező tulajdonságairól. A cég az anyagot „ragyogó
kagylósárga” névvel illette, s ezek után több ipari vállalat, például a BASF, a Bayer, vagy a Ciba-Geigy érdeklődését is felkeltette, s a fejlesztésük végtermékei a ma is kereskedelmi forgalomban kapható C.I. Pigment Yellow 184, vagy a Sicopal Yellow L1100 jelű szervetlen pigment, melyeket előszorosztettel használnak az autókarosszériák festésénél [165].

Az ipari fejlesztések ből rengeteg profitált a tudomány, ennek ellenére csupán 1998-ban indult meg a fotokatalizátorként történő felhasználása, amikor kedvező tiltottsáv-szélességére hivatkozva, valamint sávszerkezeté miatt Kudo és munkatársai látható fény megvilágítása mellett ezüst-nitrát oldatból elemi oxigént voltak képesek előállítani. Kiemelték, hogy az eredmények fényében képesek lehetünk vizet bontani elemi hidrogénre és oxigénre, de beismerik, hogy a katalizátor vezetési sáv szintje önmagában nem elég magas a hidrogén leválásához [166].

2.4.4. Irányított kristályosítással előállított bizmut-vanadát fotokatalizátorok

A bizmut-volframáthoz hasonlóan, lehetőségünk van a bizmut-vanadát kristályokat már a szintézis közben is formálni, ezáltal a fotokatalizátó hatékonysága szempontjából kedvező tulajdonságokat kihangsúlyozni.

Bizmut-vanadát esetében a fotofizikai és a fotokatalitikus aktivitás nagyban függ a részecske kristályfázisától. Metilénkék bontása során a hasonló morfológiájú, azonos fajlagos felülettel rendelkező monoklin bizmut-vanadát fotokatalitikus aktivitása nagyságrendekkel meghaladja a tetragonális kristályfázisét [169].

Akárcsak a bizmut-volframát esetében az anizotrop lap struktúra kialakulása a leggyakoribb, ám a másodlagos szerveződés, vagy tömörülés, csak speciális esetben történhet meg, ami visszavezethető az oldószerre [170], vagy a szintézis során használt adalékkanyagokra [171]. A kialakuló kristály alakját befolyásolhatjuk különböző adalékkal is, például nátrium-dodecil-szulfáttal (SDS) [172], polivinil-pirrolidonnal (PVP) [173], vagy CTAB-vel [174].

A kutatók rájöttek arra, hogy a bizmut-vanadát fotokatalitikusan aktív kristálylapjait és azok arányát könnyebben lehet manipulálni a szintézis során, mint más félvezető katalizátorok esetében, így a kedvezőbb redukciós-, vagy oxidációs folyamatok
helyezhetők előtérbe. Sőt, a kristálylap aránya sokkal fontosabb, mint maga a morfológia, vagy a másodlagos szerveződési szint megléte, vagy hiánya [171, 175, 176].

A fotokatalízisben a (040)-ás és a (011)-es kristálylap a legmeghatározóbb, melynek mennyiségét és arányát a szintéziselegy pH-jának változtatásával könnyen lehet befolyásolni. A folyamatot röntgendiffraktometriával lehet a legjobban nyomon követni. A (040)-ás laphoz tartozó reflexió intenzitása jól korrelál a metilnarancs fotokatalitikus bomlásával, azaz minél intenzívebb az ehhez az oldalhoz tartozó intenzitás, annál nagyobb konverzió érhető el [177]. Irodalmi adatokból tudjuk, hogy a metilnarancs képes adszorbeálódni [178], valamint hogy a metilnarancs bomlása a fotogenerált lyukkal történik meg elsősorban, és csak másodlagos szerep jut a hidroxil-gyököknek [179], így kijelenthető, hogy a (040)-ás kristálylap mennyisége a fotogenerált lyukak felülsültésével egyenes arányban növekszik. Ez a direkt lyukkal történő oxidáció játszódik le más szennyező anyag esetében is, mint a rodamin B, s ezzel egy időben a hidroxil-gyökök helyett a szuperóxid győk anion keletkezése a kedvezményezett [154].

Abban az esetben, ha a szennyező anyag adszorpciója korlátozott, például a szennyező gázfázisban van, mint például az etilén, akkor a felületen lévő V⁴⁺ oxidációs állapotú vanadát és ezzel együtt a felületi -OH csoportok mennyisége feldúsul, ami a hidroxil gyökök keletkezésével egyenesen arányos a fotokatalízis során [180].

Abban az esetben, ha a szennyező anyag adszorpciója korlátozott, például a szennyező gázfázisban van, mint például az etilén, akkor a felületen lévő V⁴⁺ oxidációs állapotú vanadát és ezzel együtt a felületi -OH csoportok mennyisége feldúsul, ami a hidroxil gyökök keletkezésével egyenesen arányos a fotokatalízis során [180].

9. ábra Az etilén fotokatalitikus bomlási mechanizmusa a bizmut-vanadát felületén [180].

A (040)-ás kristálylap mennyisége és aránya a többi lap arányához képest tehát kiemelkedően fontos a fotokatalízisben, ugyanis itt történik meg a fotogenerált lyukak feldúsulása, míg a létrejövő elektronok a (011)-es kristálylap felé migrálnak [181].

Ha sikerül tökéletesen kifejlett, monoklin fázisú bipiramist előállítani, akkor a (040)-ás lap teljesen eltűnik, de természetesen ez nem azt jelenti, hogy a bizmut-vanadát
fotokatalitikus aktivitását elveszíti, egyszerűen a lyuk migrációja a (040)-ás lap helyett a (021), vagy az (120)-ás kristálylapra következik be [182].

Kristályorientáltságot és intenzitást tekintve az (112)-es kristálylap mennyisége a legmeghatározóbb, ami a fotokatalízis tekintetében is megnyilvánul. Ennél azonban sokkal fontosabb a fotokatalízisben résztvevő lapok egymáshoz viszonyított aránya, hogy a fotokatalízis folyamata egyensúlyban legyen [183].

Tekintettel arra, hogy ismerjük, miként megy végbe gerjesztést követően az elektronok migrációja a részecskén, lehetőség nyílik arra, hogy lapra nézve szelektíven más-más félvezetőt (például ezüst-kloridot [184], ezüst-jodidot [185], vagy aranyat [186]) válasszunk le a bizmut-vanadát felületére, ezáltal kihasználva mindkét komponens kedvező tulajdonságát.

A gerjesztő fény hatására létrejövő elektron-lyuk pár kristálylapszelektívfeldúsulása miatt a nemesfémek a (040)-ás lapra választhatók le a legkönnyebben, hisz itt düsülnek fel a fotogenerált lyukák, s a nemesfémek leválasza redukció útján, azaz elektronleadással megy végbe. Ezzel párhuzamosan a korábban ismertetett módon az elektronok az (110)-ás kristálylapra migrálnak, ahol az oxidáció révén szelektíven képes kiválni többféle oxid is, mint MnOₓ, vagy PbO₂ [187].

10. ábra Nemesfémek és oxidok kristálylap szelektív leválasza a bizmut-vanadát felületére [187].
3. Célkitűzés

A kutatómunkám során kétféle bizmut-oxid tartalmú fotokatalizátor, a bizmut-volframat és a bizmut-vanadát előállítását tűztem ki célul, s vizsgálni kívántam az előállított fotokatalizátorok alkalmazhatóságát a víztisztításban.

Doktori munkám egyik célja **bizmut-volframat fotokatalizátorok előállítása** volt. Az egylépéses hidrotermális kristályosítás során vizsgáltam az alkalmazott adalékanyagok, a kristályosítási idő és a kalcinálás hatását a keletkező részecske fizikai-kémiai és fotokatalitikus tulajdonságaira, ezzel megkeresve az optimális szintéziskörülményeket.

Az adalékok hatásának tanulmányozását követően a nem felületaktív adalékanyag szisztematikus változtatásával próbáltam meg a fotokatalitikus aktivitást maximalizálni, s ezzel egy morfológiai sorozatot hoztam létre, hogy számszerűsíteni tudjam az alaktani sajátosságokat, mely a szakirodalom egyik nagy hiányossága. Ehhez a Hückel-féle polaritási szabályt alkalmaztam, s vizsgáltam az adalékanyagok hatását a létrejövő fotokatalizátorok fizikai-kémiai és fotokatalitikus tulajdonságaira egyaránt.

Doktori munkám második részében célom volt egy másik bizmut-oxid alapú félvezető a **bizmut-vanadát előállítása**, s a fotokatalitikus aktiv (040)-ás kristálylap arányának befolyásolása a szintéziseleg pH-jának változtatásával. Anyagjellemzést és a fotokatalitikus aktivitás vizsgálatát követően a bizmut-vanadát kitüntetett kristálylapjának felületére szelektív rézleválasztást kísértem meg, amivel a fotokatalitikus aktivitás és a fotokatalizisben fontos kristálylap kapcsolatát újfajta megközelítésbe helyezhetem.

Ezen túlmenően vizsgáltam a bizmut-vanadát kémiai- és fotostabilitását, valamint a bizmut-volframat szenzoros tulajdonságait is.
4. Kísérleti rész

4.1. Felhasznált anyagok

A bizmut-volframát és a bizmut-vanadát előállítása során minden kiindulási anyag analitikai tisztaságú volt, így azok nem igényeltek előzetes tisztítást. A bizmut-volframát és a bizmut-vanadát előállítása során, valamint a szelektív Rézleválasztáshoz a következő vegyszereket használtam:

- Bizmut-nitrát pentahidrát (ALFA AESAR, ≥98%); nátrium-volframát dihidrát (ALFA AESAR, ≥98%); nátrium-metavanadát (Sigma-Aldrich, ≥98%); nagy tisztaságú Milli-Q víz; jégecet (NORDIC INVEST, 100%-os); Triton X-100 (Merck, 98-100%-os); salétromsav (Merck, 69%); szilárd nátrium-hidroxid (Sigma-Aldrich 100%), réz-klorid dihidrát (Alfa Aesar, ≥99%-os). A bizmut-volframát szintézise során használt adalékok listája, és rövidítéseik:
 - U: karbamid (Sigma-Aldrich, ≥99%);
 - TU: tiokarbamid (Nordic Chem, ≥99%);
 - AA: acetamid (Sigma-Aldrich, ≥99%);
 - TAA: tioacetamid (Fluka, ≥99%);
 - A: alamin (ReAnal, ≥99%);
 - FA: fenil-alanin (Sigma-Aldrich ≥99%);
 - G: glicin (Sigma-Aldrich, ≥99%);
 - Ac: aceton (VWR, ≥99%);

Az alkalmazott modellszennyezők a következők voltak: rodamin B (ReAnal 99,9%) és oxálsav (Schartan, 99,9%).

4.2. Módszerek

4.2.1. A bizmut-volframát előállítása

A bizmut-volframát fotokatalizátorok kristályosítása egylépéses hidrotermális módszerrel történt a következők szerint: első lépésben 2,13 g (4,3 mmol) bizmut-nitrát pentahidrátot feloldottam 43 mL 36 v/v%-os ecetsavban. Ez idő alatt 0,71 g (2,15 mmol) nátrium-volframát dihidrátot feloldottam 69 mL nagy tisztaságú Milli-Q vízben. A reakcióidő hatásának vizsgálata során, folyamatos kevertetés mellett hozzáadtam 0,62 mL (1 mmol) Triton X-100 felületaktív anyagot és 0,048 g (0,625 mmol) tiokarbamidot a
volfrám prekurzort tartalmazó oldathoz, míg az adalékok hatásának vizsgálata során csak egy adalékanyagot (TU-15, TRX-15), vagy egyet sem használtam (PURE-15).

A bizmut-volframáttal végzett kísérleteim második felében az adalékanyagok hatását vizsgáltam, melyhez a fenti szintézist módosítottam oly módon, hogy a tiokarbamidot móláránynos lecsökkentem, és helyette mészkő mólármérsékletű adalékanyagot használtam. Az így előállított minták jelöléseit a későbbiekben ismertetem.

4.2.2. A bizmut-vanadát előállítása és a szelektív rézleválasztás

A bizmut-vanadát előállításánál szintén savas közegben oldottam fel a bizmut prekurzort, ám egyéb adalékanyag használata helyett, csupán a szintéziseleg pH-jának változtatásával (növelésével) finomhangoltam a keletkező bizmut-vanadát részecskék tulajdonságait, így csökkentve a szintézis vegyszerigényét. A bizmut-vanadát előállítása a következők szerint történt:

első lépésben feloldottam 1,213 gramm (2,5 mmol) bizmut-nitrát pentahidrátot 55,7 mL 2 M-os salétronsavban. Ez idő alatt 0,305 gramm (2,5 mmol) nátrium-metavanadátot feloldottam 55,7 mL nagy tisztaságú Milli-Q vízben. Fél-fél óra kevertetés után a második oldatot választotölcsér segítségével hozzáfesgettettem az első oldathoz, aminek a hatására amorf csapadék vált ki. További fél óra kevertetést követően pH mért segítségével 10 M-os, 2 M-os és 0,2 M-os nátrium-hidroxid oldattal, valamint 0,2 M-os salétronsavval egy
tizedesjegy pontossággal folyamatos kevertetés mellett beállítottam a szintéziselegy pH-ját előre meghatározott értékekre.

A beállított értékek megjelennek a minták későbbi jelöléseiben is, azaz: BV0, BV1, BV2, BV3, BV5, BV7, BV9, ahol a szám a beállított pH értékét jelöli. Fontos azonban megjegyezni, hogy a BV0 minta esetében a szintéziselegy pH értéke nem nulla, hanem 0,8. A nullás elnevezésre azért került sor, mert ehhez a mintához nem adagoltam NaOH oldatot.

A pH beállítását követően a szuszpenziót egy 174 mL-es acélköpenyes teflon autoklavba töltöttem, majd 15 órára programozható szárítószekrénybe tettem 180 °C-ra. Ezt követően hagytam az autoklavot lehűlni, majd a kristályos bizmut-vanádatot háromszor abszolút etanolal és nagy tisztaságú Milli-Q vízzel mostam, majd 40 °C-on 24 órán át szárítottam, s achát mozsárban porítottam.

A részleválasztás a következők szerint történt: 10 mL, 0,1 M-os CuCl2·H2O oldatban ultrahangos kád segítségével szuszpendáltam 100 mg, különböző pH-n előállított bizmut-vanádatot, majd a szuszpenziót 90 °C-on 1 órán át folyamatosan kevertettem. A szuszpenziót centrifugáltam és Milli-Q vízzel mostam. A porokat 110 °C-on 24 órán át szárítottam [189]. A minták nevében a rész leválasztást a „+Cu” jelöli.

4.2.3. Anyagvizsgálati módszerek

Röntgendiffraktometria (XRD): Az elkészült minták röntgendiffraktogramjait egy Rigaku MiniFlex II típusú röntgendiffraktogrammal vettem fel 20-80 2θ fok között az alábbi kísérleti paraméterekkel: \(\lambda_{Cu-K\alpha} = 0.15406 \text{ nm} \), 40 kV, 30 mA, grafít monokromátor. A röntgendiffraktogramokból kiszámolható volt a primer részecskeméret a Scherrer-egyenlet segítségével [190]:

\[
\tau = \frac{K\lambda}{\beta \cos \theta}
\]

\(\tau \): a részecskeméret (angström, Å)

K: a részecske alakjára vonatkozó faktor (dimenziómentes)

\(\lambda \): az alkalmazott röntgensugárzás hullámhossza (nm)

\(\beta \): a legintenzívebb reflexió félértékzélessége (20 fok)

\(\theta \): a Bragg-szög, azaz a legintenzívebb reflexió pozíciója (20 fok)

Pásztázó elektronmikroszkópia (SEM): A morfológiai vizsgálatokat egy Hitachi S-4700 II-es típusú pásztázó elektronmikroszkóppal végeztük el 10 kV gyorsítófeszültség
használatával. A mintákat kétoldalú szénszalag segítségével rögzítettük, majd aranyréteggel vezetővé tettük a mérés előtt.

Diffúz reflexiós spektroszkópia (DRS): A katalizátorok optikai tulajdonságait egy ILV-724 DRS modullal felszerelt, JASCO-V650 típusú spektrofotométerrel vizsgáltam 250 és 800 nm hullámhossz között, 0,5 nm-es felbontással. A kapott diffúz UV-Vis spektrumokból a Kubelka-Munk összefüggéssel kiszámoltam a tintottáv-szélesség értékeket, valamint elvégeztem a hullámhossz szerinti első rendű deriválást (dR/dλ) [191].

Infravörös spektroszkópia (IR): Az infravörös spektrumokat egy FRA 106 Raman modullal felszerelt Bruker Equinox 55 típusú spektrométerrel rögzítettünk 400 és 4000 cm\(^{-1}\) között, 1 cm\(^{-1}\) felbontással. A gerjesztő fényforrás egy 1064 nm-es monokromatikus Nd-YAG lézer volt. A mintákat KBr-dal keverve pasztilláltuk.

N\(_2\) adszorpció: A minták fajlagos felületének meghatározása nitrogén adszorpcióval történt 77 K-en, melyhez egy BELCAT-A típusú készüléket és a Brunauer-Emett-Teller összefüggést használtunk [192].

