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1. INTRODUCTION 

The drug delivery by inhalation is a very attractive form of alternative application routs as 

the lungs offer a lot of advantages both for local and systematic treatment. In case of local 

treatment the clinical response is very quick as the drug enters directly at the site of 

action. However, all the metabolizing enzymes existing in the liver can be found in the 

lungs, it is considered as low enzymatic environment as it is 5-20 times lower than in the 

liver. Lower drug concentration is needed for the maximal therapeutic effect which is 

scaling down form milligrams to micrograms compared to oral doses. 

The most of the commercially available inhalation systems are used for local treatment of 

lung diseases (asthma, COPD, pulmonary fibrosis), but several new approaches reach the 

clinical trials developed for systematic treatment (e.g. diabetes, cancer). 

Dry powder inhalers (DPIs) have been among the fastest developing inhaler forms in the 

past decades. Beside the classical carrier-based formulation (carrier + micronized APIs + 

additional excipients), the carrier-free (APIs + excipients) systems are also gaining the 

attraction of the new researches. These formulations do not need to mix with a bigger 

separate carrier to deliver the API to the lungs, but the innovative preparation methods 

and excipients together create the inhalable microparticles. The carrier-free formulations 

have special morphology/structure and the better aerodynamic properties allow to deposit 

in the targeted area in the lungs. Many special structured particles can be listed, which can 

be classified in two main categories: non-porous (spheroids, coated particles, Pulmosol™) 

and porous formulations (PulmoSphere™, Large porous particles, Nano-porous 

microparticles). Both formulation types aimed to reduce the intrinsic cohesion of the 

particles, increase dispersion and delivery from the inhaler, thus reducing the side effects 

of particles deposited in the upper airways. For the better aerodynamics, formulations 

involve the use of morphology stabilizers (PVA, sodium hyaluronate and other polymers), 

aerosolization enhancers (amino acids, mannitol), or density modifiers (ammonium 

bicarbonate, vaporing solvents and other pouring agents). The efficacy of the 

formulations is most commonly tested with Ph. Eur. official in vitro assessments 

(Andersen cascade impactor or Next generation impactor). Beside, novel in silico 

modelling, using realistic parameters (anatomical properties, spirometry data of patients, 

particle properties), are also available for the aerodynamic characterisation of inhalable 

pharmaceuticals and composition optimization of novel formulations. 
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2. LITERATURE BACKGROUND OF THE RESEARCH WORK 

2.1. DPI characterisation 

For pulmonary drug delivery nebulizers, pMDIs and DPIs are the commonly used oral 

inhalation products (Hindle, 2008; Traini et al., 2013; Moon et al., 2019). In recent 

decades the use of DPIs can be observed thanks to their advantages: 

 stability: the dry powder form is more stable and easier to handle than liquid forms, 

 ease of use: overcomes the inhalation coordination issues associated with the other 

inhalation forms (pMDI), 

 environmental friendly: propellant-free, and 

 safety: normally DPIs do not require sterilization (Anderson, 2005). 

For DPI formulation two main routes can be described: carrier-based and carrier-free 

formulation methods (Fig. 1). A carrier-based formulation is made by blending a 

micronized (1–5 µm) API with 50–200 µm sized inert carrier (e.g. lactose, mannitol). The 

appropriate API distribution on the surface of the carrier results in a more easily metered 

(with reduced cohesion) product with sufficient bulk for inhalation (Colombo et al., 

2013). The product is separated during inhalation: the API reaches the lungs, while the 

large sized carrier deposits in the upper airways (Hoppentocht et al., 2014). When a 

carrier-free formulation is prepared, the API is formulated with the appropriate excipients 

together creating an inhalable microcomposite, without any separate carrier (Chvatal et 

al., 2016). The carrier-free formulation is aimed to reduce the intrinsic cohesion of the 

particles, increase dispersion and delivery from the inhaler. 

 

 

Figure 1: Classification of DPI products based on the formulation type: carrier-based 

and carrier-free formulations (Chvatal et al., 2016). 
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Although the main researches focus on the formulation of high efficacy carrier-free DPIs, 

just a few products were approved commercially (Table I). The task of pharmaceutical 

technology is the development of innovative formulations for carrier-free products 

passing clinical trials and reaching the patients. These new carrier-free formulations are 

mainly used for local treatment (e.g. in cystic fibrosis, COPD, pulmonary inflammation 

caused by bacterial infections, lung cancers) and might as well be used for systemic 

therapy provided that the active agent incorporated is well-absorbed from the mucous 

membrane of the airways (Weers et al., 2015; Kondo et al., 2018). The new formulations 

under development involve different types of active drugs, such as antibiotics, proteins, 

peptides or other large molecules, either soluble or insoluble in water (Belotti et al., 2015; 

Healy et al., 2014; Lam et al., 2013). 

 

Table I: Examples for commercially available DPI products (NIPN online page). 

Product/Inhaler/Company API 
Main 

excipients 
Indication 

Carrier-based formulations  

Bufomix Easyhaler 

(Orion Corporation) 

budesonide + 

formoterol 
lactose carrier asthma 

Spiriva Handihaler 

(Boehringer Ingelheim 

International) 

tiotropium-bromide lactose carrier COPD 

Onbrez Breezhaler 

(Novartis Europharm) 
indakaterol lactose carrier COPD 

Foster NEXThaler 

(Chiesi) 

beclomethasone 

dipropionate + 

formoterol 

hemifumarate 

lactose carrier +  

magnesium 

stearate 

COPD, 

asthma 

Seretide Diskus 

(GlaxoSmithKline) 

salmeterol xinafolate + 

fluticasone propionate 
lactose carrier COPD 

Carrier-free formulations 

Afrezza Dreamboat 

(MannKind Corp) 
insulin 

diketopiperazine 

fumarate 
diabetes 

TOBI Podhaler 

(Novartis) 
tobramycin 

DSPC + 

perflubron 

CF with 

Pseud. Aerug. 

infection  

Pulmicort Turbuhaler 

(AstraZeneca) 
budesonide - 

COPD, 

asthma  

Brycanil Turbuhaler 

(AstraZeneca) 
terbutaline - asthma 

Abbreviations in the table: DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; perflubron: 

perfluorooctyl bromide; Pseud. Aerug.: Pseudomonas Aeruginosa 
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2.1.1. Advantages of carrier-free DPI 

Carrier-free DPIs have the benefit to overcome carrier-associated formulation and 

technological problems (Zhou et al., 2012): 

 Strong or weak binding: The aerosolization of the carrier-based formulations depends 

on the characteristics of the micronized API + larger carrier (morphology of the 

particles, moisture uptake and aggregation) and the link between the two. If the link 

is weak, the API detaches before inhalation (during storage), while with strong 

binding the API remains on the surface of the carrier and together deposit in the 

upper airways. Both processes reduce the effective deposition as the API will not 

reach the site of action (Pilcer et al., 2010). The aerosolization properties of carrier-

free microcomposites will depend just on the characteristics of the microcomposites 

(containing API and the needed excipients), as these particles form a complex 

structure together (microcomposite). 

 Low inhalation flow rate: Without the appropriate inhalation manoeuvre (inhalation 

time and flow rate, breath-hold time) the turbulent air flow may not be enough to 

detach the drug particles from the surface of the carrier and together they deposit in 

the upper airways, thus causing side effects. Thanks to the better aerosolization 

properties of carrier-free formulations, particles follow the inhalation flow till the 

lower airways even at lower inhalation or insufficient breath-hold time (Pilcer et al., 

2010; Farkas et al., 2017). 

 Sugar as carrier: The carriers used for DPI preparations larger than the respirable 

range (50–200 µm) deposited in larger amount in the mouth and upper throat can 

cause candida infections (Pilcer et al., 2010). However, carrier-free DPIs have no 

separate detachable fraction the API + excipients reach the site of action together. 

 

2.1.2. Carrier-free DPI formulation techniques 

In all carrier-free formulations, special additives are applied in the particle designing 

phase to make the microcomposites easy to handle during manufacturing, to implement 

an enhanced aerosolization property for the inhalation and to reduce the cohesion forces 

between particles without using large carriers (Healy et al., 2014; Weers et al., 2015). 

The most important advantages of these carrier-free DPI formulations are the low 

adhesion, special morphology and low density of the particles, which improve the 

aerosolization properties, thus the lung deposition and the efficacy of the powders. 



5 

 

Although several carrier-free formulation techniques can be listed, the basic classification 

is non-porous or porous formulations (Fig. 2). 

 

 
Figure 2: Classification of the most commonly used carrier-free formulations (Healy et 

al., 2014; Chvatal et al., 2015).  

 

2.1.2.1. Classification of carrier-free DPI formulations  

As mentioned above, the carrier-free formulations can be divided into two main parts: 

non-porous (spray dried particles (Lechuga-Ballesteros et al., 2008; Islam et al., 2008), 

spheroids (Yang et al., 2012), coated particles (Hoe et al., 2014), Technosphere™ 

(Pfützner et al., 2005), PulmoSol™ technologies (White et al., 2005)) and porous 

formulation methods (LPPs (Patel et al., 2012; Meenach et al., 2012), PulmoSpheres™ 

(Weers et al., 2014, Duddu et al., 2002), NPMPs (Lorraine et al., 2009; Amaro et al., 

2011), LPNPs (Pison et al., 2006; Tsapis et al., 2002) (Fig. 2). 

Non-porous formulations are generally dense structured particles with geometric size in 

the inhalable 1-5 µm range. Innovative formulations by spray drying can be produced to 

create the special structure and the appropriate morphology of the API both for carrier-

based and for carrier-free formulations (Tsapis, 2014). The formulation of stabile 
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structured porous formulations like LPPs may be a challenge for pharmaceutical 

technology, to formulate larger than 5 µm geometric sized particles (5-15 µm) with lower 

than 0.25 g/cm
3
. Besides better aerodynamics, porous particles are less phagocyted and 

cleared from the lungs, which makes them advantageous for local treatment (Gervelas et 

al., 2007). Pouring agents will increase flowability with a hollow/porous structure 

forming effect, by evaporating from the wet droplet and creating holes in the dry 

particles. Many formulation strategies have been developed for both non-porous and 

porous formulations. Most of them utilize bottom-up techniques, such as supercritical 

solvent technology, spray freeze drying or spray drying (Gradon et al., 2014). The newest 

DPI researches report about several high potency carrier-free formulations prepared with 

spray drying. It has been widely used in DPI production because it is scalable and offers 

an easily controlled particle formulation (Sarrate et al., 2015). It is also mentioned by 

FDA as process for achieving a uniform distribution of the drug substance in the 

formulation (FDA guidance, 2018). Spray dried particles become micronized and obtain 

appropriate morphology for inhalation. During spray drying, the density and the porosity 

of the particles can be modified, too. Using agents with high diffusion coefficient (when 

Pe <1) or pouring agents (ethanol and other volatile liquids or ammonium bicarbonate) 

reduces the density of dried particles (Feng et al., 2011) (Fig. 3). Pe number is dependent 

on the evaporation rate and the diffusion coefficient of the primal solution as described in 

the paper of Vehring et al: during drying, the API + excipients distribution depends on the 

diffusion rate in the droplet (Vehring at al., 2008; Weers et al, 2014). 

 
Figure 3: Droplet drying mechanisms affecting the porosity, density and shape of the 

carrier-free DPI particles. 

Drying procedure 

Homogeneous drying 

Porous 

Wet 

droplet 
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2.1.2.2. Excipients and technologies used for carrier-free DPI production 

The physicochemical, and microbiological properties of the excipients should be within 

an appropriate limit, range, or distribution to ensure the desired product quality (Buttini et 

al., 2018); for example, the physicochemical properties of the APIs and excipients, and 

their interactions (e.g., densities, amorphous or crystalline forms, flow properties, 

adhesive and cohesive properties) (FDA guidance, 2018). To reach the required 

aerosolization performance, many types of excipients are used for the formulations 

(Moon et al., 2019) (Table II). 

 

Table II: Examples for the most widely used excipients for carrier-free DPI formulations. 

Type Examples Function Reference 

Amino acids 

D or L-leucine 

Trileucine 

Isoleucine 

Glycine 

Alanine 

Dispersity  increase 

Aerosolization 

enhancer 

Minne et al., 2008 

Prota et al., 2011 

Simon et al., 2016 

Polymers 

PLGA 

Sodium hyaluronate 

Chitosan 

PVA 

PVP 

PEG 

Matrix 

Coating 

Stabilizing agent 

For sustained release 

 

Tewes et al., 2010 

Yang et al., 2012 

Iskandar et al., 2009 

Martinelli et al., 2017 

Lipids 

DPPC 

PC 

DMPC 

DSPC 

Matrix 

Coating 

Absorption enhancer 

Encapsulation 

Scalia et al., 2013 

Pomázi et al., 2013 

Mehta, 2016 

Lam et al., 2013 

Poring 

agents 

Ethanol 

Ammonium carbonate 

or bicarbonate 

Perfluorooctyl bromide 

Density decrease 

Aerosolization 

enhancer 

For porous particles 

Dellamary et al., 2000 

Ogienko et al., 2017 

Weers et al., 2014 

Other 

excipients 

Mg stearate Moisture protection 
Parlati et al., 2009 

Yu et al., 2018 

Chitosan Fine carrier Makhlof et al., 2010 

DKPF Fine carrier 
Angelo et al., 2009 

Kaur et al., 2008 
Abbreviations in the table: Poly(lactic-co-glycolic acid) (PLGA), Polyvinyl alcohol (PVA), Poly-

vinyl-pyrrolidone (PVP), Polyethylene glycol (PEG), Dipalmitoyl phosphatidylcholine (DPPC), 

Phosphatidylcholine (PC), Dipalmitoyl phosphatidylcholine (DMPC), Diketopiperazine fumarate 

(DKPF), perfluorooctyl bromide (perflubron), Distearoylphosphatidylcholine (DSPC) 
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Leucine analogues are among the wieldiest used additives to increase the aerosolization 

behaviour of the particles (Vanbever et al., 1999; Prota et al., 2011). Leucine increases 

the dispersity of the particles and can also form thin layers on the surface of an active 

ingredient to decrease the surface energy (cohesive and adhesive forces) between particles 

(Vehring et al., 2008; Raula et al., 2010). It was also demonstrated that L-leucine (above 

20 w/w% content) recrystallizes during spray drying, covering the surface of the particle 

and protecting it against moisture (Li et al., 2016). 

Polymers are used both for non-porous and porous particle formulations for many 

reasons. The suitably chosen polymer can function as a matrix, such as the widely used 

PLGA (poly-lactic-co-glycolic acid), to carry the active ingredient(s) (Yang et al., 20012; 

Liang et al., 2015). However, PLGA can only be processed in organic solvent, the newest 

researches presented no or very low cytotoxic effect of these formulations (Fatal at al., 

2009). PVA and PVP were used to cover the surface of the particles and decrease the 

cohesion forces between the particles which tend to agglomerate (Pomázi et al., 2013). 

Biodegradable polymers, such as sodium hyaluronate (biodegradable in the alveolar 

macrophages), are also used in the carrier-free DPI formulation techniques. Hyaluronate 

can be used in pulmonary drug delivery for drug targeting, due to its mucoadhesive and 

structure stabilizing effect (Cantor et al., 2004; Zhou et al., 2003). It is also can be used 

as API: innovative formulations by spray drying are used to implement high efficacy for 

dry powder hyaluronate products (Martinelli et al., 2017). 

An innovative trend in carrier-free formulation, besides non-porous particles, is porous 

particle formulation. Particles with low density have better flowability and can be 

delivered to the lung more easily with higher deposition (Bosquillon et al., 2001; Watts et 

al., 2013). The value is not clearly established, but most of the studies consider the DPI as 

”low density” from a tap density around 0.4–0.1 g/cm
3 

or lower (Ogienko et al., 2017; 

Ógáin et al., 2011; Cruz et al., 2011). With low density formulation the geometric size 

can range from 5-15 µm (above the easily inhalable size range), as low density and 

special morphology result in an aerodynamic diameter between 1–5 µm, suitable for 

inhalation and for the appropriate lung deposition (Healy et al, 2014). Special structured 

porous particles can be obtained by using a porogen agent (e.g. volatile liquids, 

ammonium carbonate or bicarbonate) in primary solutions or emulsions (Edwards et al., 

1998). The porogen evaporates quicker than the dispersion phase dries, leaving holes in 

the interior of the larger sized particles (N’Guessan et al., 2018; Pham et al., 2013). 
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2.2. Determinants of effective inhalation and carrier-free DPI deposition 

Besides the physiological advantages of the lungs, several other physical properties have 

a significant effect on the final effectiveness of the local therapy. The caused influence 

should be taken into consideration during the particle formulation process. Determinants 

of effective inhalation (Yang et al., 2014; Farkas et al, 2015; Demoly et al., 2014): 

 aerodynamics of the powder (flowability, aggregation), 

 particle characteristics (size, morphology, density, hygroscopicity), 

 breathing pattern (inhalation, exhalation, breath-hold time, inhalation flow rate) and 

 inhalation device type (multi or single dose, resistance of the device, structure). 

 

2.2.1. Aerosolization dynamics of the inhaled DPI particles 

Particles reaching the airways follow different deposition mechanisms influenced by their 

size, shape, density etc. These mechanisms are impaction, sedimentation and Brownian 

diffusion (Fig. 4). In the first 10 generations of the airways (upper airways) impaction is 

the most significant deposition mechanism. It usually influences the early deposition of 

the particles larger than 10 µm in the extrathoracic areas. Impaction is also influenced by 

the velocity of the inhalation flow (Colombo et al., 2013). Particles between 1–10 µm 

settle by a gravity-dependent progress, called sedimentation. Sedimentation is the most 

important mechanism of effective drug inhalation and deposition as it can be influenced 

(besides the particle characteristics) by the inhalation mechanism The longer the breath-

hold time is, the longer time the particle has for deposition controlled by gravity forces. 

While particles smaller than 1 µm move with an irregular motion (Brownian diffusion) 

caused by the collision of the small particles and the air molecules (Chvatal et al., 2016). 

 

 
Figure 4: Deposition mechanisms in the airways (Chvatal et al., 2016). 
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2.2.2. Aerodynamic testing of DPIs 

2.2.2.1. In vitro aerodynamic measurements 

By aerodynamic properties we mean the flowability characteristics of the inhaled 

particles: FPF and MMAD are the most widely used in vitro values. FPF is defined as the 

mass of the active ingredient consisting of particles having an aerodynamic diameter of 

less than 5 µm, as under this size range particles reach and deposit in the lower airways 

well (Eur. Ph. Online 9.6). The aerodynamic diameter is influenced by the inhalation 

flow rate, density, size and shape of the particle. It usually differs from the geometric 

diameter, thus the real size of the particle during inhalation is expressed with the MMAD. 

For an inhalable and well deposited powder, the MMAD should be in the 1–5 µm size 

range (Colombo et al., 2013). Besides FPF and MMAD, the fine particle dose (FPD), EF 

or emitted dose (ED), and GSD can also be calculated which give useful information 

about the flowability of the powder (Hamishehkar et al., 2012). A larger GSD implies a 

longer large particle size tail in the distribution (Musante et al., 2002), while GSD for an 

ideal distribution would be 1 and indicates a uniform aerosol (Fig. 5). 

Different statistical calculations and interpolation methods can be used for the 

determination of these aerodynamic properties. The widely used one is the interpolation 

from a log-probability-scale plot: cumulative percentage undersize against the log of the 

cut-off diameter on each stage (Colombo et al., 2013) (Fig. 5). 