Röntgen-fotoelektron spektroszkópia (XPS): Egyes mintákat felületi elemanalitikai eljárásoknak vetettük alá, melyhez egy SPECS PHOIBOS 150 MCD jelű röntgen-fotoelektron spektroszkópot használtunk a következő mérési paraméterek mellett: Al K\(_\alpha\)=1486,69 eV, 14 kV, 20 mA, P<10\(^{-9}\) mbar. A mintákat kétoldalú szénszalag segítségével rögzítettük. A nagy felbontású spektrumok (C1s, Bi4f, W4f és O1 s) 0,05 eV felbontással készültek, amelyek kiértékelése a CasaXPS nevű programmal történtek. Minden jelfeldolgozásnál Shirley háttér- és Lorentz-Gauss jelalakarány-optimalizációt alkalmaztunk (Lorentz-Gauss arány=30).

Raman spektroszkópia: A bizmut-vanadát történő szelektív réz leválasztását követő strukturális változásokat egy Thermo Scientific DXR Raman mikroszkóppal követtük nyomon. A 780 nm hullámhosszúságú fényforrás egy Nd:YAG lézer volt 10 mW-os teljesítménnyel. A spektrumok felbontása 2 cm\(^{-1}\) volt.

Röntgenfluoreszcens spectrometria (XRF): A leválasztott réz mennyiségét egy Horiba Jobin Yvon XGT-5000 röntgenfluoreszcens spektrométerrel követtük nyomon. A röntgenforrás ródium volt, 30 kV gerjesztőfeszültség, valamint 0,5 mA anódáram mellett. A mérés időtartama minden esetben 1000 másodperc volt.

Dinamikus fényszórás spektroszkópia (DLS): A bizmut-vanadát minták részecskeméret eloszlását dinamikus fényszórás spektroszkópiával követtük nyomon, egy He-Ne lézerrel felszerelt Nano ZS90 Zetasiser analizátor segítségével. A lézer teljesítménye 5 mW, míg az emissziós hullámhossza 633 nm volt. A vizsgálatokat 25 °C-on 90°-os szórási
szögben háromszor végeztük el, s a mérések átlagát ábrázoltuk. A mérések előtt minden mintát 2 órán át tartó ultrahangos kezelésnek vetettünk alá, ezzel biztosítva a homogén szuszpenzió létrejöttét.

4.2.4. Fotokatalítikus aktivitás vizsgálatának módszerei és eszközei

Az előállított félvezetők anyagvizsgálatát követően, teszteltem azok fotokatalítikus aktivitását kétféle modellszennyező jelenlétében. 100 mg katalizártort ultrahangos kád segítségével szuszpendáltam 100 mL modellvegyületet is tartalmazó vizes oldatban (kiindulási koncentrációk: \(C_{\text{RhB}} = 0,05 \text{ mmol/L}; \ C_{\text{oxálsav}} = 5 \text{ mmol/L} \)). Az 5 percig tartó ultrahangos homogenizálás során a reaktort mindvégig sötétben tartottam annak érdekében, hogy a fotokatalítikus reakciókat visszaszorítsam. Ezt követően levégő bevezetése (40 L/h) mellett további 30 percig sötétben kevertettem az oldatot, hogy az adszorpciós folyamatok egyensúlyba kerüljenek, valamint az oldatot oxigénnel telítsem. A kevertetést és a levégő bevezetést a fotokatalítikus teszt során mindvégig biztosítottam, ezzel tartva fenn az 1 g/L-es szuszpenzió töménységet és az oxigénutánpótlást. A fényforrás felkapcsolását követően meghatározott időközöntént mintákat vettem (2 mL), amit centrifugáltam (13400 rpm; 5 perc), s mikroszűrővel szűrtem (Whatmann: \(d = 0,1 \mu \text{m} \), majd a modellszennyező függvényében UV-Vis spektrofotométerrel, vagy nagyhatékonyságú folyadékkromatográfiával megmértem a fotokatalítikus reakció után visszamaradt modellszennyező koncentrációját.

Annak érdekében, hogy a környezeti hatásokat minimalizáljam, a fotokatalítikus reakciókat egy duplafalú pyrex üvegből készült reaktorban végeztetem el, melyet 25 °C-on víz keringtetése mellett termosztáltam, így a fényforrás által generált felesleges hőt el tudtam vezetni, s a víz párolgását jelentősen csökkenteni tudtam. A látható fényfelvétel méretén belül 1 M-os nátrium-nitrit oldatot keringtettem annak érdekében, hogy megakadályozzam a fényforrásból származó csekély mennyiségű UV fotonok, katalizátorral történő interakcióját (\(\lambda_{\text{max}} > 400 \text{ nm} \)).

Az UV-fénnel történő gerjesztést 6 darab 6 W-os fluoreszcens lámpa biztosította (\(\lambda_{\text{max}} = 365 \text{ nm} \)), míg a látható fényforrás 4 darab 24 W-os hagyományos energiatakarékos izzó volt.

A visszamaradt festékanyag koncentrációját egy Agilent 8453 típusú UV-Vis spektrofotométerrel követtem nyomon. A kvarküvette optikai úthossza 2 mm volt, s a detektálási hullámhossz 553 nm (\(\lambda_{\text{rodamin B}} = 553 \text{ nm} \)).
Az oxálsav koncentrációját egy UV-Vis detektorral felszerelt Agilent 1100 series típusú nagyhatékonyságú folyadékkromatográfál követtem nyomon. Az oxálsav elválasztása egy Grom-Resin ZH típusú oszlopon történt az alábbi paraméterek mellett: eluens: 19,3 mM-os kénsav; 0,8 mL/perc áramlási sebesség; mintatérfogat: 20 µL; detektálási hullámhossz: 206 nm.

4.2.5. A szenzoros viselkedés vizsgálata során használt anyagok és módszerek

A bizmut-volftramat színváltozását öt sav jelenléteiben vizsgáltam: oxálsav: O. S., citromsav: C. S., aszkorbinsav A. S., szalicilsav: S. S. és malonsav: M. S.), melyek mindegyike 0,01 mól/L-es koncentrációjú volt. Az oldatokból kimért 50 mL-t, majd hozzáadtam 50 mg fotokatalizátor (BW-15), s ultrahangos homogenizálást követően a szuszpenziókat 30 percig sötétnében kevertettem. Ezt követően 3 db 40 W-os UV lámpával világítottam meg a szuszpenziókat folyamatos kevertetés mellett. (λ_{max.}=365 nm) Egyenlő időközönként fényképeket készítettem, hogy nyomon kövessem a katalizátorok színváltozásait (A használt fényképezőgép és objektív, valamint a rögzített beállítások a következők: Canon EOS 80D + 18-135 mm IS USM; 35 mm, f=5, 1/60, ISO: 1600). A fényképek készítéséig az UV fényforrásokat lekapcsoltam.
5. Eredmények és értékelésük

5.1. A kristályosítási idő és a kalcinálás hatása a bizmut-volframát tulajdonságaira

5.1.1. Röntgendiffrakciós mérések és a fajlagos felület meghatározása

11. ábra Az előállított bizmut-volframát minták röntgendiffraktogramjai: a szintézisidő és kalcinálás hatása (A); az adalékanyagok hatása a bizmut-volframát fotokatalizátorok röntgendiffraktogramjaira (B).
A röntgendiffraktciós mérésekből az 4.2.3. fejezetben leírt módon, a Scherrer egyenlet segítségével kiszámolható volt a primer részecskék mérete, melyet az 1. táblázat tartalmaz. Nem meglepő módon a kristályosítási idő növelésével növekszik az egyedi krisztallitok mérete, melynek maximuma a 20 órás szintézis során előállított mintánál figyelhető meg (BW-20: 17 nm), bár megjegyzendő, hogy a számolt értékek a porröntgen mérési hibahatárában belül vannak, így trendről nem beszélhetünk. Az utólagos hőkezelés tovább növelte a kristályméretet, 14 nm-ről 41 nm-re, valamint 16 nm-ről 29 nm-re, amely jelentős változás a többi mintához képest. Abban az esetben, amikor csak a felületaktív anyag volt jelent a szintézis során (TRX-15), részecskeméret-csökkenés volt tapasztalható az adalékanyag-mentes mintához képest, míg a tiokarbamid használatánál (TU-15) részecské-növekedés figyelhető meg. Ez alapján elmondható, hogy a Triton X-100 valószínűleg szerepet játszhat a részecskeméret csökkenésében, de a számolt primer részecskeméret önállóan nem elégséges információ. Fontos paraméter a részecskék fajlagos felülete is, mely a részecskemérettel összefügg, így e két paramétert ésszerű egy fejezeten belül tárgyalni.

1. táblázat Az előállított minták primer részecskemérete és fajlagos felülete.

<table>
<thead>
<tr>
<th>Mintanév</th>
<th>Részecskeméret (nm)</th>
<th>S_BE (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW−5</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>BW-5C</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>BW-15</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>BW-15C</td>
<td>29</td>
<td>4</td>
</tr>
<tr>
<td>BW-20</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>BW-40</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>TRX-15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>TU-15</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>PURE-15</td>
<td>17</td>
<td>14</td>
</tr>
</tbody>
</table>

A fajlagos felület nagysága hasonló trendet követ, mint a röntgendiffraktogramokból számolt részecskeméret. A kalcinált minták (BW-5C és BW-15C), mintegy 3-4-szer kisebb fajlagos felülettel rendelkeznek (6 m²/g és 4 m²/g), mint a nem hőkezelt minták (28 m²/g és 15 m²/g). A kristályosítási idő növelése, valamint az adalékanyagok hiánya nem csökkenti jelentősen a fajlagos felület, hiszen a 40 órás szintézisidő elteltével is (BW-40) 21 m²/g fajlagos felület volt mérhető (1. táblázat). Ez
közvetlen kapcsolatot tételez fel a számolt primer részecskeméréttel, mely alól csupán a BW-15 és a PURE-15 a kivétel (15 m²/g és 14 m²/g). Ennek okai elsősorban a morfológiai sajátosságokban kereshetők, melyeket a következő fejezetben tárgyalok részletesen.

5.1.2. Morfológiai vizsgálatok

Pásztázó elektronmikroszkóppal megvizsgáltam az előállított katalizátorok morfológiai sajátosságait. Jól látható, hogy a kristályosítási idő előrehaladójával jelentősen változik a kialakuló részecskek morfológiája. Az 5 órás szintézist követően főszerepen morfológia alakul ki, melynek átlagos átmérője megközelítőleg 1,5 µm. A részecskét egyedi, anizotropikus lapok építik fel, melyek 45-50 nm átmérőjű csoportokba rendeződnek. Jól látható, hogy a kristályosítási idő növekedésével a részecskéknek több idő jutott a növekedésre, mely az átlagos szemcseméretben (≈ 2 µm), valamint a rózsaforma kialakulásában nyilvánul meg.

15 óra elteltével a részecske közepén, a Z tengely irányában egy különálló lapcsoportosulás jelenik meg (az egyszerűség kedvéért és a hasonlósága miatt nevezzük „nyelvnek”), mely körülbelül 100 nm vastagságú. A BW-15 esetében egyértelműen ezek a nyelvek dominálnak a részecskéknél, míg a kristályosítási idő előrehaladával ez a „nyelv” eltünt, és a rózsaformát alaktó lapok, azaz a „rózaszirmok” kerültek előtérbe (BW-20 és BW-40). Ez arra enged következtetni, hogy a 15 órás szintézisidő során a kialakuló részecskék a növekedés során egy kevésbé stabil helyzetbe kerültek a szintézisidő további növelésével pedig arra kényszerítettük a részecskét, hogy a stabil, kvázi 2D fészekforma – ami a BW-5 etetében figyelhető meg – tovább növekedjen. Mielőtt elérne a szintén stabil 3D rózsaformát, a részecske növekedése során van egy szakasz, ami e két stabil állapot közötti átmenetnek tekinthető, melyet a „nyelv” kialakításával igyekszik a részecske stabilizálni. Sőt, a morfológia fejlődése is könnyebben valósulhat meg, ha a részecske először egy kitüntetett tengelyt hoz létre, mely köré „felcsavarodhatnak” a lapok, azaz felépülhet a 3D részecske. A kellő stabilitás elérése után ez a nyelv átkristályosodás révén része lesz a rózsaformát alkotó lapoknak/szirmoknak. A kristály átalakulása, az egyedi részecskék növekedése magyarázhatja a fajlagos felület csökkenését is.

A BW-20-as és a BW-40-es minta morfológiájában szignifikáns különbség nem észlelhető, sem a részecske átmérője, sem az egyedi lapok mérete nem változik, csupán a középső rés nyílása szükkél, amely az előzőleg ismertetett teóriát erősíti.

Az utólagos hőkezelés ezt a jól definiált morfológiát teljes egészében eltünteti, s szinterei az egyedi lapokat, így üreges, pórusos szerkezetet alakít ki. Így érthető, hogy a
részecskeméret miért növekszik és a fajlagos felület miért csökken drasztikusan a kalcinálást követően (12. ábra).

12. ábra Pásztázó elektronmikroszkópos felvételek: a szintézis idejének és a kalcinálás hatása a részecskék morfológiájára.

A leginkább szembenő morfológiai különbségek akkor jelentkeznek, amikor az egyes adalékok hatását vizsgáltuk. Abban az esetben, mikor nem használtunk adalékanyagot (PURE-15) akkor a szerveződési szintek nem jelentkeznek, azaz sem az egyedi lapok, sem a rózsaforda nem jelenik meg. Mindemellett a részecskék mérete is 5 µm körül alakul, ami több, mint a duplaja annak, amit a 15 órás szintézisidőnél a korábbiakban tapasztaltak. Az egész részecské egy aggregálódott gömbként jelenik meg, mely magyarázza a kisebb fajlagos felületet.

Abban az esetben, amikor csak a felületaktiv anyag, a Triton X-100 volt a rendszerben (TRX-15), akkor az egyedi lapok megjelennek ugyan, de a másodlagos szerveződés nem oly módon történik meg, mintha mindkét adalék jelen lenne. A másodlagos szerveződés nem meghatározott rendszer szerint alakul, azaz a lapok feltekeredése nem történik meg. Emellett az egyedi lapok vastagabbak, mint a BW-15 esetében, s e lapok közötti hézag is nagyobb.

Ellenben, mikor a szintéziseleg csak tiokarbamidot tartalmazott (TU-15), akkor a rózsaforforma (középen a „nyelvvel”) kialakul. Ez bizonyítja, hogy a tiokarbamid felelős a
rózsaforma létrejöttéért. Jól látszik, hogy a lapok közötti rés jóval kisebb, valamint a nyelv és a többi lap közötti rés is kisebb (600 nm), mint a BW-15 esetében (700-1000 nm), ahol mindkét adalékanyag jelen volt a szintézis során (13. ábra). Ha figyelembe vesszük, hogy a bizmut-volframát esetében előnyös a minél több, hozzáférhető lappal rendelkező részecske kialakulása, kijelenthetjük, hogy a rózsaformába történő szerveződés bármilyen más struktúra kialakulásánál előnyösebb.

13. ábra Pásztázó elektronmikroszkópos felvételek: az adalékanyagok hatása a morfológiára.

Az eddigi információk alapján több megállapítás is tehető:

- A Triton X-100 elősegíti az egyedi részecsék méretének csökkentését, valamint az egyedi lapok közötti rés növelésében, azaz a „hézagtérfogat” növelésében játszik szerepet;
- A tiokarbamid felelős a rózsaforma kialakulásáért, ami az egyedi lapok mennyiségének növekedése miatt törvényszerű;
- Mindkét adalékanyag szükséges a megfelelő hierarchikus szint kialakításához, azaz a rózsaforma létrejöttéhez, mely megfelelő „hézagtérfogattal” rendelkezik.

A bizmut-volframát esetében a kristálynövekedési mechanizmussal, a nanostruktúra kialakulásával és a kristályszerveződéssel a szakirodalom már sokat foglalkozott, de a fotokatalitikus aktivitás sajátos kémiai okait már kevésbé tárgyalták [160]. Éppen ezért találtuk fontosnak, hogy erre a jelenségre fókuszáljunk, nem pedig a kialakulás mechanizmusára.

1 A hézagtérfogat, a szabad térfogati hányad vagy más néven porozitás kifejezést a talajok esetében rendszeresen használják, hogy meghatározzák a póruszok térfogatát a teljes térfogathoz képest.
5.1.3. Optikai tulajdonságok vizsgálata

A létrehozott anyagok optikai tulajdonságai sokat elárulnak azok fotokatalitikus alkalmazhatóságáról, a félvezető és a fény kölcsönhatásáról. Éppen ezért rögzítettem a bizmut-volframát sorozat diffüz reflexiós spektrumait, majd elvégeztem a hullámhossz szerinti elsőrendű deriválást.

A deriválásra azért volt szükség, hogy a nyers adatokat átalakítva információt kapjak arról, hogy melyik hullámhossz képes a leginkább gerjeszteni az egyes fotokatalizátorokat. Fontos megjegyezni, hogy a szakirodalom, még jelenleg is a Kubelka-Munk összefüggést használja a fotokatalizátorok tiltottsáv-szélességének meghatározására [193], ami helyes, de nem minden esetben használható, hisz csak egy egzakt energiaértéket jelöl elektronvoltban, amit minimálisan közölni kell a félvezetővel, hogy az gerjesztett állapota kerüljön. Statisztikai alapon azonban megtörténhet, és meg is történik a tiltottsáv energiánál kisebb és nagyobb energiájú fény hatására is a gerjesztés. Ezt a valószínűséget a derivált diffüz reflexiós spektrum képes megmutatni, ugyanis minél nagyobb az adott hullámhosszhoz tartozó intenzitás, annál nagyobb valószínűséggel történik meg a gerjesztés [191]. A legjobban a tiltottsáv-szélessége és a fényabszorpciós maximum együttesen szolgáltatja a leghelyesebb információt, így mindkét módszert alkalmaztam a diffüz reflexiós spektrumok feldolgozása során.