 

 
Figure 5: Collection-efficiency curve used for the aerodynamic property calculation. 
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In the European Pharmacopeia four multi-stage impactors are listed as official for 

aerodynamic property analysis (Eur. Ph. Online 9.6), namely the Twin-stage impinger - 

glass impinger (apparatus A), the MSLI (apparatus C), the ACI (apparatus D), and the 

NGI (apparatus E) (Fig. 6) (Wong et al., 2010). The glass impinger is a simple device 

designed for 60 L/min inhalation flow rate simulation and it is quite inefficient in the 

determination of aerodynamic size distribution. The most effective are the ACI and NGI 

which function with a vacuum pump and flow meter to create the optimal flow rate 

through the stages. The same induction port can be used for all, and they are suitable for a 

flow rate in the range of 28.3–100 L/min, modelling different inhalation profiles 

(Colombo et al., 2013). 

 

 

Figure 6: The structure of the three impactor types most commonly used for aerodynamic 

size distribution and deposition assessments (Eur. Ph. Online 9.6). 

 

The most widely used devices for DPI testing are the ACI and the NGI. There are many 

structural differences between these three impactors, but studies showed that the 

comparison of aerodynamic measurements is quite the same with different devices and 

drugs also (Taki et al., 2010; Yoshida et al., 2016). As the presented study was measured 

with ACI, this will be discussed in detail. For the DPI measurements the Pharmacopeia 

recommends the use of 30 L/min (28.3 L/min) inhalation flow rate or pressure drop of 4 

kPa (Taki et al., 2010). For the DPI measurements a pre-separator can be used equipped 

before the stages to collect the larger carrier particles during inhalation, especially if 

carrier-based DPIs are measured (to collect the separated 50-200 µm carriers). The 

collection plates of the ACI should be covered with some surfactants to avoid particles 

(throat) 

Mouthpiece 
Mouthpiece 

=filter 
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sweeping away, thus making the parallel measurements more reproducible. On the lowest 

filter stage must be used a filter which can collect particles under 1 µm and protects the 

submicron particles pollute the measuring room.  

 

2.2.2.2. In silico aerodynamic modelling 

The in silico simulations can be performed by the latest version of the Stochastic Lung 

Deposition Model, which is a whole-lung deposition model originally developed by 

Koblinger and Hofmann (Koblinger et al., 1985; Hofmann et al., 2006). In the Stochastic 

Lung Deposition Model, the particles are tracked from their inhalation until they deposit 

in the airways or leave the airways by exhalation. The model computes the fraction of the 

particles deposited in each anatomical region of the respiratory system (extrathoracic, 

bronchial and acinar) and the exhaled fraction, too (Farkas et al., 2017). The diversity of 

airway anatomical characteristics used in the modelling (airway lengths and diameters, 

branching and gravity angles) is described mathematically by probability density- and 

correlation functions. The input parameters of the deposition model include the inhalable 

particles properties and the breathing characteristics of the patient (Table III) (Farkas et 

al., 2015). 

 

Table III: Primary inputs of the in silico deposition model (table from Farkas et al., 

2015). 

Breathing parameters Aerosol parameters  

functional residual capacity particle density  

inhaled volume  
size distribution type (monodisperse or 

polydisperse)  

inhalation time  
particle size (if monodisperse, or MMAD 

and GSD if polydisperse)  

breath-hold time  number of size intervals (if polydisperse)  

exhalation time  weights for each interval (if polydisperse)  

breathing mode (mouth/nose)  particle shape (spherical or not)  

particle inhalation mode (uniform/bolus) shape factor (if not spherical)  
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2.2.2.3. Combination of the in vitro and in silico modelling 

Application of both modelling allows for a more exact characterization of the 

aerodynamic properties of the samples and for specifying the correlation between the two 

procedures. Both the in vitro and in silico modelling have advantages (Fig. 7) and are 

useful for characterizing the aerodynamic behaviour of inhalable products. These 

techniques can be used as stand-alone methods but also to compensate for the 

disadvantages of the other method. In vitro measurements may provide input data (size 

distributions, MMAD, GSD, emitted dose) numerical modelling of airway deposition 

distribution of the inhaled aerosol drugs. 

The breath-hold time after the inhalation of the drug, which is an input parameter of the 

deposition model, is an important factor influencing the amount of drug depositing in the 

airways (Farkas et al., 2017). It is clearly demonstrated that the length of the breath-hold 

after inhalation has significant impact on the deposited fraction of the particles (Horváth 

et al., 2017). However, this parameter is not taken into consideration during in vitro 

deposition measurements. By combining in vitro and in silico techniques the effect of this 

parameter can be accounted for. As mentioned before, the outputs of the in silico model is 

the fractions of drug doses deposited in the whole respiratory tract and in distinct regions 

of the airways (extrathoracic, lung and exhaled value) (Kerekes et al., 2013). Airway 

deposition of several commercially available DPIs and pMDIs were simulated by the 

Stochastic Lung Deposition Model (Jókay et al., 2015; Jókay et al., 2016; Farkas et al., 

2015), which was previously validated against in vivo deposition data available in the 

open literature. 

 

 
Figure 7: Stochastic Lung Model advantages compared to in vitro aerodynamic testing 

(ACI) (Chvatal et al., 2017). 
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3. AIM OF THE WORK 

The aim of this PhD work was to prepare and characterise innovative carrier-free DPI 

formulations designed for local pulmonary drug delivery. In our institute, previous work 

on inhalable meloxicam (MX) microcomposite preparation by the pre-suspension spray 

drying method was reported (Pomázi et al., 2011; Pomázi et al., 2013). The prepared 

inhalable particles have good aerodynamic properties for a possible local treatment of 

COPD or other lung inflammatory diseases. 

● Therefore we aimed to evaluate a new “spray drying from solution” technology, 

where MX is dissolved in aqueous solution, without using any organic or health 

harming solvents. This innovative solution formulation was achieved with two 

technically feasible strategies: 

○ first, with the use of the newly patented (nr.: WO2006064298A1) water-soluble 

salt form of MX, meloxicam potassium (MXP), 

○ second, with increase of the water solubility of MX with a method that can be 

incorporated for spray drying. 

● We planned to establish the similar effects of MXP and MX with cell viability 

assessment carried out on A459 lung epithelial cancer cell line. 

● For the formulations we aimed to use the spray drying method (recommended by the 

FDA), which is easily scalable, controllable and preferred by the industry: 

○ the spray drying properties were developed for two types of spray drying devices 

(Büchi B-191 and Büchi B-290) for the two different types of formulation 

techniques. 

● We aimed to evaluate carrier-free DPI formulations with two different spray drying 

technologies and we followed the most important aspects and innovations for valuable 

results (Fig. 8): 

○ the planned non-porous formulations containing MXP aimed to have a narrow 

size distribution in the inhalable 1–5 µm range and spherical morphology, while 

○ the planned porous formulations (LPP) containing MX also aimed to have a 

narrow size distribution and spherical-like morphology, but with a particle size 

larger than 5 µm and density lower than 0.20 g/cm
3
. 

○ For both formulations the appropriate excipients were used to enhance 

aerosolization or to create a special structure of the particles. 
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● A comparison study was made regarding spray drying yield, physicochemical 

properties (e.g. crystallinity, morphology, density) and aerodynamic behaviour to 

establish the advantages and disadvantages of the two formulation methods. 

● The aerodynamic behaviour of the formulations was established with a combination 

of in vitro-in silico evaluation after 1 and 10 weeks of storage: 

○ the in vitro aerodynamic properties (EF, FPF, MMAD and GSD) were 

determined at low inhalation flow rate (30 L/min) with the official Andersen 

cascade impactor (Eur. Ph. Online 9.6), while 

○ the in silico particle tracking was performed by the validated Stochastic Lung 

Model, where the input data of the simulation were the in vitro aerodynamic 

properties of the particles and the breathing pattern of COPD patients derived 

from clinical studies. 

Both MXP and MX were used as model active ingredients for the production of inhalable 

carrier-free DPI particles. The formulation and analysis protocol was planned with the 

consideration of the FDA process development requirements (FDA guidance, 2018). 

 

 

Figure 8: The formulation strategy and analysis protocol of the planned PhD work. 

LPP=large porous particle formulation. 
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4. MATERIALS AND METHODS 

4.1. Materials 

4.1.1. Active pharmaceutical ingredients 

MX inhibits the COX-2 enzyme and thus has anti-inflammatory effects (Luger et al., 

1996) (provided by Egis Pharmaceuticals PLC., Budapest, Hungary). The low water 

soluble MX is usually processed in suspension forms if no organic solvent is required 

(micro or nano suspensions) (Iurian et al., 2017; Bartos et al., 2015; Pomázi et al., 2013) 

In previous studies it was demonstrated that low water-soluble MX can be administered in 

pulmonary application for the local treatment of pulmonary fibrosis, COPD and non-

small cell lung cancer (Szabó-Révész, 2018; Tsubouchi et al., 2000; Arafa et al., 2007; 

Pomázi et al., 2014). However, NSAIDs tend to cause allergic reaction, it was 

demonstrated that meloxicam can be used as a safe alternative for aspirin or NSAID 

hypersensitive patients also (Bavek et al., 2007). The other used API was the MXP, 

which has not been studied before, but it is a valuable water-soluble intermediate obtained 

from the synthesis of high-purity meloxicam (>99.90%) (Mezei et al., 2009). According 

to our aims, the meloxicam containing “spray drying from solution” DPI preparation 

method was achieved with two ways: by using the newly patented (nr.: 

WO2006064298A1) water-soluble MXP and by increasing the water solubility of MX 

with pH shift (Mezei et al., 2012). A preformulation study was made in order to establish 

the possible ways of increasing the MXP and MX concentrations in aqueous solutions 

(Table IV). 

 

Table IV: Solubility (mg/mL) of MXP and MX tested in solutions of different pH and 

temperature (Horváth et al., 2016). 