A 14. ábra mutatja az előállított minták derivált diffüz reflexiós spektruma, amelyeken látható, hogy 300 nm-től egészen 500 nm-ig létrejön a fény-anyag kölcsönhatás, azaz ebben a tartományban mindegyik bizmut-volframát elnyeli a fényt, tehát gerjeszthető. A dR/dλ maximumából következtetni lehet, hogy ez a gerjesztés melyik hullámhosszon történik meg a legnagyobb valószínűséggel. A csúcsmaximumok pozíciója alapján jól látható, hogy a szintézisidő előrehaladával ez a maximum egyre jobban az UV tartomány irányába tolódik el (kékeltolódás), 403 nm-től fokozatosan 395 nm-ig. Ha a csúcsintenzitásonként is figyelembe vesszük, akkor látható, hogy a BW-20 és BW-40-es minták esetében jelentősen lecsökken, ami arra enged következtetni, hogy a gerjesztés is kisebb valószínűséggel történik meg. Érdekes, hogy a kalcinált minták esetében vörösltolódás figyelhető meg, mindkét kalcinált mintának 10 nm-rel nagyobb az elnyelési maximuma a nem kalcinált katalizátorokhoz képest. A BW-5C esetében, a tiltottsávszélessége megnő a BW-5-höz képest, míg a BW-15C tiltottsávszélessége alig változik a BW-15-höz képest (2. táblázat).
Ehhez hasonló tendencia az idősorozatnál is megfigyelhető. Míg az idő előrehaladtával a fényabszorpciós maximum folyamatosan csökken, a minták tiltottsáv-szélesség értékei növekednek. Érdekes továbbá, hogy a katalizátorok színe a szintézisidő előrehaladtával egyre sötétebb lesz, míg a tiltottsáv-szélességük növekszik. Ez arra enged következtetni, hogy a felületi hibahelyek száma is megnövekszik a katalizátor felületén, ami további vizsgálatok alapjául szolgál majd.

Ha megvizsgáljuk az adalékok hatását az optikai tulajdonságra (15. ábra), és összevetjük az adalékmentes mintáéval, akkor jól látható, hogy mindkét adalékanyag az UV tartomány felé tolta el a fényelnyelési maximumot, ám ezzel egy időben intenzitásnövekedést okozott, ami hatékonyabb gerjesztést von maga után. A spektrum kiszélesedése nagyobb fényspektrumon történő gerjeszthetőséget feltételez, azaz a katalizátorok UV-ban és látható fényben is aktívak mutatkozhatnak. Az adalékanyag mentes minta (TRX-15) görbéje 350 nm-től 475 nm-ig terjed, míg a többi minta már 325 nm környékétől egészen 500 nm-ig történő gerjeszthetőséget feltételez.
Ezek alapján kijelenthető, hogy a tiokarbamid nem csak a szükséges morfológia kialakításáért felelős, hanem azért is, hogy a fotokatalizátor látható fényben is hatékonyabban gerjeszthető legyen.

2. táblázat A minták fényelnyelési maximumainak és tiltottsáv-szélességeinek változása a szintézisidő és az adalékok függvényében.

<table>
<thead>
<tr>
<th>Mintanév</th>
<th>dR/dλ maximum (nm)</th>
<th>Tiltottsáv-szélesség (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW-5</td>
<td>403</td>
<td>2,33</td>
</tr>
<tr>
<td>BW-5C</td>
<td>413</td>
<td>2,81</td>
</tr>
<tr>
<td>BW-15</td>
<td>402</td>
<td>2,81</td>
</tr>
<tr>
<td>BW-15C</td>
<td>412</td>
<td>2,79</td>
</tr>
<tr>
<td>BW-20</td>
<td>400</td>
<td>2,71</td>
</tr>
<tr>
<td>BW-40</td>
<td>395</td>
<td>2,67</td>
</tr>
<tr>
<td>TRX-15</td>
<td>405</td>
<td>3,20</td>
</tr>
<tr>
<td>TU-15</td>
<td>415</td>
<td>3,15</td>
</tr>
<tr>
<td>PURE-15</td>
<td>420</td>
<td>2,73</td>
</tr>
</tbody>
</table>

5.1.4. A fotokatalitikus tulajdonságok vizsgálata látható és UV-fény megvilágítással

Az előző fejezet jól demonstrálja, hogy az előállított bizmut-volframát mindegyike képes a fény valamely szegmensét elnyelni, s gerjesztett állapotba kerülni, így érdemes az anyagok fotokatalitikus tulajdonságát UV- és látható fény megvilágítása mellett egyaránt tesztelni. Éppen ezért, a 4.2.4. fejezetben részletezett kísérleti körülmények mellett megvizsgáltam minden egyes bizmut-volframát fotokatalitikus aktivitását a kiválasztott modellszennyező, a rodamin B fotokatalitikus bomlása során. A rodamin B bomlásgörbéi a 16. ábrán láthatók. (A jobb követhetőség érdekében a pontokat összekötöttem, de természetesen ez nem azt jelenti, hogy a tesztmolekula koncentrációcsökkenése a vonal mentén történik.)

UV megvilágítás alatt (\(\lambda_{\text{max}} \approx 365\text{ nm}\)\(^2\) katalizátor jelenléte nélkül 3 óra után a rodamin B koncentrációváltozása elhanyagolható, így a rodamin B konverziója a fotokatalízis miatt történik meg.

A kalcinált minták csak elenyésző mennyiségű festékanyagot voltak képesek bontani (2,4 és 3,5\%), ami a megnövekedett kristályméretnek, a lecsökkent fajlagos ...

\(^2\) A reaktortérbe jutó gerjesztő fotonok száma vas-oxalát aktinometriás mérés alapján: \(3,814 \times 10^{-7}\text{ mol/s/L}\)
felületnek, és a lapok eltűnéseinek egyaránt tulajdonítható. A BW-5 esetében szintén elenyésző a fotokatalitikus bomlás (5,5%), ami a fejletlen morfológiának tulajdonítható. Nem meglepő továbbá, hogy az adalékmentes minta (PURE-15) rendelkezik a legkisebb adszorpciós kapacitással (14,2%) és fotokatalitikus aktivitással (29,2%), ami a morfológiai szerveződés hiányának és a túl nagy részecskeméretnek tulajdonítható (d ≈ 5 µm). A TU-15 minta fotokatalitikus aktivitása szintén nagyobb (48,8%), mint a PURE-15 mintáé, de kisebb, mint a TRX-15-é (56,4%), vagy a BW-15-é (54,8%). Ez azt jelenti, hogy a mikrolapok megjelenése nagyon fontos, de nem szükséges ahhoz, hogy jó fotokatalitikus aktivitást érjünk el UV megvilágítás mellett. Az is látható, hogy a kristályosítási idő az egyik kulcsparaméter, hiszen a hosszabb szintézisidő hátrányosan befolyásolja a fotokatalitikus aktivitást [194]. Annak ellenére, hogy a TRX-15 bontotta el a legtöbb rodamin B-t, figyelembe kell venni a minták által adszorbeált anyagmennyiséget is, mely szintén a TRX-15 esetében a legnagyobb. Ha ez alapján, szimplán az adszorpció nélküli fotokatalitikus aktivitást vesszük figyelembe, akkor a BW-15 jelű minta fotokatalitikus aktivitása a legnagyobb.

16. ábra

A rodamin B bomlásgörbéi UV- (A) és látható fény megvilágítása mellett (B).

Látható fény megvilágítása mellett (λ >400 nm) a rodamin B fotolízise szintén elhanyagolható mértékű, mindemellett a kalcinált minták aktivitása is nulla volt, ezért ennek ábrázolását elhagytam. Általánosan elmondható, hogy minden egyéb minta látható fény megvilágítása alatt nagyobb aktivitást mutatott, mint UV megvilágítás alatt, ami részben várható is volt, hiszen a reaktorteret közel 20%-kal több foton éri.

A 3. táblázat jól összefoglalja, hogy a katalizátorok aktivitása miként változik látható fény megvilágítása alatt, s mennyivel növekedett meg az elbontott rodamin B mennyisége. A legmarkánsabb növekedés a BW-5 esetében jelentkezett, számszerűsítve

3 A reaktortérbe jutó gerjesztő fotonok száma vas-oxalát aktinometriás mérés alapján: 4,698×10^7 mol/s/L
6%-ról 68%-ra növekedett az elbontott festékmolekulák száma, ám még ez is elmarad a TRX-15-ös minta aktivitásától, ami a festékmolekulák 82%-át bontotta el. Érdekes módon a BW-20 és BW-40 esetében az aktivitás közel azonos. Következésképpen a rodamin B magasabb konverziója nem magyarázható kizárólag a reaktoriederő többletfotonok számával, hanem más hatásoknak is szerepet játszanak.

3. táblázat Az adsorbeált és az elbontott rodamin B mennyisége %-ban UV- és látható fény megvilágítása mellett.

<table>
<thead>
<tr>
<th>Mintanév</th>
<th>Átlagosan adsorbeált RhB (%)</th>
<th>UV - RhB konverzió (%)</th>
<th>Vis – RhB konverzió (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW−5</td>
<td>1</td>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td>BW-5C</td>
<td>2</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>BW-15</td>
<td>15</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>BW-15C</td>
<td>2</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>BW-20</td>
<td>24</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>BW-40</td>
<td>25</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>TRX-15</td>
<td>28</td>
<td>56</td>
<td>82</td>
</tr>
<tr>
<td>TU-15</td>
<td>19</td>
<td>49</td>
<td>67</td>
</tr>
<tr>
<td>PURE-15</td>
<td>14</td>
<td>29</td>
<td>52</td>
</tr>
</tbody>
</table>

5.1.5. A fotokatalitikus anomália magyarázata

Az előző fejezet jól demonstrálja, hogy a gerjesztő fény hullámhosszának helyes megválasztásával is növelhető a fotokatalitikus hatékonyság. Ha a diffúz reflexiós spektrumok eredményeit figyelembe vesszük, akkor úgy tűnhet, hogy látható fény megvilágítása mellett hatékonyabban gerjeszthető a katalizátor. Ez azonban önmagában nem magyarázza a hatékonyság növekedését. A hatékonyság növekedése a festékmolekula szerkezetében keresendő.

A rodamin B egy olyan festékanyag, mely szerkezetének köszönhetően az UV fotonokat elnyelve gerjesztődik s σ-ról σ* pályára kerül egy elektron. Ez az elektron visszatér az alapállapotba, ami során fényt emittál, azaz fluoreszkál. Más a helyzet azonban, ha a gerjesztés hullámhossza a festékmolekula fényabszorpciója közelében van, ugyanis ekkor a π-ről a π* pályára kerül az elektron (9). Ezt az elektron (tekintettel arra, hogy a festékmolekula a félvezető felületén adsorbeálódott) a bizmut-volframát képes átvenni (10), így annak vezetési sávjában több elektron képes a gyökös folyamatokat elindítani (11),
s a rodamin B bomlását előidézni (12). A rodamin B ezáltal aláírja a saját halálos ítéletét pusztán a jelenlétével (17. ábra).

A rodamin B gerjesztése megtörténik az UV fotonok hatására is, ugyanakkor ezek nagy energiája miatt ez az elektron szinte azonnal visszatér alapállapotba. Ezt a tulajdonságát használják ki a nyomjelzéstechnikában is [195].

\[
\text{RhB} \rightarrow \text{RhB}^* (h\nu) \quad (9)
\]

\[
\text{Bi}_2\text{WO}_6 + \text{RhB}^* \rightarrow \text{RhB}^{\bullet+} + \text{Bi}_2\text{WO}_6 (e) \quad (10)
\]

\[
\text{Bi}_2\text{WO}_6 (e) + \text{O}_2 \rightarrow \text{Bi}_2\text{WO}_6 + \text{O}_2^{-} \quad (11)
\]

\[
\text{RhB}^{\bullet+} + \text{O}_2/\text{O}_2^{\bullet-} \rightarrow \text{köztitermékek} \quad (12)
\]

17. ábra A fotokatalitikus anomália magyarázata; a rodamin B és a fotokatalizátor kapcsolata a gerjesztő fény hullámhosszának függvényében.

A fenti mechanizmus igazolásához bizonyítani kell a rodamin B adszorpcióját a felületen, valamint figyelembe kell venni a felület tisztaságát is. Mindazonáltal, egyéb okok is befolyásolják az aktivitást (lásd BW-20 és BW-40 aktivitása), éppen ezért a felületi tulajdonságok vizsgálata különösen fontos annak érdekében, hogy fény derüljön rá, mi befolyásolja a bizmut-volframát fotokatalitikus tulajdonságait.

5.1.6. IR spektroszkópiai mérések – a felület tisztasága és az RhB adszorpciója

A katalizátorok felületi tulajdonságait, tisztaságát, azaz prekursorsból és az adalékanyagokból visszamaradt szennyeződések, valamint a felületen megkötödött rodamin B jelenléttét Fourier-transzformált infravörös spektroszkópiával (FT-IR) vizsgáltuk meg.

A pontos eredmények és az összehasonlíthatóság érdekében rögzítettük a rodamin B és a kiválasztott alapkatalizátor, a BW-15 infravörös spektrumát. Ezt követően a fotokatalitikus teszt megkezdése előtt, az adszorpciói egyensúly beállta után a szuszpenziót
centrifugáltam, s a katalizátor szárítottam (BW-15+Rhb). Ezt követően ugyanezzel a típusú mintával elvégeztem egy fotokatalitikus tesztet (mintavétel nélkül), majd a 3 órás UV megvilágítást követően a szuszpenziót ismét centrifugáltam és szárítottam (BW-15+Rhb+UV). Ezeket megvizsgálva nyomon lehetett követni a katalizátor felületén történt változásokat. Az irodalomban fellelhető adatokat alapul véve, valamint az SDBS adatbázis segítségével sikeresen beazonosítottam a jellemző molekularezgéseket [196].

437 és 981 cm⁻¹-nél a Bi-O kötéseknek tulajdonítható deformációs és vegyérték rezgések detektálhatók. Ebben a tartományban a W-O kötések is megjelennek 577 cm⁻¹, valamint a W-O-W szimmetrikus és aszimmetrikus rezgései 721 cm⁻¹-nél is jelentkeznek. A W-O rezgései nagyobb hullámszámnál is detektálhatók 3413 cm⁻¹-nél, míg a Bi-O vegyértékrezgései 1352 és 1384 cm⁻¹-nél jelennek meg [197-199]. Az 1615 cm⁻¹-nél megjelenő jel a felületi -OH csoportok vegyértékrezgéseinek feleltethető meg. Öt, tisztán elkülöníthető jel detektálható (1617 cm⁻¹, 1638 cm⁻¹, 3252 cm⁻¹, 3462 cm⁻¹, 3547 cm⁻¹), melyek a N-H kötésekre utalnak (deformációs rezgések), amelynek eredete a tiokarbamidnál tulajdonítható [197, 200, 201]. A 3 órás UV megvilágítást követően ezek intenzitása jelentősen csökken, ami arra enged következtetni, hogy a szennyeződések eltünnek a felületről.

Éppen ezért a BW-15-ös mintát egy háromórázás UV-fenngel történő extra tisztítási lépésnek vetettem alá, ami során desztillált vízben szuszpendáltam a fotokatalizátort, majd folyamatos kevertetés mellett a fotokatalitikus teszteknél is használt UV lámpákkal megvilágítottam (\(\lambda_{\text{max}} = 365 \) nm). E minta jelölése a következő: BW-15+UV. Továbbá, hogy minden kétséget kizáróan bizonyítható legyen a szennyeződések eredete, a BW-15-ös minta IR spektrumait összevetettük a TRX-15, a TU-15 minta, valamint a tiokarbamid IR spektrumaival (18. ábra).
A spektrumokon jól látható, hogy az N-H és C-N kötések deformációs rezgései kizárólag csak a tiokarbamidot tartalmazó fotokatalizátorok esetében detektálhatók (BW-15 és TU-15), míg a TRX-15-nél más rezgési sáv nem jelentkezik, így egyértelmű, hogy a tiokarbamid a felületi szennyezés forrása. Az is látható, hogy nem minden tiokarbamilagra jellemző rezgési sáv jelenik meg a bizmut-volfraamat esetében, ami arra utal, hogy nem a tiokarbamid, hanem inkább annak bomlásterméke/intermedierje szennyezi be a felületet. Ez lehet az oka, hogy C=S kettőskötésre jellemző rezgésekk nem detektálhatók a tiokarbamidot tartalmazó mintákban. Az is jól látható, hogy a háromórás utólagos tisztítás hatására a tiokarbamidtól származó jelek eltűnnek. Ez arra utal, hogy a katalizátor nem csupán a festékanyagot képes fotokatalitikus úton bontani, hanem más felületi szennyeződések is.

Megfigyelhető, hogy a rodamin B rezgései, valamint a felülettel való kapcsolata az infravörös spektrumok alapján nem egyértelmű. Ez visszavezethető a mérés során használt gerjesztő infravörös hullám intenzitására, valamint arra, hogy a rodamin B mennyisége a katalizátor teljes tömegéhez képest igen kicsi. Ugyanakkor a fotokatalitikus tesztek bizonyították, hogy a festékanyag képes megkötödni a felületen, melyet a katalizátor rózsaszín színe és a diffúz reflexiós spektrum is igazol (19. ábra) [147].
19. ábra A BW-15 jelű katalizátor diffúz reflexiós spektruma és fényképe a fotokatalitikus teszt előtt, az adszorpció után, és a fotokatalitikus tesztet követően.