 
Meloxicam potassium (MXP) 

 
Meloxicam (MX) 

Tested solvent 

(pH 7.0) 
S (mg/mL) 

Tested solvent 

(37 °C) 
S (mg/mL) 

25 °C 8.3 7.0 0.04 

37 °C 13.1 7.4 0.93 

80 °C 32.0 7.7 1.74 

Temperature increase used for higher 

concentrations. 
pH shift used for higher concentrations. 
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4.1.2. Excipients 

We chose the excipients according to the most important requirements of DPI 

formulations (such as morphology, size, surface area and hygroscopicity of the particles) 

to obtain good aerodynamic properties both for the non-porous and large porous particles 

(Telko et al., 2005). In all formulations L-leucine (LEU) (Sigma-Aldrich, USA) was used 

to decrease the aggregation between the particles and to protect the particles form 

moisture (Rowe et al., 2009). Besides, polyvinyl alcohol (PVA) (ISP Customer Service 

GmBH, Germany) and sodium hyaluronate (HA) (Acros Organics, Belgium) was used as 

a stabilizing agent in some formulations (Rowe et al., 2009). HA also functions as an 

absorption promoter (Rowe et al., 2009) and increases the viscosity of the primary 

solution to obtain large droplets and larger sized particles in porous formulations. For the 

porous formulation ammonium bicarbonate (AB) (Sigma-Aldrich, USA) was added as a 

progeny agent to promote low density and hollow or porous structure (Cruz et al., 2011). 

 

4.2. Spray drying method for carrier-free DPI production 

4.2.1. Sample preparation methods and spray drying 

According to our aims, two types of carrier-free DPI formulations (non-porous and 

porous formulations (LPP technology)) were achieved with two different active 

ingredients (MXP and MX) to evaluate a “spray drying from solution” technology. 

 

4.2.1.1. Non-porous formulations 

The appropriate water solubility of MXP allows the using of a simplified, one-step 

particle engineering procedure for preparing the DPI formulation. The increasing 

temperature increases the water solubility of MXP, which is 8.3 mg/mL at room 

temperature (25 °C), 13.1 mg/mL at 37 °C and 32.0 mg/mL at 80 °C (at pH 7.0). 

Therefore, we used 70±5 °C purified water as a solvent, mixing with heated water for 10 

minutes (400 rpm stirring). After cooling at 50 °C (max. 30 min, 400 rpm) without the 

recrystallization of MXP, solutions were mixed with the appropriate combination of LEU 

and PVA (Table V). PVA solutions were also prepared with heating one day before the 

spray drying. A magnetic stirrer with heating function was used for solvent 

homogenization (AREC.X heating magnetic stirrer, Velp Scientifica Srl, Italy). 
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Table V: The composition of carrier-free DPI formulations in stock aqueous solution 

prepared for spray drying (mg/mL). *Reference spray dried APIs.  

 Composition of microparticles/Used agents 

Non-porous formulations 

Function: API 
Aerodynamic 

enhancers 

Structure 

stabilizer 
- 

Agent: MXP LEU PVA - 

MXP-SD* 20 - - - 

MXP/LEU
20

 20 20 - - 

MXP/LEU
40

 20 40 - - 

MXP/LEU
20

/PVA
2.5

 20 20 2.5 - 

MXP/LEU
40

/PVA
2.0

 20 40 2.0 - 

Porous formulations 

Function: API 
Aerodynamic 

enhancers 

Structure 

stabilizer 
Pouring agent 

Agent: MX LEU HA AB 

MX-SD* 1.5 - - - 

MX/LEU/HA
0.30

/AB
1.5

 1.5 0.75 0.30 1.5 

MX/LEU/HA
0.15

/AB
1.5

 1.5 0.75 0.15 1.5 

MX/LEU/HA
0.30

/AB
2.0

 1.5 0.75 0.30 2.0 

MX/LEU/HA
0.15

/AB
2.0

 1.5 0.75 0.15 2.0 

 

4.2.1.2. Porous formulations 

MX exhibits pH-dependent solubility: in buffers at pH 7.4–7.7 MX demonstrates 

solubility almost 43-fold higher (1.74±0.2 mg/mL, 37 °C, pH 7.7) than in distilled water 

(0.04±0.01 mg/mL, 37 °C, pH 7.0) (Horváth et al., 2016). Due to this characteristic, MX 

was dissolved at laboratory temperature (20±2 °C) at higher pH and stabilized with 1 M 

sodium hydroxide aqueous solution to prepare the stock solution for the spray drying 

(Table V). First, MX was dissolved in the high pH water (8.0±0.1 pH, stirring for 2 hours, 

600 rpm) at 1.5 mg/mL constantly in each formulation. Secondly, 0.75 mg/mL LEU was 

dissolved (15 min, 600 rpm) in the MX solutions. Finally, HA was added to yield 0.15 

and 0.30 mg/mL final concentrations. The appropriate concentration HA solutions were 

prepared the day before the spray drying (stirring for 24 hours at 400 rpm). In order to 

formulate porous particles, different concentrations of AB were added, which functions as 

a pouring agent and facilitates porous structure preparation. AB in concentrations of 1.5 

and 2.0 mg/mL was dissolved maximum 5 min before the spray drying (stirring for 2 min, 

200 rpm) to minimize its decomposition into CO2 and NH3 before spray drying. 
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4.2.2. Spray drying process parameters and drying efficacy 

Our aim was to prepare non-porous and porous formulations containing MX and MXP 

with different process parameters of “spray drying from solution” technique (Table VI). 

Spray drying yield was calculated as a percentage by dividing the mass of the powder 

collected from the container by the initial mass of solids in the solution prepared for 

drying. The used AB amount was not taken in consideration as it decomposes during 

drying. The parameters presented in table VI were chosen to reach a yield above 55% at 

each sample production. Each formulation was spray dried in triplicate. 

 

Table VI: The spray drying process parameters chosen for the two types of carrier-free 

DPI preparation. 

 Non-porous formulations Porous formulations 

Active ingredient MXP MX 

Feed stock solution solution 

Spray drier type Büchi B-191 Büchi B-290 

Inlet temperature 140 °C 200 °C 

Outlet temperature 75-80 °C 95-100 °C 

Aspirator rate 75% 100% 

Gas flow rate 600 L/h 414 L/h 

Feed pump 2.5 mL/min 9.0 mL/min 

 

The actual API content (%) of the spray dried particles was measured by dissolving 1.0–

1.1 mg product in 25 mL of methanol:7.4 pH phosphate buffer (60:40 w/w%), which 

solution was used for the aerodynamic assessment. too. The mother solutions were mixed 

for 10 min, 600 rpm and the API content was quantified by UV/Vis spectrophotometry 

(ATI-Unicam UV/VIS Spectrophotometer, UK) at a wavelength of 362 nm. Each sample 

was measured in triplicate. 

 

4.3. Cell viability assay 

Literature data report about the cytotoxicity assay of meloxicam-containing 

microcomposites, prepared with spray drying from suspension technology, on monolayers 

of Calu-3 cells (Ambrus et al., 2011). As no measurements with MXP had been published 

before, it was essential to establish the safety of the salt form as well as the base of MX. 
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The selected APIs were tested on human epithelial A549 lung carcinoma cells (ATCC
®
, 

USA) (Fig. 9). Cells were maintained in DMEM/F-12 50/50 nutrient mixture (Cellgro, 

USA) mixed with 10% foetal bovine serum, 100 U/mL penicillin and 100 µg/mL 

streptomycin in 5% carbon dioxide environment at 37 °C. The medium was changed 

every other day. MTT assay was carried out (Mosmann, 1983; Gerlier et al., 1986). In 

brief, A549 cells were seeded in 96-well cell culture plates with lid (Corning™, NY) at a 

density of 10,000 cells/well, established with a haemocytometer (Fisher Scientific, PA). 

Cells were pre-incubated for 24 hours at 37 °C, in 5% carbon dioxide to assist cell 

attachment. The pure drugs were dispersed in DMEM/F-12 medium to obtain final active 

ingredient concentrations of 0.01, 0.1, 1, 2, 5 and 10 mg/mL (Chvatal et al., 2018). The 

cells were then exposed to varying concentrations of MX and MXP for 1 hour (37 °C). 

Negative controls were incubated in DMEM/F-12 medium and 100% DMSO (Fischer 

Scientific, PA) was used as a positive control. After 1 hour of incubation, cells were 

washed with DMEM/F-12 medium and then MTT solution was added to each well and 

incubated at 37 °C for 3 hours. 

 

 

Figure 9: Cell viability measurements (Chvatal et al., 2017) 

 

The formazan crystals formed by the viable cells were dissolved with 100% DMSO and 

the viable cells were measured via Synergy H
1
plate spectrophotometer (Biotek

®
, VT) at 

570 nm. The absorbance reading of the blank was subtracted from all samples. 

Absorbance (abs) readings from test samples were then divided by those of the control 

(DMEM/F-12 medium) and multiplied by 100 to give percentage cell viability (Eq. 1). 

Absorbance values greater than the control indicate cell proliferation, while lower values 
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suggest cell death or inhibition of proliferation. All the measurements were made in 

triplicate. 

% viable cells = (
𝑎𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒−𝑎𝑏𝑠𝑏𝑙𝑎𝑛𝑘

𝑎𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑎𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) ×100  (Eq. 1) 

 

4.4. Structural analyses 

4.4.1. Identification of active pharmaceutical ingredient 

To investigate the identity of API in the formulations, Raman spectroscopy was applied 

using Thermo Fisher DXR Dispersive Raman with CCD camera (Thermo Fisher Sci. Inc., 

Waltham, USA). The following parameters were used during the measurements: laser 

diode operating at a wavelength of 780 nm; the applied laser power was 6-24 mW at 25 

µm slit aperture size on a 2 µm spot size; spectra were collected with 6 sec exposure time 

of 20 scanning in the spectral range of 3300–200 cm
-1

. As a reference, MX and MXP was 

dissolved in sodium hydroxide aqueous solution and purified water as well, with the same 

method for the spray drying, and recrystallized (at 40 °C, 24 hours) to see the changes 

while dissolving APIs (Chvatal et al., 2019). 

 

4.4.2. Identification of the crystallinity of powders 

To establish the crystalline or amorphous character of the spray dried samples, XRPD 

spectra were recorded with a BRUKER D8 Advance X-ray diffractometer (Bruker AXS 

GmbH, Germany) system with Cu Kα1 radiation (λ = 1.5406 Å) over the interval 3–40°. 

Measurement conditions were as follows: target, Cu; filter, Ni; voltage, 40 kV; current, 40 

mA; time constant, 0.1 s; angular step 0.010°. 

 

4.5. Morphology of the particles 

Scanning electron microscopy (SEM) (Hitachi S4700, Hitachi Scientific Ltd., Japan) was 

used to characterize the morphology of the spray dried formulations, applying 10–15 kV 

high voltage set and 1.3–13.0 mPa air pressure. A high vacuum evaporator and argon 

atmosphere were used to sputter-coat the samples with gold-palladium in order to make 

them conductive (Bio-Rad SC 502, VG Microtech, UK). 
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4.6. Particle size analyses 

The volume median diameter size of the particles (D[0.5]=the is the diameter where 50% 

of the distribution is above and 50% is below; referred as geometric diameter) was 

determined by using laser diffraction (Mastersizer 2000 equipped with a Sirocco dry 

disperser, Malvern Instruments Ltd., UK). The dispersing pressure was 2 bars. The 

particle size distribution was characterized by the D[0.1] (10% of the volume distribution 

is below this value), D[0.5] and D[0.9] (90% of the volume distribution is below this 

value) values. The size distribution Span was calculated according to Eq. 2. Each sample 

was measured in triplicate. 

Span =
𝐷[0.9]−𝐷[0.1]

𝐷[0.5]
   (Eq. 2) 

 

4.7. Density measurements 

The density of the formulations was measured using a 5 mL cylinder, filled with 2–4 mL 

powder (for bulk density) and tapped 1000 times (for tap density) using a tapping 

apparatus Pharma test PT-TD1 (Pharma Test Apparatebau AG, Germany) (Eur. Ph. 

Online 9.6, Chapter 2.9.34.). All samples were measured in triplicate. 

 

4.8. Aerodynamic characterisation 

4.8.1. In vitro assessment 

The aerosolization efficacy of the spray dried formulations was assessed in vitro, using an 

Apparatus D in European Pharmacopoeia (Andersen cascade impactor, Copley Scientific, 

Switzerland) with high-capacity pump (Model HCP5, Copley Scientific Ltd., UK) and 

critical flow controller (Model TPK, Copley Scientific Ltd., UK) (Eur. Ph. Online 9.6., 

Chapter 2.9.18.). The measurement properties are presented in Table VII. The plates of 

the impactor were coated with 1% w/v mixture of Span 85 and cyclohexane to allow for 

the attachment of floating particles. On filter stage a 1.0 µm porosity glass filter was used 

(Type A/E, Pall Corporation, USA). Between two inhalation minimum 5 s break was 

allowing the particles to deposit with gravitation also. After two repetitions of 4 s 

actuation, the inhalation device, the capsules, the mouth piece (extra support to connect 

the device to the induction port), induction port, the collection plates and the filter were 

washed in separate vessel with methanol:7.4 pH phosphate buffer (60:40 v/v%) to collect 
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and dissolve the deposited API. The collected MX and MXP in each vessel were 

quantified by UV/Vis spectrophotometry (ATI-Unicam UV/VIS Spectrophotometer, UK) 

at a wavelength of 362 nm. Aerodynamic properties (FPF, MMAD and GSD) were 

calculated from a plot of the cumulative percentage undersize of the API on log 

probability scale against the effective cut-off diameter using KaleidaGraph program 

(Colombo et al., 2013) (Fig. 5). EF was expressed as percentage of the API remaining in 

the capsules and the device after inhalation divided by the total loaded API dose. 

 

Table VII: Andersen cascade impactor assessment parameters. 

Parameters/Properties Value/Type 

Inhalation flow rate 30±1 L/min 

Inhalation time 4 s 

Inhalation actuation 2 repetitions each capsule 

Inhalation device Breezhaler
®

, single dose 

Capsules size 3, transparent, HPMC (Capsugel) 

Sample filling 2–2.5 mg of powder 

 

4.8.2. In silico modelling 

In order to simulate the realistic breathing modes of the patients, measured spirometry 

data of the individuals inhaling through Breezhaler
®
 device were adopted in the 

Stochastic Lung Model Deposition Model. 7 male and female patients (aged ≥40 years, 

with a clinical diagnosis of mild to severe COPD) were included in the study (Chapman 

et al., 2011). The average values of the measured breathing parameters were the 

following: inhaled volume (IV) 1.7 L, inhalation time (tin) 2.04 s, exhalation time (tex) 3.0 

s, mean inhalation flow rate (Q) 50.1 L/min (Chvatal et al., 2017). Fig. 10 shows the 

more realistic, time-dependent inhalation mean pattern implemented into the numerical 

model, which was used for the sample behaviour simulation. As the breath hold time has 

significant effect on the particle deposition we included it in the simulations tb-h = 5.0 s 

and 10.0 s (Farkas et al., 2017). The realistic in silico modelling gives the exact 

aerodynamic behaviour of the samples, completing the testing with extra data. Besides the 

extrathoracic and lung deposition doses, the exhaled amount can also be determined. The 

modelling was evaluated using the in vitro aerodynamic properties of 1 and 10 weeks of 

storage (Chvatal et al., 2018). 
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Figure 10: General COPD inhalation profile through Breezhaler® using spirometry data 

by Chapman et al., 2011 (Chvatal et al., 2017). 

 

4.9. Stability measurements 

The most important properties (size, density, aerodynamic properties) determining the 

aerodynamic effectiveness of the samples were measured in the 1
st
 week after spray 

drying and after 10 weeks of storage. Samples were stored at room temperature (23±1°C), 

in a separate desiccator containing cobalt crystals to assess their stability. Results of the 

stability properties will be discussed in each chapter separately (size, density and 

aerodynamic characterisation). 

 

4.10. Statistical analyses 

Statistical analyses were taken using t-test calculation at 0.05 significance level and one-

tailed hypothesis. T and p values were calculated from the tree parallel measurements of 

the compared results. Differences were considered significant if p<0.05 (Social Science 

Statistics Online). 
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5. RESULTS 

5.1. Carrier-free DPI spray drying efficacy 

Two different types of spray drying machines and methods were used to prepare MXP 

and MX containing carrier-free DPIs. Although the reference spray dried APIs (MXP-SD 

and MX-SD) were produced with 10 and 20% higher yield compared to the formulations, 

the use of excipient was essential for the optimal products. Both non-porous and porous 

formulations (LPP formulation type) were produced with an acceptable spray drying yield 

above 60%. However, the reference spray dried APIs had the highest spray drying yield 

(MXP-SD 72.0% and MX-SD 87.7%) the use of excipients was essential for the enhanced 

aerodynamic behaviour. Each spray drying was made in triplicate with low variability in 

the yield (S.D.<3). The final API content of the samples was determined too, and it 

correlated well with the theoretical MXP and MX contents. The difference between the 

theoretical and real (after spray drying) API contents were less than 10% (Table VIII). 

 

Table VIII: Spray dried yield and the final API content of the carrier-free DPI 

microcomposites (%). Data are presented as mean ± S.D., n=3. *Reference spray dried 

APIs. 

 Spray drying yield (%) Final API content (%) 

Non-porous formulations 

MXP-SD* 72.0±2.42 98.5±1.01 

MXP/LEU
20

 62.0±1.94 50.3±0.24 

MXP/LEU
40

 60.0±2.37 33.3±0.28 

MXP/LEU
20

/PVA
2.5

 60.5±2.48 38.3±2.68 

MXP/LEU
40

/PVA
2.0

 63.7±2.95 32.3±0.32 

Porous formulations 

MX-SD* 87.7±2.76 89.7±1.3 

MX/LEU/HA
0.30

/AB
1.5

 61.6±2.13 53.6±2.1 

MX/LEU/HA
0.15

/AB
1.5

 70.0±2.39 55.3±0.3 

MX/LEU/HA
0.30

/AB
2.0

 62.3±2.07 50.7±1.0 

MX/LEU/HA
0.15

/AB
2.0

 67.5±2.75 58.7±1.6 
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5.2. Cell viability assays 

In this MTT study, the cellular metabolic activity as a proxy for cell viability of MXP and 

MX were compared on human epithelial A549 lung carcinoma cells. Viable cells 

(containing NAD(P)H-dependent oxidoreductase enzymes) can reduce the MTT reagent 

to formazan crystals which have purple colour. The more viable cells can be found in a 

plate the higher absorbance is measured at 570 nm wavelength (darker solution=greater 

metabolically activity). The cytotoxicity of pure drug samples was compared with 

negative and positive controls, medium and DMSO respectively. In the presence of 

DMSO, only 10% cell viability was observed. MX, MXP and formulations of MXP 

exhibited high cytotoxic effect at higher concentrations of 1, 2, 5 and 10 mg/L compared 

to the negative control (Chvatal et al., 2018). No difference in cytotoxicity was observed 

in the case of the MXP and MX forms at 0.1 and 0.01 mg/mL concentrations, as the 

solubility of the two forms are almost the same on the measuring conditions (MX: 

0.933±0.054 mg/mL, while MXP: 0.729±0.001 mg/mL, measured at 37 °C, in 7.4 pH 

buffer) (Horváth et al., 2016) (Fig. 11). It was clarified that MXP has a similar cytotoxic 

effect on A549 cells as MX and both can be safely used at 0.1 and 0.01 mg/mL 

concentrations. 

 

 
Figure 11: Cytotoxicity of raw MX and MXP (Chvatal et al., 2017). Data are presented 

as mean (n=3), S.D. was less than 0.1% for each concentration. 
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5.3. Structural analyses of the carrier-free DPIs 

5.3.1. Identification of APIs 

The Raman spectra of raw MX (MX-raw) show characteristic bands at 1155, 1309, 1540 

and 1595 cm
-1

 (Fig. 12) (Bio-Rad Laboratories, Inc. SpectraBase; Meloxicam). These 

Raman spectra are similar to the spectra of MX sodium salt according to the Bio-Rad 

Laboratories database (Bio-Rad Laboratories, Inc. SpectraBase; Meloxicam sodium). 