Az infravörös spektrumok eredményei alapján elvégeztem újra egy fotokatalitikus tesztet annak érdekében, hogy a felületi szennyezés befolyásolja-e a fotokatalitikus aktivitást, vagy sem. Érdekes módon a plusz tisztításnak alávetett minta, és a „szennyezett felületű” minta fotokatalitikus aktivitása közel azonos, az eltérés kisebb, mint 3%, sőt, még a bomlásgörbék lefutása, és az adszorpció mértéke is közel azonos. Ez alapján bátran jelenhető ki, hogy a felületi szennyeződések nem befolyásolják szignifikánsan a fotokatalitikus aktivitást. Mindemellett a rodamin B és a felületen visszamaradt tiokarbamid egy időben képesek a fotokatalitikus degradációra (20. ábra).

20. ábra A rodamin B fotokatalitikus konverziója tisztított és "szennyezett felületű" katalizátorral.

5.1.7. Röntgen-fotoelektron spektroszkópiai mérések

Ahogy az előző fejezetben bemutattattam, a visszamaradt tiokarbamidot képesek lehetünk fotokatalitikus úton UV-fénnyel eltávolítani a felületről. Ez felveti a kérdést, hogy
a tiokarbamidnak mi a szerepe, s hogy a tiokarbamid kölcsönhatásba lép-e egyáltalán a katalizátorral, vagy sem, s ez a szintézisidő növelésével változik-e. Mindemellett a röntgen-fotoelektron spektroszkópia az infravörös spektroszkópiánál jóval érzékenyebb módszer, így rögzítettük a minták C1s röntgen-fotoelektron spektrumait (21. ábra), amely során három fő kötést sikerült beazonosítani: C-C kötést (284,6 eV), C-N kötést (286,3 eV) és C=S (288,8 eV) kötéseket, melyeket az irodalmi adatok igazolnak [202].

21. ábra A bizmut-volframat minták C1s XPS spektrumai. A: a BW-15 jelű minta részletes ábrázolása; B: a C-C kötések változása a szintézisidő előrehaladásával; C: az adalékok hatása a C1s XPS spektrumra.

A BW-5 jelű mintának relatíve igen magas (65,5%) a C-C kötés mennyisége a teljes szénhez képest, ami azért meglepő, mert a tiokarbamidnak csupán 5 órája volt a szintézis alatt átalakulni. A C-C kötés mennyisége a szintézisidő előrehaladásával növekszik egészen 82,1%-ig4, ami arra enged következtetni, hogy a tiokarbamid fokozatosan átalakul a hidrotermális kristályosítás során. Tekintettel arra, hogy a Triton X-100 is jelen volt a szintézis során, egyértelmű bizonyítéka volt szükség, hogy a C-C kötések a tiokarbamid bomlásából származnak, s nem a Triton X-től. A TU-15 és TRX-15 jelű minták C1s spektrumán jól látszik, hogy amikor a Triton X az egyedüli adalékanyag, akkor a C-C kötések meg sem jelennek a spektrumon, míg a TU-15 esetén igen. Így kizárható a TRX,

4 A teljes széntartalomra vonatkoztatott mennyiség
mint felületi szénforrás, ami igazolja az infravörös spektroszkópia által nyújtott információkat.

A C-C kötések mennyiségének növekedése redukciós folyamat, méghozzá töltsátmenet miatt kell megtörténjen, ugyanis a C-C kötések kialakulása máshogyan nem mehet végre, tekintettel a 180 °C-os kristályosítási hőmérsékletre és az oxigénmentes környezetre. Ezt a mechanizmust szemlélteti a 22. ábra.

22. ábra A C-C kötések létrejöttének javasolt mechanizmusa a fotokatalizátor felületén. (1): adsorpciós folyamat, ami az ammónia kilépését és a C-C kötés létrejöttét okozza (2).

Első lépésként a tiokarbamid adsorbeálódik a kristályfelületre, pontosabban a kristálynövekedési csirára, ezáltal bizmut(III)-komplex képződik, ami egy elég valószínű folyamat, tekintve hogy a bizmut(III)-tiocianát komplex létezik [203]. Továbbá szakirodalmi adatokból tudhatjuk, hogy a bizmut(III)-komplexek Lewis-féle savként viselkednek, ami katalizálja az új C-C kötések kialakulását kondenzációs reakciók révén az enyhén savas körülményeknek köszönhetően, valamint ezzel egy időben az ammóniamolekulák kilépését is ez okozza [204]. Ezzel egyidőben a C=S kötések mennyisége is nőhet, amit az XPS mérések igazolnak is (BW-5: 8,1% → BW-15: 13,1%) A folyamat addig folytatódik, amíg az ammónia és a hidrogén-szulfid el nem fogy, a szén pedig felhalmozódik a felületen. Ezt a feltételezést a DRS és XPS spektrumok egyaránt alátámasztják.

A C1s XPS spektrum mellett rögzítettük a minták Bi4f XPS spektrumait is (23. ábra), s három különböző oxidációs állapotú bizmut volt elkülöníthető, Bi³⁺ (159,3 eV), Bi⁵⁺ (160,1 eV) és fém bizmut, azaz Bi⁰ (157,7 eV). A különböző oxidációs állapotú bizmut atomok mennyisége egymástól függően a leginkább, azaz a felületi Bi³⁺ képes Bi⁵⁺-dá oxidálódni, vagy fém bizmuttá redukálódni diszproporcionálódás révén. Tekintve, hogy az
oxidálódáshoz csak két elektron leadása szükséges, a redukcióhoz pedig három elektron felvétele, így egy elektronnak máshol kell hasznosulnia. Egy lehetséges magyarázat, hogy a felesleges elektron a tiokarbamidben lévő szén redukciójára fordítódik, ami egyidejűleg megy végbe a fent bemutatott folyamattal.

23. ábra

Felvettük a minták S2p XPS spektrumát is (1. számú melléklet), annak igazolására, hogy a kén valóban jelen van a felületen, hisz az infravörös spektrumokból egyértelműen ez nem kijelenthető. Egy nagyon gyenge jelet észleltünk, amelyben úgy a 2p\(^{3/2}\), mint a 2p\(^{1/2}\) komponens is látszik. Az XPS spektrum alapján becsült S tartalom 3,4 atom %, amely várható, hiszen a felületen maradt szerves anyag komponense lehet. A 2p\(^{3/2}\) komponens lokalizációja 162 eV, amely a tiokarbamid S atomjának felel meg.

5.2. A változó polaritású adalékanyag hatása a bizmut-volframátra

Az eddigi eredmények jól demonstrálják, hogy az adalékanyagoknak kitüntetett szerepe van a megfelelő morfológia kialakításában, s ezáltal a fotokatalitikus aktivitás megnövelésében. A szakirodalomban számos nem-felületaktív adalékot használtak, mellyel igen hasonló morfológiájú és fotokatalitikus aktivitású katalizátorokat állítottak elő [136, 146, 147, 197], ám a morfológia és a fotokatalitikus aktivitás kapcsolatát még senki nem
számszerűsítette. Éppen ezért igen hasonló, de mégis eltérő morfológiájú bizmut-volfiramát fotokatalizátor-sorozat előállítását kísérletem meg, mely a későbbi vizsgálatok alapjául szolgált. Ehhez szisztematikusan más-más szerkezetű adalékanyagot használtam, azt remélve, hogy a morfológiát és a szerveződési szintet finomhangolni lehet. Ennek alapja az, hogy az adalékok képesek megváltoztatni az anizotropikus kristálylapok felületi tulajdonságait (például felületi töltését), ezáltal a kristálynövekedést nagyban befolyásolják. Így változhat az anizotropikus kristálylapok mérete, mennyisége, a köztük lévő távolság, a feltekeredés mértéke stb.

A katalizátor-sorozat előállításához módosítottam az 4.2.1. fejezetben részletezett szintézist oly módon, hogy a kristályosítási elegyen használt tiokarbamidot mólarányosan más szerkezetű, de hasonló tulajdonságokkal rendelkező anyagra cseréltem. Az adalékanyagokat minden esetben a korábban használt 0,625 mmol mennyiségben adtam hozzá a B oldathoz, így tartva meg a rögzített mólarányt. Továbbá a Triton X-100 hatását is vizsgáltam. Ezt a jelölésrendszerben a „+TRX” jelzi. A korábbi eredményekből kiindulva a minták 15 óráig tartó 180 °C-os hidrotermális kristályosítással készültek.

Az alkalmazott adalékanyagok két csoportba, pontosabban két sorozatra sorolhatók. Az egyik ilyen sorozatban a központi szénatomhoz egy kalkogén (oxigén, vagy kén) kapcsolódik, valamint más-más funkciós csoportok kötődnek (metil- vagy amin csoport). Így az adalékanyagok a következők voltak: az eredeti tiokarbamid, karbamid, acetamid, tioacetamid és aceton. A másik sorozatban az oldallán c hossza, azaz az oldalláncban lévő szénatomok száma változott. Így az alkalmazott adalék a glicin, alanin és fenil-alanin volt. A későbbiekben e két sorozatra a következőképpen fogok utalni:

- **S1 sorozat**: \[R_1R_2C=E\] – ahol \(R_1\) és \(R_2\) a \(-\text{CH}_3\) vagy \(-\text{NH}_2\) csoportot, míg az \(E\) az oxigént (=O) vagy ként jelöl \((=S)\).

- **S2 sorozat**: \[\text{NH}_2\text{-CH-R}_1\text{C=O-OH}\] – ahol \(R_1\) -H, -\text{CH}_3 vagy -\text{C}_6\text{H}_5 csoport volt. \(E\) csoportosításon felül szerettem volna számszerűsíteni a változó adalékanyagok tulajdonságát is, melyhez a Hückel-módszert (azaz a Hückel molekulaorbitál-elméletet) alkalmaztam, amit a következő fejezetben részleteztek.

5.2.1. A Hückel-módszer alkalmazása az adalékanyagokra

Annak érdekében, hogy az alkalmazott adalékanyagok, és azok hatása összehasonlítható legyen, szükség volt egy olyan mérőszámra, ami minden egyes adalékanyag esetében létezik. A vízben való oldhatóság egy lehetséges megoldásnak mutatkozott, ám annak hőmérsékletfüggése, valamint a szintéziselegy savassága nagyban
befolyásolja ennek mértékét. Tekintettel arra, hogy az oldhatóság részben összefügg az adalékanyag polaritásával, így ebből kiindulva a polaritás felől közelítenem meg a számszerűsítést. Az adalékok szerkezetét szemügyre véve minden feltétel teljesült ahhoz, hogy a molekulák esetében a központi szénatomhoz kapcsolódó kalkogén (oxigén-, vagy kén-atom) közötti Hückel-féle módszert alkalmazhassam, tekintettel arra, hogy ez a módszer széles körben elfogadott. A Hückel-féle módszer alkalmazásához elengedhetetlen minimum egy \(\pi \) kötés, aminek az elektronszerkezetek megközelíthető a Hückel-féle elmélettel [205-207].

Mivel mindegyik vegyületben van C=kalkogén kettőskötés, így az elmélet segítségével és a mögötte lévő bonyolult matematikai összefüggésekkel meghatározható a molekulapályák elektroneloszlása. Ezt az elektroneloszlást, s ezáltal a polaritást is nagyban befolyásolják a vizsgált atom valamelyikéhez (ez esetben a szénatomhoz) kapcsolódó egyéb funkciós csoportok és oldalláncok. Az összetett matematikai összefüggések miatt a „Cambridge ChemBioOffice, ChemBio3D Ultra 14.0” nevű programot használtam az adalékanyagok modellezéséhez, majd a C=kalkogén kötésre alkalmaztam a Hückel-féle megközelítést. A szoftver segítségével és az általa adott relatív dipólsomentum értékekből már összehasonlíthatóvá vált, így később a közvetlen kapcsolat is bizonyítható a létrehozott fotokatalizátor tulajdonságai és a használt adalékanyagok között.

Tekintettel arra, hogy a Hückel-féle módszert alkalmazva a kapott dimenziómentes szám összefügg a molekula (pontosabban a kettőskötés) polaritásával, ezért a későbbiekben a mérőszámot, Hückel polaritásként, vagy egyszerűen polaritásként nevezem majd. Az adalékanyagok Hückel polaritását a 4. táblázat tartalmazza.

4. táblázat
Az alkalmazott adalékanyagok listája, jelölésük és a kettőskötésre számolt Hückel polaritásiértékek növekvő sorrendben.

<table>
<thead>
<tr>
<th>Hozzáadott adalékanyag</th>
<th>Jelölés</th>
<th>Az adalékanyag Hückel polaritása</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glicin</td>
<td>G</td>
<td>-0,02</td>
</tr>
<tr>
<td>Alanin</td>
<td>A</td>
<td>0,05</td>
</tr>
<tr>
<td>Fenil-alanin</td>
<td>FA</td>
<td>0,06</td>
</tr>
<tr>
<td>Tioacetamid</td>
<td>TAA</td>
<td>0,27</td>
</tr>
<tr>
<td>Tiokarbamid</td>
<td>TU</td>
<td>0,32</td>
</tr>
<tr>
<td>Acetamid</td>
<td>AA</td>
<td>0,47</td>
</tr>
<tr>
<td>Karbamid</td>
<td>U</td>
<td>0,49</td>
</tr>
<tr>
<td>Aceton</td>
<td>Ac</td>
<td>0,52</td>
</tr>
</tbody>
</table>
A táblázatban szereplő Hückel polaritás értékei és előjele alapján elmondható, hogy minél pozitívabbb a Hückel polaritásértéke annál inkább a központi szénatom-kalkogén kettőskötés atomjai között oszlanak el az elektronok. Amennyiben más elektron effektusok is fellépnek a molekulában, úgy ez megnyilvánul a kettős kötésben is, s a Hückel polaritás értéke is változni fog.

5.2.2. Röntgendiffrakciós mérések

Rögzítettem a minták röntgendiffraktogramjait, annak érdekében, hogy ellenőrizzem, valóban bizmut-volframát keletkezett-e, vagy az adalékanyagok hatással vannak-e a kialakult bizmut-volframát kristálytani tulajdonságaira, kristályfázisára és részecskeméretére.

A röntgendiffraktogramkon jól látszik (24. ábra), hogy a jellemző reflexiók és a reflexiókhoz tartozó Miller-indexek kizárólag russelit típusú ortorombos bizmut-volframáthoz köthetők (JCPDS kártyaszám: 73-2020). A Miller-indexek a következők: (113), (200) és (020), (206), (220), (313) és (133), (333), (240) és (420).

![24. ábra](image)

24. ábra A különböző adalékanyaggal előállított Bi₂WO₆-ok röntgendiffraktogramjai.

A Scherrer egyenlet segítségével meghatározottuk a primer krisztallitok méretét, ami 14,8 és 17,6 nm közé esett, így elmondható, hogy az adalékanyagoknak nincs szignifikáns hatása sem a primer kristályméreetre, sem a kristályfázisra, sőt, még a különböző reflexiók intenzitása sem változik különösebben, így a Hückel polaritás-kristályszerkezet összefüggés elemzése szükségtelen.
5.2.3. A fotokatalitikus aktivitás vizsgálata látható és UV-fény megvilágítása mellett

A Hückel polaritás jobb értelmezhetősége érdekében, a korábbiaktól eltérően először megvizsgáltam az előállított bizmut-volfiramátok fotokatalitikus aktivitását UV- és látható fény megvilágítása mellett. A nagyszámú katalizátorominta miatt, és a jobb összehasonlíthatóság érdekében bomlásgörbék helyett csak az elbontott rodamin B százalékos mennyiségét ábrázoltam (25. ábra), ezáltal jobban nyomon követhető a Triton X-100 hatása s a gerjesztési fény hullámhosszának hatása a fotokatalitikus aktivitásra. (A felületen adszorbeálódott rodamin B mennyisége 18,8% és 27,6% között mozgott.)

Általánosan elmondható, hogy a katalizátorok látható fényben nagyobb aktivitással rendelkeznek, mint UV megvilágítás mellett, ami az 5.1.5. fejezetben részletezett jelenséget erősíti meg. Ez alól csak az AA+TRX jelű minta a kivétel, mely közel azonos aktivitással rendelkezik UV- és látható fény megvilágítása mellett. A TAA jelű minta különlegesnek mondható abból a szempontból, hogy az UV aktivitása meghaladja a látható fennel végzett kísérletek aktivitásának átlagát. Ez arra enged következtetni, hogy ez a katalizátor az UV- és látható fény tartományában is képes fényt abszorbeálni, így gerjesztett állapotba kerülni.

A G+TRX minta UV- és látható fényben mért aktivitásbéli különbsége a legnagyobb, a látható fény alatt a legjobb katalizátor (85%), míg UV-ban a legkevesebb festékmolekulát volt képes elbontani (25%), ami nem magyarázható a látható fényforrásokból érkező többletfotonok számával (+20%). Érdekes, hogy mind a két kiugró minta saját sorozatának (S1 és S2) az első tagja, mely a legkisebb Hückel polaritással rendelkezik.

25. ábra A minták által elbontott festékanyag mennyisége %-ban UV- és látható fény megvilágítás hatására.5

5 A bomlásgörbék az 2. számú melléklet, míg a reakciósebességeket és a felületre normalizált konverzióértékeket a 3. számú melléklet tartalmazza
Ha felületaktív anyag hatását vesszük szemügyre, akkor megállapítható, hogy a szintézis során használt Triton X-100 két mintát kivéve (TAA és G) képes volt megnövelni a fotokatalitikus aktivitást a felületaktív anyag mentes mintákéhoz képest. Hasonló trend figyelhető meg a látható fénnyel történő gerjesztés esetében is, tehát a TRX jelenléte a szintézis során nagyobb fotokatalitikus aktivitást eredményezett. Ez alól kivétel ismét a TAA jelű minta, valamint a TU és az AA jelű minta, melyek kisebb Hückel polaritással rendelkeznek, mint az S1 sorozat többi tagja.