Based on this result, it was established that during the dissolution of MX (in pH 8.0±0.1 

sodium hydroxide aqueous solution) in situ forming of MX sodium salt occurred. Spray 

dried MX (MX-SD) and formulations with excipients exhibit the same spectra as MX 

sodium salt with characteristic Raman bands at 1390 and 1595 cm
-1

, indicating MX 

sodium salt form is present in spray dried formulations (Chvatal et al., 2019). 

 

 

Figure 12: Raman spectra of the spray dried (-SD) and raw (-raw) active ingredients. 

 

5.3.2. Crystal structure 

X-Ray powder diffraction was used to characterize the crystalline state of MXP and MX 

after the spray drying process. The raw APIs have crystal structure indicated by 

characteristic peaks of MXP (at 6.04°, 15.35°, 16.51°, 24.52°, 28.33°, 29.40° and 30.94° 

2-theta) (Chvatal et al., 2017) and MX (at 13.22°, 15.06°, 26.46° 2-theta) (Aytekin et al., 

2018; Chvatal et al., 2019). The fact that the characteristic peaks of crystalline APIs are 

missing from the diffractogram of spray dried samples (MXP-SD, MX-SD) indicates that 

the raw material becomes amorphous during the spray drying (Fig. 13). Characteristic 
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peak of MXP at 6.04° 2-theta appears in the non-porous formulations, indicating a low 

level of crystallinity. The same semi crystal form can be observed in the case of porous 

formulations: lower intensity peaks at 6.6°, 11.4°, 13°, 13.6° and 19.2° 2-theta. The semi 

crystal form was observed in the presence of LEU. We detected the same characteristic 

peaks of LEU that literature data reported (Najafabadi et al., 2004; Li et al., 20016; 

Chvatal et al., 2017). The characteristic peak 5.9° 2-theta of LEU could be observed on 

the spectra of the formulations but it was broader and with much lower intensity. These 

low intensity peaks demonstrate the low crystallinity of LEU after spray drying. The 

presence of PVA and HA has no effect on the diffractogram of the samples. 

 

 

Figure 13: XRPD spectra of the raw (-raw) and spray dried (-SD) APIs and one of each 

types of formulation. 

 

5.4. Morphology 

Raw MXP and MX were characterized by large angular crystals unsuitable for pulmonary 

application (Fig. 14). For the spray dried samples (MXP-SD and MX-SD) particle size 

was dramatically reduced to less than 10 µm, reaching the inhalable size range (Chvatal 

et al., 2015). Regarding morphology, these particles were found to be spherical (Fig. 14). 

The SEM pictures (Fig. 14) revealed that the excipient-free spray dried sample (MX-SD 

and MXP-SD) had a slightly rough surface and an almost spherical shape for both APIs. 
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In the case of spray drying, APIs enrich on the surface of the droplet during the solvent 

evaporation phase. The formed fixed crust cannot follow the quick form changes during 

evaporation and slightly sinks in wrinkled particles. 

 

  
Figure 14: Electron microscopy pictures of the raw and spray dried (-SD) active 

ingredients. Pictures present the spherical, slightly rough surface particles that were 

formed form during spray drying thanks to the characteristics of the MXP and MX. 

 

The addition of LEU (in the used concentrations: 0.5:1 LEU:MX; 1:1 and 2:1 LEU:MXP) 

shifts the spherical morphology to a shell-formed appearance as supported (Vehring et 

al., 2008). The low diffusion coefficient of LEU (Pe>1) increases particle enrichment in 

the droplet surface during spray drying. The quick drying core crumples and forms a 

rough surface (Chvatal et al., 2019). The surface accumulation and surface modifying of 

LEU had minimized contact area thus can reduce the adhesion between particles. It also 

could reduce the attachment to capsule or inhalation device wall during inhalation which 

may result in higher emitted fraction (Aquino et al, 2012; Mangal et al., 2015; Chew et 

al., 2005). PVA was used in the non-porous formulations to reduce the cohesion between 

particles and to stabilize the formed morphology (Chvatal et al., 2015). Using the 

appropriate amount of PVA decreased the aggregation and uniform structured particles 

could be detected between the (Fig. 15). Its individual particles are assumed to have a 

monodisperse size distribution and better aerodynamic properties. 
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Figure 15: Electron microscopy pictures of the MXP non-porous formulations presenting 

the shell-form morphology caused by the LEU content. 

 

HA, as well as PVA, was used in order to stabilize the structure of formulations 

(Martinelli et al., 2017). However, literature data report that sodium hyaluronate could 

promote surface roughness of spray dried particles (Li et al., 2017), we did not detected 

the same intensive effect (Chvatal et al., 2019). However the surface roughness of porous 

formulations was much lower, slight wrinkles could be detected on the surface of the 

large sized spherical particles. These porous particles exhibit significantly different 

morphology than non-porous formulations in which AB was the main role. The SEM 

pictures also demonstrated the porogen effect of AB, which is well described in literature 

(Cruz et al., 2011; Nolan et al., 2009; Gervelas et al., 2007). The change in shape could 

arise from the gas formation from AB during the drying procedure, which “blows” up the 

structure and forms the presented larger sized spheres (Fig. 16). Other evidence of the 

porous structure can be detected in the broken shells, which demonstrate the internal 

hollow structure and low density of porous formulations. Between these large sized 

spheres the cohesion forces could be also lowered and high dispersity powders were 

formed (Fig. 16). 
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Figure 16: Electron microscopy pictures of the MX porous particle formulations 

presenting the large spheres with internal hollow structure. 

 

5.5. Particle size analyses 

Despite the fact that each formulation type was prepared using similar drying parameters, 

the final particle size distributions were different (Table IX). The medium geometric 

diameter (D[0.5]) of the reference spray dried particles MXP-SD and MX-SD was around 

3.0–3.2 µm. The Span value was around 1.4 which refers to the narrow size distribution. 

In case of non-porous formulations 20 mg/mL LEU concentration had no effect on the 

size, the same geometric diameter was observed as the reference spray dried MXP (Table 

IX). With higher amount of LEU a slight size increasing was detected (with 20 mg/mL 

LEU 3.06 µm, while 40 mg/mL LEU shows 3.62 µm), but in non-porous formulations 

together with PVA this size increase effect was not significant. Similar conclusions 

reported as other studies, that incorporating LEU in the formulation is not increasing the 

geometric diameter (Pham et al., 2013; Aquino et al., 2012). The PVA concentrations 

had no significant effect on the size distributions of particles (Chvatal et al., 2015). All 

the non-porous formulations had geometric diameter in the aimed 1-5 µm size range and 

have narrow size distributions (Span ≤1.8). 

In the case of porous formulation the aimed larger geometric diameter (larger than 4.9 µm 

up to 5.7 µm) could be achieved. Geometric diameter was increased significantly with the 

higher HA concertation (from 4.9 µm to 5.7 µm with 0.15 and 0.30 mg/mL HA 
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concentrations respectively). This increase probably arises from an increase of the 

viscosity of the spray dried solution leading to larger droplets and thus resulting in larger 

particle size (Li et al, 2017). Geometric diameter larger than 5 µm was caused by the 

combination of HA (increases the viscosity of the spray dried solution, leading to larger 

droplets) and of AB (forms pores as AB decomposes into water and gas during the drying 

process, thus increases the size of particles) (Cruz et al., 2011; Pham et al., 2015). 

Formulations prepared with 1.5 and 2.0 mg/mL AB concentrations had the same 

geometric diameter (Chvatal et al., 2019). Porous formulations also have narrow size 

distribution with Span ≤2.0. No significant differences were detected in the geometric 

diameter and the size distribution of the particles measured at 1
st
 week and 10 weeks after 

of storage. 

 

Table IX: Size distribution of the carrier-free DPI samples. Data are presented as mean 

± S.D., n=3. *Reference spray dried API. 

 
D[0.5] (µm) Span 

1
st
 week 10

th
 week 1

st
 week 10

th
 week 

Non-porous formulations 

MXP-SD* 3.1±0.07 3.0±0.03 1.3±0.10 1.4±0.32 

MXP/LEU
20

 3.1±0.52 3.2±0.09 1.6±0.73 1.5±0.58 

MXP/LEU
40

 3.6±0.06 3.4±0.15 1.8±0.04 1.8±0.17 

MXP/LEU
20

/PVA
2.5

 3.4±0.24 3.5±0.03 1.8±0.11 1.6±0.15 

MXP/LEU
40

/PVA
2.0

 3.5±0.73 3.3±0.20 1.7±0.10 1.8±0.15 

Porous formulations 

MX-SD* 3.2±0.08 3.0±0.03 1.4±0.08 1.5±0.10 

MX/LEU/HA
0.30

/AB
1.5

 5.6±0.73 5.6±0.09 2.0±0.10 1.8±0.11 

MX/LEU/HA
0.15

/AB
1.5

 5.0±0.60 5.0±0.25 1.9±0.22 1.6±0.13 

MX/LEU/HA
0.30

/AB
2.0

 5.6±0.64 5.7±0.35 2.0±0.13 2.0±0.12 

MX/LEU/HA
0.15

/AB
2.0

 4.9±0.60 5.0±0.09 1.9±0.31 1.8±0.25 

 

5.6. Density measurements 

When non-porous and porous particles were compared, it was established that there are 

significant differences in the tap density of the two formulation types. Fig. 17 clearly 

shows that the porous formulations had lower tap density (<0.17 g/cm
3
) than the non-

porous formulations (>0.30 g/cm
3
). The density of the reference spray dried APIs (MXP-
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SD and MX-SD) was around 0.37 g/cm
3
. The same tap density was observed in the case 

of non-porous formulations. In the used concentrations LEU content had no significant 

effect on the densities of both formulations. This observation was similar to other studies 

(Aquino et al., 2012). Non-porous formulations with PVA+LEU combination decreased 

the density from 0.37 till 0.34 g/cm
3
 (MXP/LEU

20
/PVA

0.25 
is the lowest), but the 

difference was not significant. Despite the fact that polymers increase the viscosity of 

solutions, PVA and HA had no significant effect on the density of the spray dried 

particles (Chvatal et al., 2017; Chvatal et al., 2019). There were detected significant 

differences in the tap densities of the two formulation types. The low density of porous 

formulations (0.09–0.16 g/cm
3
) was in connection with the AB content, which forms the 

porous structure of the powders due to its bulking properties. Despite the large geometric 

diameter (≥5 µm), porous formulations exhibited the lowest tap density which may offer 

better flowability properties. The 2.0 and 1.5 mg/mL AB contents had almost the same 

density decreasing effect. The prepared porous formulations reached the aimed tap 

density of <0.20 g/cm
3
 (the lowest was 0.09 g/cm

3
 for MX/LEU/HA

0.3
/AB

2
).  