Az eredmények fényében megvizsgáltam a fotokatalitikus aktivitás Hückel polaritás szerinti összefüggését.

5.2.4. A Hückel polaritás és a fotokatalitikus aktivitás kapcsolata

Az S1 sorozatnál az a trend figyelhető meg, hogy a növekvő polaritással egyenes arányban csökken a katalizátorok fotokatalitikus aktivitása az UV- és látható fényes tesztek esetén egyaránt. Továbbá UV megvilágítás alatt a TRX jelenléte megszünteti az adalékok hatását (R1R2C=E, fotokatalitikus aktivitás: 52-58%) A 26. A és B ábrán észrevehető, hogy a szintézis során alkalmazott karbamid (U) képes lehet a keletkező bizmut-volframát részecskére valamely tulajdonságát befolyásolni, ami pozitívan hat a fotokatalitikus aktivitására, s a felületaktív anyag ezt a tulajdonságot kihangsúlyozza.

Az S2 sorozat esetében az NH2-CHR1C=O-OH molekula polaritásának növelésével hasonló aktivitási trend volt megfigyelhető, mint az S1 sorozatnál, tehát az adalékanyag kisebb polaritása nagyobb fotokatalitikus aktivitást eredményez. UV- és látható fénnyel történő gerjesztés esetén a TRX egyaránt képes volt megnövelni a fotokatalitikus aktivitást. Ugyanakkor az adalékanyag polaritásnövekedése gerjesztő hullámhossztartománytól függetlenül csökkenő fotokatalitikus aktivitást eredményezett.
26. ábra Az S1 sorozat fotokatalitikus aktivitása UV- (A) és látható fényben (B), valamint az S2 sorozat (C) aktivitása Hückel polaritás szerinti összefüggése6.

Elmondható, hogy közvetett bizonyíték van a szintézis során használt adalékanyag Hückel polaritása és a fotokatalitikus aktivitása között, de tekintettel arra, hogy az adalékanyagok nem vesznek részt a fotokatalízisben, csak az előállítás során fejtik ki hatásukat, így a többi katalizátor tulajdonság esetében is szükséges feltáráni ezt a lehetséges kapcsolatot, ami által képet kaphatunk az adalékok közvetlen hatásáról. Éppen ezért a későbbiekben is a két csoportosítást (S1 és S2) és a Hückel polaritás szerinti összehasonlítást veszem majd alapul.

5.2.5. Optikai tulajdonságok vizsgálata

Rögzítettem a minták diffúz reflexiós spektrumait, s a kapott spektrumokat a korábbiakhoz hasonlóan deriváltam (27. ábra), így a gerjesztési maximumok elemzésével és a kompletten derivált spektrumok értelmezésével a fotokatalitikus tesztek eredményei magyarázhatók. Ezt követően a Hückel polaritás és az optikai tulajdonságok kapcsolatát vizsgáltam. A Kubelka-Munk összefüggéssel számolt tiltottsáv-szélesség értékek 2,73 eV és 2,96 eV közé esnek.

Jól látható, hogy a Triton X-100 az UV régió felé tolja el a dR/dλ maximumokat a TRX mentes mintákéhoz képest (kivéve a TAA+TRX jelű minta esetében). Ez jól korrelál a fotokatalitikus bontások eredményeivel, azaz ahol a fényelnyelési maximum közelebb esik az UV régióhoz, ott a fotokatalizátor aktivitása is nagyobb az UV megvilágítás esetében.

6 A görbéket másodfokú polinomiális egyenlet szerint illesztettem
A tioacetamiddal készült minták esetében megfigyelhető egy másodlagos fényelnyelési maximum is 358 nm-nél, valamint 359 nm-nél. Ez egy lehetséges magyarázata annak, hogy a TAA jelű minta UV aktivitása kiemelkedően magas, ugyanis a másodlagos fényelnyelési maximuma igen közel van az UV fényforrások emissziós maximumához ($\lambda_{\text{max}}=365$ nm). A G+TRX jelű minta szintén rendelkezik egy másodlagos fényelnyelési maximummal 535 nm-nél, ami szintén magyarázza a kiemelkedő aktivitást látható fény megvilágítása mellett.

27. ábra Az S1 sorozat (A) és S2 sorozat (B) derivált diffúz reflexiós spektrumai.

Ha a polaritás szerinti összefüggést vizsgáljuk (28. ábra), akkor észrevehető, hogy az S1 sorozatban az adalékanyag polaritásának növekedésével együtt növekszik a fényelnyelési maximum, 406 nm-ről 423 nm-re, ami 0,13 eV-os tiltottsav-szélesség különbséget jelent. Ez a tendencia kizárólag a TRX mentes minták esetében figyelhető meg. Az S2 sorozat esetében hasonló trend tapasztalható, de ekkor a Triton X-100 csak csökkenti a $dR/d\lambda$ értékét a TRX mentes mintákéhoz képest, de a trendet nem változtatja meg. Az eltolódás 408 nm-ről 416 nm-re történik (0,06 eV).
28. ábra A Hückel polaritás és a fényelnyelési maximum kapcsolata az S1 sorozatban (A) és az S2 sorozatban (B).

A diffúz reflexiós spektrumok az első olyan eredmények, melyek közvetlenül is kapcsolatba hozhatók a Hückel polaritással, s bizonyítja, hogy egy jól megválasztott adalékanyaggal a fényelnyelés és a gerjeszthetőség is finomhangeloghatók.

5.2.6. Mikromorfológiai sajátosságok vizsgálata pásztázó elektronmikroszkóppal

A korábbi vizsgálatok már bizonyították, hogy az adalékanyagoknak és a felületaktív anyagnak is sajátos morfológiamódosító hatása van a részecskékre. Először e sajátosságokat vizsgáltam meg.

Az S1 sorozat tagjainál megfigyelhető (29. ábra), hogy a legkisebb Hückel polaritással rendelkező anyag esetében, azaz a toacetamiddal (TAA) készített mintánál a korábbi szerveződési szintek egyike sem detektálható. Ezt a morfológiát a TRX nem változtatja meg különösebben, így elmondható, hogy a morfológia a tiokarbamid miatt jön
létre. A többi mintáról elmondható, hogy közel azonos részecskeemérettel rendelkeznek (15 és 18 nm között), és gömbformába tömörülnek. A polaritás növekedésével a TRX mentes minták esetében az anizotropikus lapok megjelennek ugyan, de feltekeredésük nem történik meg, kivéve a korábban részletesen bemutatott tiokarbamiddal előállított mintánál (TU=BW-15). Ugyanakkor a feltékeredés a TRX jelenlé tében megtörténik (kivéve az acetamidos mintát).

29. ábra A változó polaritású adalékanyagok és a Triton X-100 hatása a morfológiára.
Az S2 sorozatnál minden minta hasonlóan gömb morfológiába rendeződött, közel azonos átmérővel. A leginkább definiálható morfológiával a glicinnel készített minta rendelkezik, ahol a lapok a leginkább elkülöníthetők egymástól, ellenben a feltekeredés, azaz a szabályos rózsaforma kialakulása csak az A+TRX és az FA jelű mintánál figyelhető meg egyértelműen (30. ábra).

30. ábra A növekvő szénlánc hatása a morfológiára.

5.2.7. A SEM felvételek újraértelmezése és az R_{SDC} egyenlet megalkotása

A pásztázó elektronmikroszkópos felvételek klasszikus értelmezése során közvetlen, kvantifikálható kapcsolat nem fedezhető fel a morfológia és a Hückel polaritás között. Így szükség volt egy újfajta morfológiai megközelítésre, amivel összehasonlíthatóvá válnak a különböző részecskék. Ennek alapjául a rózsaforma kialakulását, azaz az

A rózsaformához való hasonlóságot igyekeztem számszerűsíteni, amit RSDC-nek, azaz rozalitásnak neveztém el az angol „rose similarity decay constant” rövidítésektől, ami a rózsaformától való eltérést jelenti, azaz a részecske mennyire től el a „tökéletes” rózsaformától. Ezt megelőzően újracsoportosítottam a mintákat aszerint, hogy a rózsaforma megfigyelhető-e, vagy sem, amihez az alábbi két feltételnél kellett teljesülni:

- a maximálisan megengedett átmérő aszimmetria a tökéletes körhöz, azaz gömbhöz képest 1 az 1,2-höz, hisz az ennél nagyobb érték már nem tekinthető körnek;
- homogén kristálylapok. azaz, az anizotropikus kristálylapok mérete maximum 20%-os eltérést mutathatnak egymáshoz képest.

Ezt követően az RSDC érték meghatározása úgy történt, hogy az a legjobban közelítse a hierarchikus kristálygeometriát, s a lehető legjobban kvantifikálja ezt a geometriát. A feltételek teljesülése mellett egy egyenletet hoztam létre, mely később akár a bizmut-volframát részecskéken túl más, hasonló morfológiával rendelkező részecskéknél is alkalmazható lehet. Az így létrehozott egyenlet a következő:

\[
R_{SDC} = \frac{\sum_{i=1}^{n} N_{LM1} - \frac{\sum_{i=1}^{n} N_{LM1}}{n}}{N_{LM1}}
\]

\(N_{LM1}\) - a helyi maximumok száma egy adott tengelyprofillban (átmérőben)

\(n\) - a megszerkesztett tengelyprofillok száma (minimum 4)

Ezt az egyenletet alkalmaztam minden részecskére, majd átlagolva megkaptam az RSDC számot, mely definiálja a rózsaformához való hasonlóságot, azaz a rozalitást (4. lépés). Az RSDC érték 0 és n közé esik, s minél inkább közelít az érték a 0 felé, annál inkább tökéletes rózsaformáról beszélhetünk, ha n (ezesetben 4) akkor a rózsaforma nem jelenik meg (31. ábra).
Az RSDC egyenlet alkalmazása a rózsafaforma meghatározásához.

Az RSDC egyenlet megalkotása és alkalmazása során észrevettem, hogy nem csupán a rozalitási értékek szolgáltatnak információt, hanem maga a tengelyprofilok létrehozásából származtatható periodicitásértékek, azaz a felületérdesség is. Éppen ezért a periodicitás Hückel polaritás szerinti összefüggését külön fejezetben tárgyalom, de kizárólag csak a TRX-mentes minták esetében.

5.2.8. A felületi érdesség és a periodicitás vizsgálata

Az S1 sorozatban a felületérdesség és a Hückel polaritás között igen érdekes összefüggés figyelhető meg, ami közvetlen kapcsolatot feltételez a létrejövő egyedi lapok (és más struktúrák) hierarchikus felépítése között. Ha az adalékanyag Hückel polaritása növekszik, akkor a felületérdesség egy maximumot ér el az AA jelű mintánál (32. ábra). Ez nagyon fontos megfigyelés a morfológia kontrollálhatóságának szempontjából, ugyanakkor a felületi érdesség értékei közvetlenül nem hozhatók összefüggésbe a fotokatalitikus aktivitással. Azonban egy kivétel van, az U (és az U+TRX) jelű minta, melynek aktivitását nem lehet megmagyarázni a strukturális és felületérdességi sajátosságokkal. A tioacetamiddal (TAA) előállított minták esetében a felületi érdesség és annak periodicitása 0, hiszen rózsafaforma nem jelent meg. Az S2 sorozat esetében a felületérdesség a Hückel polaritás mértékével egyenesen növekszik. Ez a fajta megközelítés egyértelműen azt jelzi, hogy a szerkezeti/morfológiai befolyásolás adalékanyagok segítségével finomhangolhatók,
s ez kihatással lehet a fotokatalitikus aktivitásra, annak ellenére, hogy ezen eredmények alapján a TRX mentes minták esetében egyértelműen nem bizonyítható.

32. ábra A felületi érdesség és a periodicitás összefüggése az adalékanyag Hückel polaritásával.

A TRX mentes minták esetében a felületi érdesség mértéke kapcsolatba hozható a Hückel polaritással, ugyanakkor a fotokatalitikus aktivitással nem. Tekintettel arra, hogy a TRX a szintézis során jobban definiált morfológiát eredményez, azaz a rózsaforma nagyobb valószínűséggel alakul ki, így az \(R_{SDC} \) egyenlet alkalmazása megalapozottá válik a TRX mentes mintákkal ellentétben, így a következő fejezetben a szimpla felületérdességen túl a számolt \(R_{SDC} \) értékeket és a fotokatalitikus aktivitás kapcsolatát vizsgálok.

5.2.9. Az \(R_{SDC} \) és a fotokatalitikus aktivitás kapcsolata

Tekintettel arra, hogy a látható fény megvilágítás alatt a legtöbb katalizátor aktívakabbak maradnak (a fotokatalitikus anomáliákat korábban tárgyaltam), így az \(R_{SDC} \) – fotokatalitikus aktivitás összefüggést csak a látható fénnel végzett tesztek esetén elemzem. Minden TRX-el előállított minta esetében alkalmaztam az \(R_{SDC} \) egyenletet, annak ellenére, hogy nem mindig teljesülne a szükséges feltételek (5.2.7. fejezet), de tekintve, hogy a periodicitás minden minta esetében fennáll, így az egyenlet minden további nélkül
alkalmazható. Ebben a 4 esetben a G+TRX, A+TRX és TAA+TRX, valamint az adalékanyag mentes minták mindegyikénél és a TRX jelű mintánál fordul elő.

A rózsaforma megjelenése esetén egyértelmű összefüggés van a számolt R_{SDC} értékek és a fotokatalitikus aktivitás között. A növekvő R_{SDC} érték csökkenő fotokatalitikus aktivitást eredményez, tehát minél inkább nagyobb az eltérés a tőkéletes rózsafomátról, annál kisebb a fotokatalitikus aktivitás. Ez az első közvetlen és számszerűsített bizonyíték arra nézve, hogy a tőkéletes rózsaforma ($R_{\text{SDC}}=0$) tűnik a legjobb morfológiai csoportosulásnak a fotokatalitikus aktivitás szempontjából (33. ábra).

33. ábra A számolt R_{SDC} értékek és a fotokatalitikus aktivitás kapcsolata.

Az is észrevehető, hogy a rózsaforma megjelenése nem szükségszerű a jó fotokatalitikus aktivitáshoz, azonban az R_{SDC} egyenlettel számszerűsített morfológiai tulajdonságok szintén kihatnak a fotokatalitikus aktivitásra, függetlenül attól, hogy közel szabályos/szabályos rózsaforma alakul-e ki, vagy sem. Ha az R_{SDC} értékét vesszük alapul, akkor közvetlenül ez a legmeghatározóbb morfológiai tulajdonság, ami befolyásolhatja a fotokatalitikus aktivitást az egyéb fizikai-kémiai tulajdonságon túl.

5.2.10. Kitekintés a szenzoros tulajdonságok felé

A bevezetőben említettem, hogy egyes félvezetők szenzorként is működhetnek. Előkísérleteim során észrevettem, hogy néhány karboxilcsoport tartalmú sav jelenlétében és UV-fennnyel megvilágítva a bizmut-volframát színváltozást szenved.

A 34. ábrán látható, hogy a fehér szuszpenzió már a 0. percben, azaz a lámpák felkapcsolása előtt elszíneződik, de ez a színváltozás nem túl jelentős. Egy óra UV megvilágítást követően azonban minden sav jelenlétkében szembenő ez a változás. Az oxálsav és citromsav jelenléteben a katalizátor színe kék lesz, míg aszkorbinsav jelenlétében sárgulás figyelhető meg. Szalicilsav és malonsav esetében a színváltozás egy óra elteltével sem szignifikáns, de a megvilágítási idő előrehaladtával ez a két sav is sárgulást okoz. A legérdekesebb változást azonban az oxálsav és a citromsav jelenléte okozza, ugyanis az oxálsav a második óra után szürkévé, míg a citromsav kékévé változtatja a katalizátor színet.

Ezek a színváltozások a lámpa lekapcsolását követő egy óra elteltével az oxálsav (és a többi sav esetében) megmaradnak, míg a citromsav esetében visszaáll a kiindulási állapot. Ez arra utal, hogy a citromsav jelenléte reverzibilis reakcióit okoz, míg a többi sav irreverzibilis változást eredményez. Ez előrevetítí, a fotokatalizátorok, szennyező anyagokkal szembeni kémiai- és fotostabilitását, de ezzel egy időben a fotokatalizátor szenzorként történő alkalmazását is, de doktori diszsertációmban ezzel részletesebben nem foglalkozom.

34. ábra A BW-15 jelű katalizátor színváltozásai UV megvilágítás alatt különböző szerves savak jelenlétkében.
5.3. **A bizmut-vanadát fotokatalizátorok jellemzése**

A bizmut-oxid tartalmú vegyesoxidok másik képviselője a bizmut-vanadát, melynek kisebb tiltottsáv-szélessége alkalmassá teszi ezt az anyagot, hogy látható fényvel gerjeszteni tudjuk. Az irodalmi bevezetőben részletezett tulajdonságai miatt lehetőségünk van adalékanyagok nélkül is kedvező irányba befolyásolni a morfológiát, vagy befolyásolni a fotokatalizisben kedvező kristálylap megjelenését és arányát, amelyre a bizmut-volframát esetében nem nyilik lehetőség. Az irodalmi adatok bizonyítják, hogy a szennyező anyagok fotokatalitikus degradációja a bizmut-vanadát esetében kristálylapspecifikus, azaz a szennyező anyagok bomlása nagyban függ a bizmut-vanadát kristálylapjainak arányától. Ez visszavezethető a fotogenerált elektron-lyuk pár felületi migrációjára, melyet a későbbiekben két eltérő szerkezetű, és tulajdonságú modellszennyezővel követek nyomon.

5.3.1. **Röntgendiffракciós vizsgálatok**

A röntgendiffráktogramok elemzése alapján elmondható, hogy minden minta kristályos, monoklin kristályfázisú bizmut-vanadát volt (JCPDS kártyaszám: 14-0688). A beazonosítást, valamint a reflexiókhoz tartozó kristálylap meghatározását ezúttal is a QualX nevű szoftver és a COD adatbázis segítségével végeztem el. Ez alapján a reflexiókhoz tartozó Miller-indexek sorban a következők: (121), (040), (200), (002), (211), (051), (240), (042), (202), (222), (170) és (321).

A diffraktogramokon észrevehető, hogy az (121)-es és a (040)-ás kristálylaphoz tartozó reflexiók abszolút intenzitása változik, melyet e két lap aránya is követ. Ennek a két kristálylapnak kiemelt szerepe van a fotokatalitikus folyamatokban, hiszen a fotogenerált töltések migrációjára e két kristálylap felé történik meg. A lyukak a (040)-ás lap felé migrálnak, míg az elektronok az (121)-es lapon dúsulnak fel [180]. Ez azért is fontos megállapítás, hiszen e két kristálylap arányának befolyásolásával a különböző redox reakciók megvalósíthatósága finomhangolható.
35. ábra A szintéziselegy pH értékének hatása a bizmut-vanadát minták reflexiointenzitására, s az α- és β-bizmut-oxid reflexiók megjelenése bázikus szintéziskörülmények között (BV9).

A (040)-ás reflexió intenzitása a NaOH adagolásával növekszik, egészen a 2-es pH értékgig, majd folyamatosan csökken. Ezt a trendet követi a (121)-es reflexió intenzitása is. Bázikus kristályosítási körülmények között, azaz a BV9 esetében a (040)-ás diffrakciós csúcs teljesen eltűnik, míg az (121)-es diffrakciós csúcs jelentősen lecsökken. Ezzel párhuzamosan a (200)-ás és (002)-es lapozt tartozó reflexiók átveszik a domináns csúcsok szerepét, sőt, négy extra reflexió is megjelenik 26,9°, 28,1°, 31,7° és 41,6° 2θ°-nál, ami pedig α- és β-bizmut-oxid keverékének tulajdonítható (COD kártyaszám. 00-101-0004 és 00-901-2328), ami kétségkívül a bázikus körülmények miatt alakul ki [208].

A Scherrer egyenlet segítségével kiszámoltam a primer részecskék méretét, melyet az 5. táblázat tartalmaz. A BV0-ás minta esetében a részecskeméret a legnagyobb, 43 nm, de amint a kristályosítási elegy pH-ja eléri az egyet, úgy a részecskeméret is lecsökken (37 nm). Ez a trend egészen 7-es pH értékgig folyamatosan tart (33 nm), majd nem meglepő módon a BV9 esetében a részecskeméret ismét megnövekszik (43 nm). A röntgendiffrakciós
eredmények jól demonstrálják, hogy pusztán a pH állításával milyen könnyen lehet befolyásolni a reflexióintenzitásokat és a primer részecskeméretet. A reflexióintenzitások egyenes arányban állnak a hozzájuk tartozó kristálylapok mennyiségével, ami sok esetben a részecske morfológiáján is tükröződik, így célszerű volt bevethni a pásztázó elektronmikroszkópot, hogy ezt ellenőrizni tudjuk.

5.3.1. Morfológiai vizsgálatok

Már a szintézis során is észrevehető volt, hogy a pH függvényében változnak a keletkező anyag tulajdonságai, mint például a színe, ülepíthetősége, ami kétségkívül összefügg a morfológiával. Ezért a mintákról pásztázó elektronmikroszkópos felvételeket készítettünk (36. ábra).

A pH beállítás nélküli minta, azaz a BV0 igen nagy részecskemérettel rendelkezik (d>10 µm), amit egyedi, de összenőtt kristályok alkotnak 3 µm-es átlagos átmérővel. A pH növelésével, 1-es pH értéken a 10 µm átmérőjű aggregátum szétesik, de a primer részecskék struktúrája megmarad. A szintéziselegy pH értékének további növelésével (BV2, BV3) ezek a lapok elveszik a jól definiált monoklin struktúrájukat, valamint fokozatosan elvékonyodnak, azaz anizotrop kristályok alakulnak ki a (040)-ás kristálylap javára. Ezt igazolják a korábban bemutatott röntgendiffraktogramok is, ahol jól látható módon a (040)-ás lap intenzitása jelentősen megnő. A pH további növelésével (BV5) ez a trend azonban megváltozik, s a lapok ismét aggregátumokba tömörülnek, s sokkal inkább polikristályos részecskék jönnek létre, mintsem egységes morfológia. Semleges és bázikus szintéziskörülmények között (BV7 és BV9) közel egységes mérettel rendelkező, törmelékes kristályok jönnek létre, melynek morfológiail jellemzése nem egyértelmű.
36. ábra Pásztázó elektronmikroszkópos felvételek az eltérő pH értéken szintetizált bizmut-vanadát kristályokról.

5.3.2. Optikai tulajdonságok vizsgálata

A bizmut-vanadát minták optikai tulajdonságait a korábbiakhoz hasonlóan diffúz reflexiós spektrometriával vizsgáltam meg. A Kubelka-Munk egyenlet segítségével meghatároztam a tiltottsáv-szélességeket, melynek értékeit az 5. táblázat tartalmazza, majd a részletesebb elemzés érdekében a kapott spektrumok hullámhossz szerinti elsőrendű deriváltjait is ábrázoltam (dR/dλ), mivel az így kapott görbék maximum értékei a lehetséges elektronátmeneti hullámhosszokat is mutatják, ezért ezek sok esetben reálisabb képet adnak a tiltottsáv-szélesség valós értékeiről (csakúgy, mint a bizmut-volfiramát esetében). Ám a bizmut-vanadát esetében a fényszoros maximumpok jól követik a tiltottsáv-szélesség értékeit, rámutatva arra, hogy az elektronátmenetek a meghatározott tiltottsáv-szélesség
energiáján fognak bekövetkezni, ami azért is előnyös, mert a gerjesztő fény hullámhossza és a későbbi fotokatalitikus aktivitás kapcsolata egyértelműbb lesz.

5. táblázat Az előállított bizmut-vanadát fotokatalizátorok kristálytani, optikai és fotokatalitikus tulajdonságai.

<table>
<thead>
<tr>
<th>Mintanév</th>
<th>Kristályméret (nm)</th>
<th>Tiltottsáv-szélesség (eV)</th>
<th>Fényabszorpciósn maximum (nm)</th>
<th>Elbontott RhB (%)</th>
<th>Elbontott oxálsav (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV0</td>
<td>43</td>
<td>2,10</td>
<td>527</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>BV1</td>
<td>37</td>
<td>2,31</td>
<td>517</td>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>BV2</td>
<td>36</td>
<td>2,30</td>
<td>501</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>BV3</td>
<td>37</td>
<td>2,35</td>
<td>497</td>
<td>23</td>
<td>48</td>
</tr>
<tr>
<td>BV5</td>
<td>30</td>
<td>2,37</td>
<td>498</td>
<td>61</td>
<td>38</td>
</tr>
<tr>
<td>BV7</td>
<td>33</td>
<td>2,40</td>
<td>506</td>
<td>51</td>
<td>39</td>
</tr>
<tr>
<td>BV9</td>
<td>43</td>
<td>2,20</td>
<td>519</td>
<td>22</td>
<td>42</td>
</tr>
</tbody>
</table>

Tekintettel arra, hogy a szintéziselegy pH-ja jelentős hatást gyakorolt a kristálylapok orientációjára és az optikai tulajdonságokra egyaránt, így e két érték közötti összefüggést is megvizsgáltam (37. ábra). Látható, hogy a (040)-ás kristálylap arányának növekedésével a tiltottsáv-szélesség értéke is megnőtt 2,1 eV-ról 2,4 eV-ra, ami közvetlen bizonyítéka annak, hogy a tiltottsáv-szélesség a kristályorientálsággal kitűnően finomhangolható. Hasonló összefüggés található a szakirodalomban az anatáz fázisú titandioxid esetében is [209], így ez a fajta megközelítés lehet a kulcs az anyagok fotokatalitikus aktivitásának meghatározásához, hiszen, ha a tiltottsáv-szélességet a kristálymorfológiával (azaz a szintéziselegy pH-jával) tudjuk irányítani, akkor az alakváltozás nem csak a fotogenerált tölteshordozók eloszlását/migrációját befolyásolja, hanem magát az aktiváláshoz szükséges fény hullámhosszát is, tehát a tiltottsáv-szélesség változására is jelentős hatással lehet.
37. ábra A tiltottsáv-szélesség és fényabszorpciós maximum változása a szintéziselegy pH értékének függvényében (A), valamint a tiltottsáv-szélesség értékeinek változása a (040)-ás kristálylap abszolút intenzitásának függvényében (B).

5.3.3. A bizmut-vanadát fotokatalitikus aktivitásának vizsgálata

A bizmut-vanadát minták fotokatalitikus aktivitását kétféle, eltérő degradációs utat bejáró modellszennyező, a rodamin B és az oxálsav bomlása során vizsgáltam látható fény megvilágítása alatt.7 Az 38. B ábrán jól látszik, hogy mindegyik katalizátor képes látható fény megvilágítása alatt az oxálsav bontására, jólehet eltérő mértékbén. A legnagyobb adszorpciós kapacitással a BV9 jelű minta, míg a legkisebbel a BV1 jelű minta rendelkezik, valamint a legaktivabb katalizátor a BV2 jelű minta. Érdekes kapcsolatba bukkanunk, ha a (040)-ás kristálylap és az elbontott oxálsav mennyiségének a kapcsolatát vizsgáljuk meg. A 38. A ábrán jól látható, hogy az elbontott oxálsav mennyisége igen jól követi a (040)-ás kristálylaphoz tartozó reflexió intenzitását, ami közvetlen bizonyíték arra nézve, hogy az oxálsav bomlása nagyban függ a (040)-ás kristálylap arányától. Fontos megjegyezni, hogy a (040)-ás laphoz tartozó reflexió abszolút intenzitása és annak aránya a domináns (121)-es laphoz tartozó reflexió intenzitásához közel azonos tendenciát mutatott, így a későbbiekben is a (040)-ás lap abszolút intenzitását veszem alapul.

7 Sajnos a BV0 jelű minta szintézise során igen kevés anyag keletkezett, mely az anyagvizsgálatokra elégséges volt, de a fotokatalitikus aktivitási tesztekre már nem, így csak BV1-től BV9-ig végeztem el a kísérleteket.
38. ábra Az oxálsav bomlásgörbéi (A) és az elbontott oxálsav mennyisége a pH, valamint a (040)-ás kristálylap intenzitás szerinti összefüggése (B).

39. ábra A rodamin B bomlásgörbéi (A) és az elbontott rodamin B mennyisége és a pH, valamint a (040)-ás kristálylap intenzitás szerinti összefüggése (B).
Ez az eredmény részben várható is volt, mert a két modellszennyező eltérő szerkezetű, így a bomlási mechanizmusuk is különbözik:

- az oxálsav rendszerint a fotogenerált lyukkal történő reakció révén bomlik, hiszen ez az anyag előszeretetlent adszorbeálódik számos fotokatalizátor felületén [210];
- ezzel szemben a rodamin B degradációja elsősorban a korábban bemutatott elektronátviteli lépésnek, majd a gyökképződésnek köszönhető, s a direkt lyukkal történő oxidáció csak egy lehetséges opció (5.1.5. fejezet).

Szakirodalmi adatok alapján tudjuk, hogy a (040)-ás kristálylap az oxidációs folyamatokért felelős a fotogenerált lyukak felülsülésa révén, ezért várható volt, hogy a jól adszorbeálódó oxálsav konverziója magas lesz [211]. Mivel a fotokatalitikus bontási eredmények a (040)-ás kristálylap fontosságát csak az oxálsav esetében bizonyították, így kíváncsiak voltunk, hogy egy más típusú, klaszikus, de nem fotokatalitikus reakció esetén hasonló kristálylap szerinti összefüggés tapasztalható-e vagy sem. Éppen ezért a Cu²⁺ ionok redukcióját választottam BiVO₄ jelenlétében, hiszen ez a szakirodalomban jól ismert, a BiVO₄ fotokatalizátor (vagy más anyag) nélkül nem játszódik le, s a reakciót nem a fotogenerált elektron-lyuk pár, és migrációja határozza meg.

5.3.4. Rézleválasztás a bizmut-vanadát felületére

A rézleválasztást követően röntgendiffraktometriával ellenőriztem a rézleválasztás sikerességét. Adatbázis segítségével beazonosítható volt a réz 49,8 2θ foknál, mely reflexió a (200)-ás kristálylapnak tulajdonítható (JCPDS kártyaszám: 901-3019). A Scherrer egyenlettel kiszámolható volt a leválasztott réz primer részecské mérete, mely azt mutatja, hogy a részecskék mérete folyamatosan csökken a szintéziseleg pH-jának növelésével 36,8 nm-ről egészen 16,3 nm-ig (kivéve BV0 és BV7: 24,1 nm) (40. A ábra).

Ezzel egyidőben a réz mennyisége (amely a röntgenfluoreszcenciás spektrometriai mérésekből volt meghatározható) követi a (040)-ás kristálylaphoz tartozó reflexió abszolút intenzitását (kivéve BV9+Cu és BV3+Cu) (40. B ábra)⁸.

⁸ A BV9 esetében a rézleválasz javarészt α- és β-bizmut-oxid keverékén történt meg, így ennek ábrázolása helytelen következtetések levonásához vezetne, hiszen a bizmut-vanadát mennyisége a bizmut-oxidokhoz képest elhanyagolható.
A pásztázó elektronmikroszkópos felvételek bizonyítják, hogy a réz apró részecskék formájában válik ki a bizmut-vanadát felületére úgy, hogy a bizmut-vanadát morfológiája nem változik a rézl eválasztást követően. Az apró részecskék leválása jól látható módon minden lapon megtörténik, de eloszlása nem egyenletes, azaz van olyan kristálylap, ahol a levált réz mennyisége nagyobb, mint a többi lapon. Ez leginkább a BV0+Cu jelű minta esetében szembetűnő, hisz itt jól kifejezett kristályok láthatók, s a (040)-ás kristálylap mellett a többi kristálylap is jól fejlett. A többi minta esetében a kristálylapok a pásztázó elektronmikroszkópos felvételeken egyértelműen nem beazonosíthatók, így a reprezentálás kedvéért csak a BV0+Cu jelölésű mintát mutatom be.

40. ábra A leválasztott rézrészecskék primer kristálymérete (A) és mennyisége (B) a (040)-ás kristálylaphoz tartozó reflexió abszolút intenzitás arányának függvényében.

41. ábra SEM felvételek a rézleválasztást követően: BV0+Cu.
Érdekes volt látni, hogy a réz nanokristályok leválása (mind méretben és mennyiségben) jól korrelál az oxálsvonáblási trendjével, ami azt jelenti, hogy maga a rézlevásztás reakciója kristálylapszelektíven történik meg, méghozzá a (040)-ás kristálylap felületére. Ehhez azonban további megerősítése volt szükséges, amihez Raman spektroszkópiai méréseket alkalmaztunk.

A Raman spektrumok elemzése során számos karakterisztikus sáv figyelhető meg. Alacsonyabb Raman eltolódásnál (107 cm\(^{-1}\), 123 cm\(^{-1}\), 143 cm\(^{-1}\), 208 cm\(^{-1}\) és 275 cm\(^{-1}\)) speciális rácsrezgések voltak azonosíthatók, melyek a monoklin fázisú bizmut-vanádatól (clinobiszvanit) származnak. Ezeket követi a VO\(^{2+}\)-re jellemző \(v_2\) deformációs rezgések (334 cm\(^{-1}\) és 365 cm\(^{-1}\)), majd Bi-O vegyértékre rezgései 641 cm\(^{-1}\)-nél. 712 cm\(^{-1}\)-nél és 750 cm\(^{-1}\)-nél a VO\(^{2+}\)-re jellemző \(v_3\) aszimmetrikus eltolódások detektálható, míg a széles és intenzív Raman eltolódási sáv 826 cm\(^{-1}\)-nél lévő maximummal a \(v_1\) szimmetrikus nyúlásnak tulajdonítható. Ezen jellemző Raman eltolódások közül a VO\(^{2+}\)-re jellemző \(v_2\) deformációs rezgések vettem figyelembe a későbbi elemzés során (42. \(A\) ábra), hiszen ezekhez a rezgésekhez tartozó VO\(^{2+}\) egységek mindig lapzárók [161], így ha strukturális változások következnek be a mintákban, akkor a változások hatással lesznek a Raman jel relatív intenzitására, így minden esetben hasonló arányú és irányú változást kell tapasztalnunk. Hogy következtetni lehessen, milyen strukturális változások fordulnak elő a mintákban, az alábbi két megközelítést kell figyelembe venni:

- a fő reakció a Cu\(^{2+}\) redukciója Cu\(^0\)-vá;
- a redukcióban résztvevő két elektron oxidációs reakcióból kell, hogy származzon. A bizmut alapú fotokatalizátorok esetében közigaztatták, hogy a felület közelében lévő Bi\(^{3+}\) képes Bi\(^{5+}\)-á oxidálódni, abban az esetben, ha egy megfelelő reakciópartner is jelen van, ami a fenti reakciót indukálja [212].