 

 

 
Figure 17: Comparison of the median geometric diameter (expressed as D[0.5]) and tap 

density of the formulations (B: MXP/LEU
20

, C: MXP/LEU
40

, D: MXP/LEU
20

/PVA
2.5

, E: 

MXP/LEU
40

/PVA2, G: MX/LEU/HA
0.3

/AB
1.5

, H: MX/LEU/HA
0.15

/AB
1.5

, I: 

MX/LEU/HA
0.3

/AB
2
 and J: MX/LEU/HA

0.15
/AB

2
). *Reference spray dried APIs (A: MXP-

SD and F: MX-SD). Data are represented as mean ± S.D., n=3. 

*                      * 
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5.7. Aerodynamic characterisations 

5.7.1. In vitro assessment 

The aerodynamic properties of powders were tested at 30 L/min, simulating low 

inhalation flow rate in Andersen cascade impactor. No significant difference was detected 

in the aerodynamics of the samples when comparing the properties in the 1
st
 week and 

after 10 weeks of storage. Both non-porous and porous formulations were considered 

stable under the tested conditions (stored in desiccator, at 23±1 °C). 

Briefly, the aerodynamic properties of the reference spray dried MXP and MX (with no 

excipients) were not increasing the in vitro aerodynamic properties of the commercially 

available DPIs and may not be efficient for pulmonary treatment (EF ≤59.1% and FPF 

≤38.6%) (Table X). The low EF and FPF indicates that almost 40–50% of the drug 

remained in the capsules or device, while approximatively 60–70% of the loaded drug 

could not reach the site of action in the lungs.  

 

Table X: Aerodynamic properties tested at 30 L/min inhalation flow rate in Andersen 

cascade impactor. EF = emitted fraction, FPF = fine particle fraction. Data are 

represented as mean ±S.D., n=3. *Reference spray dried APIs. 

 

EF (%) FPF (%) 

1
st
 week 10

th
 week 1

st
 week 10

th
 week 

Non-porous formulations 

MXP-SD* 61.3±2.8 59.4±1.4 32.3±2.5 31.6±3.5 

MXP/LEU
20

 72.7±5.7 77.8±2.4 48.6±7.0 52.8±0.8 

MXP/LEU
40

 69.1±1.5 68.8±4.2 42.9±1.2 46.3±5.9 

MXP/LEU
20

/PVA
2.5

 77.0±3.2 76.6±3.3 50.9±1.9 50.3±6.1 

MXP/LEU
40

/PVA
2.0

 67.5±5.6 71.2±4.1 50.5±2.9 50.9±1.9 

Porous formulations 

MX-SD* 53.6±10.5 50.4±6.7 38.6±4.7 37.9±4.8 

MX/LEU/HA
0.30

/AB
1.5

 79.5±4.2 79.4±2.3 54.5±2.1 55.9±2.3 

MX/LEU/HA
0.15

/AB
1.5

 77.5±6.8 76.1±9.9 57.4±5.6 54.5±10.1 

MX/LEU/HA
0.30

/AB
2.0

 79.5±5.5 85.4±3.2 59.7±4.0 60.5±1.6 

MX/LEU/HA
0.15

/AB
2.0

 82.8±6.8 82.3±8.3 65.8±3.2 63.0±4.5 

 

When non-porous particles were compared, there was no significant difference between 

LEU and LEU+PVA containing formulations. Although, non-porous particles with higher 

LEU content (40 mg/mL) increased the EF, the different LEU concentration had no 

significant effect on the FPF comparing (Table X). The additional excipient 
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concentrations increased the aerosolization of both formulations by increasing dispersity, 

modifying morphology and reducing density of particles. We detected significant 

differences between the EF (non-porous formulations 67–77% and Porous formulations 

76–85%) and FPF (non-porous formulations 42–52% and Porous formulations 54–65%) 

of the two types of formulations. It can be demonstrated, that the used AB concentrations 

had relevant effect on the aerodynamic behaviour of porous formulations. Porous 

particles had significantly lower tap density (comparing to non-porous particles) which 

resulted improved lung deposition (FPF 54.5–65.8%). Other studies reported the same 

correlation between density and aerodynamics: the lower the tap density (0.04–0.25 

g/cm
3
), the higher the FPF is (Bosquillon et al., 2001). Porous particles prepared with 1.5 

mg/mL AB concentrations had lower FPF (≤57.4%) than formulations containing 2.0 

mg/mL AB (≥59.7%) (Fig. 18). The increased AB concentration (2.0 mg/mL) resulted in 

the highest FPF with 65.8% in case of MX/LEU/HA
0.15

/AB
2
 (measured at the 1

st
 week). 

Higher AB concentrations had also increased the EF of the porous formulations resulting 

in > 79.5% drug emission from the inhalation capsules and device. Comparing the porous 

formulations to each other, it can be concluded that different HA contents had no 

significant effect on the EF or FPF (Chvatal et al., 2019). 

 

 
Figure 18: Comparison of the fine particle fraction (FPF) and emitted fraction (EF) with 

the tap density of non-porous (B: MXP/LEU
20

, C: MXP/LEU
40

, D: MXP/LEU
20

/PVA
2.5

, E: 

MXP/LEU
40

/PVA
2
) and porous formulations (G: MX/LEU/HA

0.3
/AB

1.5
, H: 

MX/LEU/HA
0.15

/AB
1.5

, I: MX/LEU/HA
0.3

/AB
2
 and J: MX/LEU/HA

0.15
/AB

2
). *Reference 

spray dried particles (A: MXP-SD and F: MX-SD). Data are represented as mean ± S.D., 

n=3. 



36 

 

The presented low density porous formulations (<0.17 g/cm
3
) had better aerosolization 

properties and could reach the lower airways more easily (EF≥76.1% and FPF≥54.5%) 

than the smaller but denser non-porous particles (EF≤62.1% and FPF≤41.2%). Beside EF 

and FPF, MMAD is another important in vitro value describing the real aerodynamic 

diameter during inhalation. The criteria of the inhalation products are to reach 1-5 µm 

aerodynamic diameter which offers effective lung deposition via impaction (chapter 

2.2.1.). The MMAD of the particles are mostly influenced of the geometric diameter of 

the particles (if is a dense structure), but the morphology and density properties are also 

effecting. The presented porous formulations and non-porous particles resulted in the 

same MMAD values (average 2.6 µm), despite of their significantly different geometric 

diameter, which is in connection with the density properties (Table XI). As an additional 

value the GSD was also determined: this value expresses the aerodynamic distribution of 

the particles during inhalation. GSD implies a lower particle size tail in the distribution 

while higher value implies non homogenous distribution in the lungs (Musante et al., 

2002). Non-porous formulations have lower GSD around 1.5 while porous formulations 

around 1.8 which can be considered narrow distributed (Table XI). 

 

Table XI: Aerodynamic properties tested at 30 L/min inhalation flow rate in Andersen 

cascade impactor. MMAD = Mass median aerodynamic diameter and GSD = Geometric 

standard deviation. Data are presented as mean ± S.D., n=3. *Reference spray dried 

APIs. 

 

MMAD (µm) GSD 

1
st
 week 10

th
 week 1

st
 week 10

th
 week 

Non-porous formulations 

MXP-SD* 2.7±0.11 2.8±0.00 1.6±0.06 1.5±0.15 

MXP/LEU
20

 2.9±0.03 2.9±0.08 1.3±0.06 1.3±0.22 

MXP/LEU
40

 2.6±0.07 2.7±0.06 1.5±0.03 1.5±0.02 

MXP/LEU
20

/PVA
2.5

 2.7±0.31 2.9±0.22 1.4±0.13 1.4±0.26 

MXP/LEU
40

/PVA
2.0

 2.7±0.07 2.9±0.13 1.4±0.12 1.5±0.07 

Porous formulations 

MX-SD* 2.6±0.04 2.3±0.17 1.9±0.42 1.8±0.03 

MX/LEU/HA
0.30

/AB
1.5

 2.8±0.01 2.5±0.11 1.8±0.05 1.8±0.03 

MX/LEU/HA
0.15

/AB
1.5

 2.6±0.12 2.5±0.03 1.8±0.08 1.7±0.05 

MX/LEU/HA
0.30

/AB
2.0

 2.2±0.03 2.5±0.59 2.0±0.06 1.9±0.02 

MX/LEU/HA
0.15

/AB
2.0

 2.5±0.23 2.4±0.59 1.7±0.06 1.6±0.01 
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Figure 17 demonstrates the relevance in pulmonary drug delivery of the large geometric 

diameter (>5 µm) and low density (<0.20 g/cm
3
) porous formulations (Fig. 17). However, 

porous particles had larger geometric diameter (≤4.9 µm) than non-porous particles the 

MMAD values were similar. In case of non-porous formulations the increasing geometric 

diameter resulted in larger MMAD. However, in case of porous formulations, the MMAD 

was not increasing linearly with the geometric diameter. The difference between the 

geometric diameter and MMAD of non-porous formulations was just 1 µm, porous 

formulations had in average 2.8 µm differences in the same values. Different effects were 

observed comparing the excipient concentrations just in case of porous formulations. 