Ha ezek a reakciók valóban lejátszódnak, akkor a kiválasztott Raman jelek arányainak változás lesz megfigyelhető: először egy egyedi eltolódásnak kellene látszódni a két Raman sáv aránya között, mialatt a csúcso negyörzik a közük lévő eltolódás mértékét. Ezt szemléltet a 42. \(B\) ábra. Ahogy az látható, a jelarány minden esetben növekszik, tehát mindenkor redox folyamat játszódik le, tekintettel arra, hogy a szerkezetváltozás a réz levásztása a felületen történt meg. Mindemellett a rézredukciót követően a bizmut-vanádat ugyanolyan rendezett marad, mint a levásztás előtt.

Az intenzitásarány mindkét mintasorozat esetében (rézzel és anélkül) jól követte az oxálsvonáblási trendjét a szintéziselegy pH-jának függvényében, azaz a VO\(^{2+}\) lapzáró
egységek mennyisége, s a hozzájuk tartozó Raman intenzitások valamint azok aránya ugyanolyan kapcsolatban van az oxálsav bomlási trendjével, mint a (040)-ás kristálylaphoz tartozó reflexióintenzitás. Emellett a kiválasztott két Raman jel intenzitásaránya a Cu\(^0\) tartalmú minták esetében magasabb volt. Ez arra utal, hogy olyan változások következtek be, amelyek minden mintában szisztematikusak voltak, azaz a réz leválasztás geometriai és szerkezeti paraméterei azonosak, ami közvetett bizonyítékként szolgáltat a (040)-ás lapra történő leválasztásra.

![Diagram](image)

42. ábra A bizmut-vanadát Raman spektrumai az lapszelektív rézleválasztást követően (A); A 334 cm\(^{-1}\) és a 365 cm\(^{-1}\) hullámszámnál jelentkező jel intenzitásának aránya a szintéziselegy pH értékének függvévében (B).

A rézleválasztás és az ebből származó eredmények, mint a lapszelektivitás arra enged következtetni, hogy a (040)-ás kristálylap és annak mennyisége a legmeghatározóbb kristálytani paraméter a bizmut-vanadát esetében, de nem csak a fotokatalízisben, hanem más folyamatokban is.

Továbbá megerősíti azt a feltételezést, hogy a felületen adsorbeálódott, rendszerint direkt lyukkal történő oxidáció keresztül bomló anyagok esetében a (040)-ás kristálylap mennyisége és aránya a legfontosabb, függetlenül a fotokatalizátor morfológiájától.
A lapszelektív rézleválasztás, és az ebből származó eredmények, valamint a rodamin B bomlási trendjei között efféle kapcsolat nem lelhető fel, tekintve, hogy a rodamin B lyukkal történő oxidációja csak egy lehetőség, s sokkal nagyobb jelentősége van a korábban ismertetett elektronátadási és gyökös folyamatoknak. Így más összefüggést kellett keresni, hogy a bizmut-vanadát tulajdonsága és az aktivitási trend közötti kapcsolat feltárható legyen. Erre szolgált a dinamikus fényszórás mérési módszere, melyet a következőben ismereteket.

5.3.5. Dinamikus fényszórás mérése

Néhány mikrométeres részecske eltérő módon viselkedik vizes közegben, mint más oldószerben, ami elősorban a részecskék Brown-féle mozgásának köszönhető. Ez alól a félvezető fotokatalizátorok sem kivételek. Ezt a tulajdonságot a dinamikus fényszórás technikájával mérhetjük, mely során a részecskék Brown-féle mozgásából eredő részecskediffúziót mérjük, amiből következtetni lehet a részecskék hidrodinamikai részecskeméretére és eloszlására. Tekintettel arra, hogy a katalizátorrészecskék a mikrométeres tartományban vannak, s a fotokatalitikus tesztek előtt homogén szuszpenziót hoztunk létre ultrahangos kád segítségével, így ez megalapozta a méréstechnika alkalmazását.

A DLS mérésekből elsőként a hidrodinamikai részecskeméret vizsgáltuk meg (43. A ábra), s érdekes módon 60 és 220 nm közötti értékek voltak mérhetők, szemben a pásztázó elektronmikroszkóppal meghatározott 5 µm körüli értékekkel. Ugyanakkor a BV2 és BV3 jelű mintáknál e méret alatt és felett is csúcstext (görbék) jelentek meg. Alacsonyabb értéken, 40-100 nm között, mely a részecskék kétszeres lemezvastagságával egyezik meg, míg az 5,5 µm körüli értéken, ami a primer krisztallitok kétszerese, tehát a részecskék aggregálódhattak. A BV5 esetében is három zóna volt detektálható (43. B ábra). Az első zóna a töredezett részecskékre utal, míg a harmadik az aggregálódott kristályoktól származik. A köztes zóna természetesen itt is az eredeti részecské hidrodinamikai részecskeméretét tükrözi.
43. ábra A bizmut-vanadát minták dinamikus fényszórás spektrum maximumai (A) és a BV5-ös minta hidrodinamikai részecskeméret eloszlási görbéi (B).

Ez azt jelenti, hogy a bizmut-vanadát részecskék szétesnek a mintaelőkészítés során használt kétórás ultrahangos kezelés alatt. Itt fontos megjegyezni, hogy a kétórás ultrahangos előkészítés nélkül nem volt lehetséges a mérés a részecskék gyors ülepedése miatt. Ugyanakkor a nagyobb kristályok szétesése nem változtatja meg a bizmut-vanadát részecskék viselkedését vízben, így a kapott eredmények jó eséllyel használhatók. A szintéziselegy pH értékének függvényében ábrázoltam a DLS-ből származtatott hidrodinamikai részecskeméreteteket, azaz az egyedi részecskék méreteloszlásmáximumai, ami jó egyezést mutatott a rodamin B bomlási trendjével (39. ábra). Azaz a hidrodinamikai részecskeméret növekedésével (nagyobb aggregációs fok) együtt nő a fotokatalitikus aktivitás is. Jóllehet, ez az eredmény ellentétes lehet azokkal az általános tendenciákkal, miszerint a magasabb diszperzitási fok nagyobb felületet biztosít, ami a stabil szuszpenzióknak köszönhető, de ennek más magyarázata is lehetséges. Mivel a rodamin B bomlása egyértelműen nem hozható kapcsolatba a (040)-ás kristálytani sík jelenlétével/mennyiségével, így feltételezhető, hogy e kristálylapnak szerepe van, de nem ez a legmeghatározóbb fotokatalitikus aktivitást befolyásoló részecsketulajdonság, mint az oxálsav esetében. Amint azt már korábban a bizmut-volframát esetében is bemutattam, a rodamin B látható fénnel történő megvilágítás hatására képes a félvezetőnek egy elektronat átadni, ezáltal gyorsítani önmaga degradációját. A legtöbb katalizátor esetében az
elektronátadási folyamatok megkönnyítik az egyedi részecskék aggregálódását (például titán-dioxid esetében [129]), ami a részecskék közötti elektronátvitelt feltételez. Jelen esetben azoknak a fotokatalizátoroknak a legnagyobb az aktivitása, amelyeknek a legmagasabb az aggregálódási foka (BV5).

5.3.6. A bizmut-vanadát fotokatalizátor stabilitásának vizsgálata

A bizmut-vanadát fotokatalitikus aktivitásának tesztelésekor, az oxálsavval végzett kísérletek során arra lettem figyelmes, hogy a fotokatalitikus tesztek végére az oldat színe a centrifugálást követően enyhén kékbe hajlott, míg a sárga bizmut-vanadát színe fakóbb sárga lett. Ebből kiindulva elvégeztem tesztörrozatot a BV1 jelű katalizátorral. A fotokatalitikus teszt során a korábbiakhoz hasonlóan 100 mg fotokatalizártort szuszpendáltam 100 mL 5 mM-os oxálsav oldatban, majd fél órán át sötétben kevertettem a szuszenziót. Az UV fényforrások felkapcsolását követően (6 × 6 W, λmax=365nm, 25 °C) egyenlő időközönként mintát vettem, majd a korábbiakhoz hasonlóan HPLC-vel mértem a visszamaradt oxálsav koncentrációját. 3 óra elteltével és a visszamaradt oxálsav és térhogat függvényében tömöny, 1 M-os oxálsav oldat segítségével visszaállítottam a kiindulási 5 mM-os oxálsav koncentrációt, majd még kétszer megismételtem a fotokatalitikus kísérletet. A harmadik kör után a megmaradt szuszenziót centrifugáltam, a port Milli-Q vízzel 5-ször mostam, majd 40 °C-on 24 órán át száritottam, végezetül mind az oldatot, mind a port megvizsgáltam.

Szemmel látható módon a harmadik kör végére az oxálsav oldat a szintelenből kékbe fordult át, ami vanadil ionok (VO2+) jelenléte érdekében utal. Ezt a megfigyelést KMnO4 oldat titrálásával erősítettem meg. A harmadik kör végére a sárga bizmut-vanadát fehér porrá alakult át, melyet röntgendiffrakciós vizsgálatnak vetettem alá, valamint a morfológiai változást SEM-mel vizsgáltam meg (44. ábra).

44. ábra A bizmut-vanadát átalakulása oxálsav jelenléteben UV-fény megvilágítás alatt.
A röntgendiffraktogramok alapján kijelenthető, hogy a bizmut-vanadát részben átalakult, az eredeti reflexiık intenzitásai leszökkentek, s ezzel egy időben új reflexiık jelennek meg, melyek bizmut-oxalát hidrátra jellemzőek (ICDD kártyaszám: 010-77-6175). Tekintettel arra, hogy a kékülési folyamat az oxálsav mennyiségével, és a megvilágítás idejével egyenes arányban változik, így kijelenthető, hogy az átalakulás folyamatos, s valószínűsíthetően a teljes anyag átalakulhat az idő előrehaladtával. Ezt erősíti meg a SEM felvétel is, amin jól látszik, hogy az eredeti morfológia teljesen megváltozik, ami szintén a teljes átalakulás lehetőségét erősíti meg.

A korábbiaktól eltérően UV fényforrást, mert a reakció UV megvilágítás alatt gyorsabban megy végbe, mint látható fény megvilágítása alatt. Mindemellett fontos megállapítás, hogy a bizmut-vanadát változatlan marad, ha az oxálsavval együtt sötétben kevertjük 8 órán át, míg a megvilágítás hatására (legyen az látható-, vagy UV-fény) egyértelmű változás játszódik le, tehát a fényforrás generálja az átalakulást. Éppen ezért a folyamatot nevezhetjük fotokémiai reakciónak, vagy fotokorróziónak is, mely a fotokatalizissel párhuzamosan játszódik le. Azaz, a fotogenerált elektron-lyuk pár egy része a vanadil ionok kiszorítására és az oxálsav beépülésére fordítódik, mely a megvilágítási idő előrehaladtával és az oxálsav pótlásával kedvezményezettebb lesz, mint a fotokatalízis.

Természetesen ez nem azt jelenti, hogy az oxálsav bomlása nem a korábban bemutatott módon játszódik le, hiszen az oxálsav gyorsabban degradálódik, mint ahogyan bizmut-vanadát átalakul. Így megkérőjelezhető a bizmut-vanadát oxálsavval szemben fotokémiai ellenállóképessége és az ismételt felhasználhatósága is.

6. Összefoglalás

Munkám során sikeresen állítottam elő hierarchikus rendszerű, egyedi anizotropikus lapokból álló és rózsaformába rendeződött bizmut-volframát mikrorészecskéket. Tanulmányoztam az adalékanyagok (tiokarbamid és Triton X-100) hatását és a szintézis idejét a keletkező mikrorészecskék tulajdonságaira. Elmondható, hogy a tiokarbamid elsősorban az anizotropikus lapok kialakulásáért és azok feltekeredéséért felelős, míg a felületaktív anyag az egyedi részecskék méretének csökkentésében, valamint a lapok közötti „szabad hézag” megnövelésében játszik szerepet, ám a kettő adalékanyag együttes használata szükséges a megfelelő hierarchiai szint kialakításához.

Az optikai tulajdonságok vizsgálata során megállapítható volt, hogy a tiokarbamid nem csak a szükséges morfológia kialakításáért felelős, hanem azért is, hogy a fotokatalizátor hatékonyabban nyelje el a látható fény fotonjait. A szintézisidő előrehaladtával 5 óráról 40 órára a katalizátor színe folyamatosan sötétedik, ám ennek ellenére a tiltottsáv-szélesség egyre inkább nő, ami arra enged következtetni, hogy a felületi hibahelyek száma is nő.

A fotokatalitikus aktivitás tesztelését egy festékanyag, a rodamin B molekula degradációja során vizsgáltam UV- és látható fény megvilágítása alatt. A látható fény felületen történő gerjesztés során ugyanazon katalizátor aktivabbnak bizonyult, mint UV gerjesztés során. Ennek oka a festékmolekula szerkezetében és tulajdonságainak keresendő. A rodamin B képes elnyerni a látható fényt, ezáltal a festékmolekula is gerjesztett állapotba kerül (π→π*), s az így létrejött elektronat átveszi a bizmut-volframát, amivel több reaktív gyök jön létre, s több rodamin B képes bomlani.

Infraösvény spektroszkópiával vizsgáltam a bizmut-volframát minták felületi szennyzettségét és a lehetséges szennyezések hatását a fotokatalízis hatékonyságára. Megállapítható volt, hogy bár az adalékanyagok bizonyos része felületi szennyezésként jelen van, de ez nem befolyásolja a bontás hatékonyságát. Ugyanakkor az infravörös spektroszkópiai eredmények bizonyították, hogy a fotokatalízis során nem csak a célmolekula, hanem egyidejűleg a visszamaradt adalékanyagok (ez esetben a visszamaradt tiokarbamid) is képesek fotokatalitikus úton bomlani. Fotoelektron spektroszkópiai megvizsgáltuk, hogy a visszamaradt tiokarbamid milyen formában van jelen a bizmut-volfram felületén. A mérések során egyértelművé vált, hogy a tiokarbamid a fő oxózója a felületi C-C kötésnek, melynek mennyisége a szintézisidő előrehaladtával nő. Ez magyarázhatja a katalizátor sötétedő színét is. A tiokarbamid bomlása és felületi beépülési
folyamata, így a C-C kötések mennyiségének növekedése tehát arányos a szintézisidő előrehaladtával, ami összefügg a fotokatalizátor felületi bizmut atomok oxidációs állapotának változásával, hisz a Bi$^{3+}$, Bi$^{5+}$-történő oxidációja során a plusz elektronok a szintézis alatt a szén redukciójára fordítódnak.

Az eddigi eredmények alapján nyilvánvaló vált, hogy a fotokatalitikus aktivitást nagyban meghatározza a bizmut-volfiramát mikromorfológiai sajátossága, ami kihatással van más fizikai-kémiai tulajdonságokra is, amit adalékanyagokkal befolyásolhatunk. Éppen ezért készítettem egy morfológiai sorozatot, melyet az adalékok szisztematikus változtatásával értem el. Ehhez a központi szénatom és a hozzá kapcsolódó kalkogén (O vagy S) közötti kettőskötés Hückel polaritását vettem alapul, hisz a változó funkciós csoportok és a hasonló szerkezet miatt ezzel a módszerrel számszerűsíteni lehetett az adalékanyagok tulajdonságait. Így két másodlagos sorozatot állítottam fel. Az elsőben (S_1) a szén-kalkogén kettőskötésen kívül a funkciós csoportokat változtattam, ezáltal módosítva a Hückel polaritásértéket, míg a másik csoportosításban (S_2) az oldallánc hosszát növelt, megtartva a többi funkciós csoportot. Ezen felül a Triton X-100 hatását szintén tanulmányoztam, hisz a felületaktív anyag kedvezően képes befolyásolni a morfológiát.

A fotokatalitikus aktivitás tesztelése során hasonló megállapítás volt tehető, mint korábban, tehát látható fény megvilágítás alatt több RhB alakult át, mint UV-fény megvilágítás alatt, ugyanakkor az ettől a trendtől való eltérés döntően meghatároza a további vizsgálatok irányát. A növekvő Hückel polaritásértékekkel csökkent a fotokatalizátorok aktivitása UV- és látható fény megvilágítása esetén, mindkét sorozatban, de ezt a tendet a korábbi kísérletek során használt felületaktív anyag megszünteti.

Így közvetett bizonyíték van a szintézis során használt adalékanyag Hückel polaritása és a fotokatalitikus aktivitás között, de tekintettel arra, hogy az adalékok csak a részecskék tulajdonságait befolyásolják, s a fotokatalizisben nem vesznek részt, így szükséges volt vizsgálni a Hückel polaritás érték és a többi fizikai-kémiai paraméter kapcsolatát annak érdekében, hogy egyértelmű bizonyítéket kapjunk az adalékanyagok közvetlen hatásáról.

A diffúz reflexiós spektrumok az első olyan eredmények, melyek minden kétséget kizáróan kapcsolatba hozhatók a Hückel polaritásértékkel, hiszen ez az érték egyenes arányban növekszik a fényelnyelési maximummal (S_1: 406 nm-ről 423 nm-re, S_2: 408-nm-ről 416 nm-re).

A mikromorfológiai tulajdonságok összehasonlítsa igencsak nehézkes, különösen a nagy mintaszám miatt. Sajnálatos módon a szakirodalom erre még nem talált egységes
módszert, így a morfológiai sajátosságok összehasonlítása megoldatlan. Éppen ezért kifejlesztettük egy eljárást, amivel a morfológiai tulajdonságokat számszerűsíteni lehet. Ennek alapjául a bizmut-volframát részecske rózsá formába történő rendeződése adta az alapot, így bevezettük az R$_{SDC}$ (Rose Similarity Decay Constant) számot, ami megmondja, hogy az adott részecske (a bemeneti feltételek teljesülése esetén) mennyire közeliíti meg a tökéletes rózsasformát. A számítás alapja a periodicitás (vagy felületi érdesség) volt, ami az egyedi anizotropikus lapok ismétlődését fejezi ki egy adott tengelyprofil mentén. Így a minták egyedi alakja összehasonlithatóvá vált. A TRX mentes minták esetében a periodicitás és az adalékanyag Hückel polaritásértéke között kapcsolat volt felfedezhető, ami bizonyítja, hogy adalékokkal remekül finomhangolható a keletkező bizmut-volframát morfológiája.

Tekintettel arra, hogy a TRX a szintézis során jobban definiált morfológiát eredményez, azaz a rózsasforma nagyobb valószínűséggel alakul ki, így az R$_{SDC}$ egyenlet alkalmazható. A rózsasforma megjelenése esetén egyértelmű összefüggés van a számolt R$_{SDC}$ értékek és a fotokatalitikus aktivitás között. A növekvő R$_{SDC}$ érték csökkenő fotokatalitikus aktivitást eredményez, tehát a nagyobb eltérés a tökéletes rózsasformától, kisebb fotokatalitikus aktivitást eredményez. Ez az első közvetlen és számszerűsített bizonyíték arra nézve, hogy a tökéletes rózsasforma (R$_{SDC}$=0) a legjobb morfológiai csoportosulás a fotokatalitikus aktivitás szempontjából.

Azonban az R$_{SDC}$ egyenlettel számszerűsített morfológiai tulajdonságok egyértelműen kapcsolatba vannak a fotokatalitikus aktivitással, függetlenül attól, hogy közel szabályos, szabályos rózsasforma alakul-e ki, vagy sem. Ha az R$_{SDC}$ értékét vesszük alapul, akkor közvetlenül kizárólag ez az egy morfológiai tulajdonság befolyásolja a fotokatalitikus aktivitást (egyéb fizikai-kémiai tulajdonságon túl). Az R$_{SDC}$ egyenlet alkalmazhatósága jó eséllyel adaptálható más, hasonló morfológiával rendelkező félvezető mikrokrystály esetében is, ha a bemeneti feltételek teljesülnek az egyenlet alkalmazásához.

Doktori disszertációim második felében egy másik bizmut-oxid alapú félvezető fotokatalizátor, a bizmut-vanadat alakíranyított előállításával foglalkoztam, mely során a szintéziselegen pH-jának változtatásával finomhangoltam a fotokatalitizisben kulesfontosságú (040)-ás kristálylap mennyiségét és arányát a többi kristálylaphoz képest. A fizikai-kémiai tulajdonságok jellemzését követően kétféle eltérő szerkezetű modellszennyező, a rodamin B és az oxálsav konverziója során vizsgáltam a bizmut-vanadat sorozat fotokatalitikus aktivitását látható fény megvilágítása alatt. Irodalmi adatokból ismeretes, hogy e két modellszennyező más-más mechanizmus szerint bomlik, így ebből kifolyólag a fotokatalizátorok aktivitása is eltér a két modellszennyező esetén. A fotokatalitikus tesztek
eredményei rámutattak arra, hogy csak az oxálsav aktivitási trendje korrelál a (040)-ás kristálylap reflexióintenzitásával. Éppen ezért szükség volt egy másik kémiai reakcióra, melyet alapvetően nem a fotogenerált „elektron-lyuk” pár migrációja és feldúsulása határoz meg, ám ezzel egyidejűleg mégis (040)-ás kristálylap mennyiségétől függhet. Így esett a választás a kristálylapszelektív rézleválasztásra, melyet egyszerű rézredukciónál értelmezt.

A rézleválasztást követő Raman spektroszkópia vizsgálatok megerősítették, hogy a (040)-ás kristálylap a legfontosabb kristálytani paraméter a bizmut-vanadát esetében, mely a fotokatalizisben kívül más kémiai reakcióban is kulcsfontosságú.

A DLS eredmények alapján kijelenthető, hogy az aggregálódási fok jól korrelál a rodamin B bomlási trendjével, s a magasabb aggregálódási fokkal rendelkező minták aktivitása nagyobb. Mindemellett az egyedi hidrodinamikai részekcsméret is kapcsolatba hozható a rodamin B bomlási trendjével.
7. Summary

During the present research, hierarchical rose-like bismuth tungstate microcrystals were successfully obtained, which were built up from individual anisotropic nanoplates. The crystallization time was optimized and the effect of the additives (thiourea, and Triton X-100) were investigated in detail.

Thiourea was found to be responsible for the formation of the anisotropic plates, while the applied surfactant (TRX) was responsible for decreasing the individual particle size and increasing the interparticle space between the individual nanoplates, but both additives were necessary to form the appropriate hierarchical microcrystal.

Examining the optical properties, it was found, that the thiourea was also responsible for those structural features for absorbing more effectively the visible light photons. The color of the catalysts darkened with longer synthesis time (5 h to 40 h), but the band gap increased, which suggested that the number of the surface defects was also increasing.

The photocatalytic activity was investigated by the decolorization of an organic dye, rhodamine B under UV- and visible light irradiation as well. All catalysts were more active under visible light irradiation than UV-light irradiation. This was due to the structure and properties of RhB, which can absorb the visible light. The dye becomes excited state ($\pi \rightarrow \pi^*$), and the dye can inject an electron into the conduction band of bismuth tungstate, which contributed to an overall increased photocatalytic efficiency.

Infrared spectroscopy was applied to investigate the surface contamination of bismuth tungstate samples, and its effect on the photocatalytic efficiency. Based on the IR spectra it was found that residual additives were anchored on the surface, but these contaminations did not affect the photocatalytic efficiency. Furthermore, the IR results showed, that the residual thiourea can be removed during the photocatalytic degradation process.

X-ray photoelectron spectroscopy was used to examine the surface of the bismuth tungstate samples. Based on the results, it was found that, thiourea was the major source for the C-C bonds formation on the surface, which increased with the synthesis time. This was also visible from the color of the samples. During the synthesis, a smaller fraction of the electrons originated from the bismuth oxidation (Bi^{3+} to Bi^{5+}) were used for the reduction of carbon.
It was shown, that the photocatalytic activity largely depended on the micromorphological characteristics of bismuth tungstate, which affected other physical-chemical properties as well. The microstructure of the crystals was fine-tuned using appropriate additive molecules during the synthesis process. Accordingly, a sample series was created by varying the structure of the applied additive molecules. The strategy was based on the so called Hückel polarity value of the central carbon-chalcogen (O or S) double bond. The latter was achieved by changing the functional groups which were directly linked to the mentioned carbon-chalcogen (O or S) double bond. Two sample series were created. In the first case, the chalcogen atom (O or S) and the functional groups were changed systematically, while in the second case, the length of an additional carbon chain was increased keeping other structural peculiarities unchanged. Furthermore, the effects of TRX was also investigated in both cases.

A similar tendency was observed during the photocatalytic tests, namely that more RhB was degraded under visible light irradiation compared to UV-light driven tests. The increasing Hückel polarity values were in direct relationship with the decrease of the photocatalytic activity under UV- and visible light irradiation in both series. Additionally, it should be noted that this trend was not observed if TRX was also applied during the synthesis process.

The DR-spectra were the first results, which were linkable with the Hückel polarity, showing a shifting of the dR/dλ absorption maxima in both series (406 nm to 423 nm; and 408 nm to 416 nm).

On the other hand, incorporating the micromorphological characteristics in explaining the activity trends were not unequivocal. Unfortunately, a general approach was also not available in the literature to quantify the morphology. Accordingly, a unique, novel method was developed to quantify the morphology. The starting point of this new approach was the rose-like shape of the bismuth tungstate particles. Then, the RsDC number (Rose Similarity Decay Constant) was introduced, which could define the shape proximity to a perfect rose of a particle (if all the input conditions were met). The base for the calculation of RsDC was the periodicity (or surface roughness), which represented the systematic repetition of the single anisotropic bismuth tungstate nanosheets within a single particle alongside an axis. With this method, the comparison of different crystal geometries was possible. In case of TRX-free samples, the periodicity and the Hückel polarity values were in close relationship with each other, which proved that the morphology of bismuth tungstate can be fine-tuned by the usage of specific additives.
A direct connection was found between the R_{SDC} values and the photocatalytic activity. The increasing R_{SDC} value was reciprocally proportional with the photocatalytic activity, which means, that the perfect rose-like shape ($R_{SDC}=0$) seems the best morphological approach in terms of photocatalysis. At the same time, the rose-like shape was non-essential to achieve high photocatalytic activity, however, if we applied the R_{SDC} equation to these samples, a similar trend was observed. Consequently, the R_{SDC} value was the only morphological and in the same time quantifiable parameter, which influenced the photocatalytic activity (above other physical and chemical properties). Furthermore, we believe that the R_{SDC} approach can be adapted to other semiconductors as well.

In the second part of the present work, another bismuth oxide-based semiconductor, shape-controlled bismuth vanadate photocatalysts were obtained. During the synthesis, the pH value was modified in order to fine-tune the (040) crystallographic plane, due to its importance in photocatalytic processes. The photocatalytic activity of the bismuth vanadate sample series was also investigated using two model pollutants (RhB and oxalic acid) degradation under visible light irradiation. From the literature it is known, that these two model pollutants follow a different degradation pathway. For this reason, the degradation efficiency of the catalyst was different in case of two pollutants, and only the oxalic acid degradation trends follow the (040) crystal facets presence.

Accordingly, another chemical reaction was needed, which did not depend on the photogenerated “electron-hole pairs” separation and migration but were dependent on the presence of (040) crystal facet. So, the crystal facet selective copper deposition was chosen.

The results provided by Raman spectroscopy verified, that the presence of the (040) crystal facet was crucial in case of bismuth vanadate, including photocatalytic processes, and other chemical reactions as well. Furthermore, it was found that the aggregation state in aqueous media of the catalysts was the key in explaining the photoactivity towards rhodamine B.
8. Köszönetnyilvánítás

Ezúton szeretném köszönetet mondani mindazoknak, akik elősegítették a doktori disszertációm megszületését. Elsősorban szeretném megköszönni Dr. Pap Zsoltnak a témavezetést, a szakmai segítséget, melynek hálá elsajátíthattam azt a tudást, amivel ez a dolgozat elkészülhetett. Köszönöm, hogy elméleti és gyakorlati segítségével hozzájárult a kutatómunka sikeres kimeneteléhez a megtervezéöstől az eredmények kiértékeléséig.

Köszönöm Dr. Hernádi Klára professzorasszonyának a lehetőséget, hogy a doktori képzést követően a doktorjelölti státuszom alatt is aktív szerepet vállalhattam a Környezetkémiai Kutatócsoport munkájában, ezáltal teljessé tehettem a doktori disszertációm.

Hálás vagyok a Környezetkémiai Kutatócsoport minden egyes tagjának, hogy jelenlétéükkel és segítőkész hozzáállásukkal segítették a munkámat, s megteremtették az optimális munkakörülményeket és biztosították a családias légkört. Külön köszönet illeti Gyulavári Tamás doktorjelöltet, aki a pázsztázó elektronmikroszkópos felvételek elkészítésében segédkezett.

Szintén köszönet illeti a kolozsvári Babeş-Bolyai Tudományegyetem keretein belül működő Interdisciplináris Bio-Nano Tudományok Intézetének (ICEI) tagjait, valamint az ott dolgozó diákokat, hogy mindvégig segítettek a külföldi mérések elvégzésében.

Külön szeretném megköszönni Dr. Magyari Klárának az infravörös méréseket és a kiértékelésük során nyújtott segítséget, valamint Dr. Almási Enikőnek a Raman spektroszkópiai méréseket és azok kiértékelését.

Köszönöm Családomnak és szerető Páromnak, hogy kiálltak mellettem és biztató szavaikkal mindvégig támogattak engem.

Szeretném megköszönni az anyagi támogatást a partnereknek, hiszen a hozzájárulásuk nélkül szintén nem jöhetett volna létre ez a dolgozat. Köszönöm a svájci hozzájárulásuk (SH/7/2/20), az indiai-magyar együttműködésnek (TÉT_15_IN-1-2016-0013), valamint a GIINOP pályázatnak (GIINOP-2.3.2-15-2016-00013), hogy biztosították a laboratórium működését. Hálás vagyok a Campus Hungary (TÁMOP-4.2.4.A/2-11/1-2012-0001) és a Campus Mundi ösztöndíjaknak (EFOP-3.4.2-VEKOP/15-2015-00001), hogy az anyagi támogatásukkal számos külföldi tanulmányúton és nemzetközi konferencián vehettem részt.

Végezetül szeretném megköszönni Alexandra Elbakyan-nak, hogy munkáságával lehetővé tette az irodalmi háttértudásom bővítését.
9. Irodalomjegyzék

20. Miyachi, M. Physical Chemistry Chemical Physics, 2008. 10, 6258-6265
38. Clavero, C. Nature Photonics, 2014. 8, 95
51. Huang, H., et al. Applied Catalysis B: Environmental, 2017. 219, 526-537
71. Gábor, V. Doktori Disszertáció, 2014,
95. Huang, H., et al. RSC Adv., 2014. 4, 41219-41227
112. Ono, L.K., et al. ACS Appl Mater Interfaces, 2017. 9, 30197-30246
113. Aurivillius, B. Arkiv for Kemi, 1950. 1, 463-480
120. Hey, M.B., Frederick Allen. Mineralogical Magazine, 1938. 25, 14
152. Dreyer, G.T., E. Pfalz. Neues Jahrbuch für Mineralogie, Monatshefte, 1981, 4
158. August, F. Journal für praktische Chemie, 1871. **4**, 5
207. Tränkle, E. Applied Optics, 1998. 37, 1495
209. Krisztina, V. Doktori Disszertáció, 2016,
211. Song, J., et al. Acs Catalysis, 2018. 8, 5952-5962
10. Mellékletek

2. számú melléklet: A különböző adalékanyagokkal előállított bizmut-volframátok fotokatalitikus aktivitása UV- és látható fény megvilágítása mellett.

<table>
<thead>
<tr>
<th>Mintanév</th>
<th>Reakciósebesség K_{UV} (perc^{-1})</th>
<th>Reakciósebesség K_{Vis} (perc^{-1})</th>
<th>Fajlagos felület (m²/g)</th>
<th>Felületre normalizált konverzió - UV (µg/m²/óra)</th>
<th>Felületre normalizált konverzió - Vis (µg/m²/óra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAA</td>
<td>0,0032</td>
<td>0,0070</td>
<td>27</td>
<td>1,9</td>
<td>2,4</td>
</tr>
<tr>
<td>TAA+TRX</td>
<td>0,0050</td>
<td>0,0061</td>
<td>32</td>
<td>1,8</td>
<td>1,9</td>
</tr>
<tr>
<td>TU</td>
<td>0,0032</td>
<td>0,0050</td>
<td>23</td>
<td>2,0</td>
<td>2,5</td>
</tr>
<tr>
<td>TU+TRX</td>
<td>0,0028</td>
<td>0,0038</td>
<td>15</td>
<td>2,7</td>
<td>3,3</td>
</tr>
<tr>
<td>AA</td>
<td>0,0025</td>
<td>0,0038</td>
<td>9</td>
<td>4,5</td>
<td>5,6</td>
</tr>
<tr>
<td>AA+TRX</td>
<td>0,0014</td>
<td>0,0035</td>
<td>11</td>
<td>2,9</td>
<td>4,4</td>
</tr>
<tr>
<td>U</td>
<td>0,0030</td>
<td>0,0049</td>
<td>10</td>
<td>4,6</td>
<td>5,7</td>
</tr>
<tr>
<td>U+TRX</td>
<td>0,0023</td>
<td>0,0267</td>
<td>16</td>
<td>2,5</td>
<td>4,2</td>
</tr>
<tr>
<td>Ac</td>
<td>0,0040</td>
<td>0,0056</td>
<td>8</td>
<td>6,2</td>
<td>7,4</td>
</tr>
<tr>
<td>Ac+TRX</td>
<td>0,0015</td>
<td>0,0078</td>
<td>12</td>
<td>2,6</td>
<td>5,5</td>
</tr>
<tr>
<td>G</td>
<td>0,0005</td>
<td>0,0060</td>
<td>9</td>
<td>2,4</td>
<td>6,7</td>
</tr>
<tr>
<td>G+TRX</td>
<td>0,0046</td>
<td>0,0091</td>
<td>11</td>
<td>4,9</td>
<td>6,4</td>
</tr>
<tr>
<td>A</td>
<td>0,0014</td>
<td>0,0037</td>
<td>13</td>
<td>2,5</td>
<td>3,9</td>
</tr>
<tr>
<td>A+TRX</td>
<td>0,0031</td>
<td>0,0063</td>
<td>9</td>
<td>5,1</td>
<td>7,0</td>
</tr>
<tr>
<td>FA</td>
<td>0,0034</td>
<td>0,0033</td>
<td>9</td>
<td>5,3</td>
<td>5,2</td>
</tr>
<tr>
<td>FA+TRX</td>
<td>0,0016</td>
<td>0,0057</td>
<td>10</td>
<td>3,3</td>
<td>6,0</td>
</tr>
<tr>
<td>TRX</td>
<td>0,0030</td>
<td>0,0077</td>
<td>20</td>
<td>2,4</td>
<td>3,5</td>
</tr>
<tr>
<td>PURE</td>
<td>0,0013</td>
<td>0,0034</td>
<td>14</td>
<td>1,7</td>
<td>3,3</td>
</tr>
</tbody>
</table>