Porous particles with 2.0 mg/mL AB concentration exhibited lower MMAD (2.3–2.4 µm) 

than those with 1.5 mg/mL (2.6–2.7 µm) (Fig. 19). The higher amount of porogen 

affected positively the flowability of the particles thus resulted in lower aerodynamic 

diameter. By contrast, there was no significant difference between the MMAD of 0.15 

and 0.30 mg/mL HA concentrations. In the used concentrations polymers (both HA and 

PVA) had no significant effect on the MMAD. In conclusion we were demonstrated that 

with appropriate density properties even larger sized particles can reach the same (or 

better) aerodynamic diameter and deposit in the lungs with higher amount. 

 

 
Figure 19: Comparison of the diameters of the formulations (MMAD=mass median 

aerodynamic diameter and D[0.5]=median geometric diameter). A: MXP/LEU
20

, B: 

MXP/LEU
40

, C: MXP/LEU
20

/PVA
2.5

, D: MXP/LEU
40

/PVA
2
, E: MX/LEU/HA

0.3
/AB

1.5
, F: 

MX/LEU/HA
0.15

/AB
1.5

, G: MX/LEU/HA
0.3

/AB
2
, H: MX/LEU/HA

0.15
/AB

2
. Data are 

represented as mean ± S.D., n=3. 
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5.7.2. In silico modelling 

All samples were simulated in silico with the newest version of the Stochastic Lung 

Deposition Model using time-dependent 50.1 L/min average inhalation flow rates adopted 

from Chapman et al., 2011. Figure 20 demonstrates the deposition fractions just of two 

samples of non-porous and two of porous formulations, as no significant differences were 

detected in the in silico properties of the similar formulation types. The simulations were 

performed for both tb-h=5.0 and 10.0 s, to understand the effect on the aerosolization on 

aerodynamic parameters. There were significant differences between the longer and 

shorter breath-hold times (Fig. 20). Shortening the breath-hold from 10 to 5 s decreased 

the lung depositions with almost 5–12% (<47.5%). It was reported by Farkas et al. that 

particles reach the lungs deposit more efficiently by gravitational sedimentation if the 

breath-hold time is longer (Farkas et al., 2017). With tb-h=10.0 s higher lung depositions 

were computed (>48.9% for both formulation types). However, breath-hold time length 

had no significant effect on the ET which was in a constant range of 22.2–25.2%. At the 

same time, the EXH were linearly decreasing by the increase of breath-hold time: if the 

higher amount of drug deposits in the lungs, then lower fraction remains for exhalation. 

In the followings, the results of deposition simulations assuming tb-h=10.0 s will be briefly 

discussed. The extrathoracic fraction presents the particle deposition in the upper airways 

(mouth, throat and trachea). Non-porous formulations deposit in the upper airways with 

22.2–24.9% efficiency, which is almost the same than that of porous particles. However, 

porous formulations were larger than 5 µm just 21.1–25.7% of the inhaled particles were 

deposited in the extrathoracic region. It is worth mentioning that although there was no 

significant difference in the extrathoracic depositions of the two formulations, non-porous 

formulations had higher standard deviation values. 

The in silico lung deposition values correlated well with the corresponding in vitro 

depositions at both formulation types. There was significant difference between the lung 

depositions of non-porous and porous particles. Non-porous particles were not reaching 

50% deposition (maximum was 49.0% for MXP/LEU
20

/PVA
2.5

 after 10 weeks of 

storage), while porous particles had lung depositions constantly above 51% (maximum 

value was 52.2% for MX/LEU/HA
0.15

/AB
2
) (Fig. 20). Several commercially available 

DPIs were reported to be tested with the Stochastic Lung Model (even at higher 

inhalation flow rates), demonstrating a lower deep-lung deposition compared to the 

presented non-porous or porous DPI formulations (Jókai et al., 2015; Jókai et al., 2016). 
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The exhaled fraction is a relevant output parameter of the in silico modelling as the 

official in vitro aerodynamic testing methods are not validated to provide this data. In this 

work, the exhaled fraction was calculated as the difference between the inhaled amount 

and the sum of the amounts deposited in the extrathoracic airways and the lungs. The 

porous particles had lower EXH (23.6–27.3%) than the non-porous particles (26.0–

27.5%). No significant differences were detected in terms of extrathoracic and lung 

depositions and the exhaled fractions between the formulations after 1 and 10 weeks of 

storage. 

 

 
 

 

   

Figure 20: In silico modelling results (1 and 10 weeks after storage) using spirometry 

data of 7 COPD patients: inhaled volume (IV) 1.70 L, inhalation time (tin) 2.04 s, breath-

hold time (tb-h) 5 and 10 s, exhalation time (tex) 3.0 s, 50.1 L/min average airflow rate 

(time-dependent inhalation). ET=extrathoracic deposition, LUNG= lung deposition and 

EXH=exhaled fraction. Data are presented as mean ± S.D., n=3. 
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6. CONCLUSION 

In accordance with our research goals, carrier-free DPIs were produced for the local 

treatment of pulmonary inflammatory diseases. The optimal formulations of carrier-free 

DPIs have high practical relevance in pulmonary drug delivery: 

 carrier-free formulations aimed to reduce the intrinsic cohesion of the particles, 

increase dispersion and delivery from the inhaler, thus emitting the use of large 

carriers for drug delivery and reducing the side effects of particles deposited in the 

upper airways. 

It was clarified that MXP has a similar effect on A549 cells viability as MX and both can 

be safely used for inhalation up to 0.1 mg/mL concentration. 

The aimed “spray drying from solution” technology was accomplished with two 

feasibility strategies. The technologies using the novel MXP salt form and applying MX 

solubility increase (with pH shift) eliminate the use of organic solvents for dissolving the 

active agents: 

 the use of high water solubility of MXP simplifies sample preparation:  with 70±5 

°C heated purified water, the drug concentration could reach 20 mg/mL MXP 

concentration in each formulation, while 

 the MX aqueous solution was achieved with pH adjustment (at pH 8.0±0.1) to 

facilitate the particle formulation process and reach 1.5 mg/mL MX concentration 

(in sodium salt form) in each formulation. 

The formulation and analyses protocol was based on a comparison study of the non-

porous and porous formulations regarding their spray drying yield (>60% for both 

technologies), physicochemical properties and aerodynamic behaviour (Table XII): 

 the planned non-porous formulations containing MXP reached the aimed narrow 

size distribution (Span<1.9) in the inhalable 3.0–3.8 µm geometric diameter range 

and spherical-like morphology. The density of these particles was 0.32–0.42 g/cm
3
, 

while 

 the planned porous formulations (LPP technique) containing MX reached the 

aimed narrow size distribution (Span <2.0), particles had spherical morphology, 

reached geometric diameter larger than 5 µm (up to 5.7 µm) and density lower than 

0.17 g/cm
3
. 
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The aerodynamic behaviour of the formulations showed no significant difference in the 

course of in vitro-in silico evaluation after 1 and 10 weeks of storage (Table XII): 

 the in vitro aerodynamic properties performed at 30 L/min low inhalation flow rate 

exceed the values of commercially available formulations. Thanks to the better 

aerosolization of porous particles, these formulations showed the highest drug 

emission and deposition values (EF >76 % and FPF >54 %). Despite the large 

geometric size of porous formulations, the aerodynamic diameter were similar to 

those of the non-porous formulations, falling in the inhalable range (with MMAD 

2.2–3.0 µm), while 

 the in silico aerosolization properties of the formulations were established at COPD 

patients’ time-dependent inhalation flow rate (average 50.1 L/min). Besides the low 

extrathoracic (<25%) and high lung deposited fraction (>46%), the exhaled fraction 

could also be determined (<27.4%, tb-h=10 s). The in silico lung deposition values 

correlated well with in vitro measured FPF: showing higher lung deposited fractions 

in both cases of formulation techniques. 

 

Table XII: Summary of the presented study. The most important comparison properties of 

the prepared carrier-free DPI formulations. 

 Non-porous formulations Porous formulations 

Active ingredient MXP: 20 mg/mL MX: 1.5 mg/mL 

Excipients 
LEU: 40–20 mg/mL 

PVA: 2–2.5 mg/mL 

LEU: 0.75 mg/mL 

HA: 0.15–0.3 mg/mL 

AB: 1.5–2 mg/mL 

Drying yield 60–64% 61–70% 

Morphology  

shell-like, rough surface, dense 

particles 

 

spherical, porous/hollow 

structure 

 
Geometric size 3.0–3.8 µm 4.9–5.7 µm 

Density 0.30–0.42 g/cm
3
 0.09–0.16 g/cm

3
 

In vitro 

aerodynamic 

properties 

30 L/min  

EF 67–78% 77–90% 

FPF 42–53% 54–70% 

MMAD 2.6–3.0 µm 2.2–2.8 µm 

GSD 1.33–1.52 1.66–2.01 

In silico 

depositions 

tb-h=10 s 

ET 22–24% 21–25% 

LUNG 48–51% 51–52% 

EXH 26–27% 23–27% 
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The inhibition of inflammation with the appropriate inhalable NSAIDs could be one of 

the possible cures affecting more than 500 million people worldwide. The presented well 

controlled DPI particles could offer new possibilities in the use of meloxicam in 

inhalation therapy both alone and in combination products. The aimed carrier-free DPIs 

containing MXP and MX may offer safe treatment of lung inflammations (e.g. 

pulmonary fibrosis, COPD). Thanks to the high aerodynamic properties, the presented 

carrier-free DPI formulations containing MXP and MX may offer effective local 

treatment for lung inflammation diseases (Durham et al., 2015). 

Both the non-porous and the large porous formulations prepared were found to have good 

aerodynamic properties. The optimized formulation technology was essential for the high 

aerodynamic performance which affects the bioavailability of the pharmaceutics.  

The combination of in vitro assessment and in silico modelling demonstrated better 

aerodynamic behaviour than that of the presently commercially available DPI products. 

The use of in vitro-in silico combination analyses gives a precise prediction of in vivo 

behaviour of the formulations thus can be used as a validated tool to characterise the 

aerodynamics of inhalable pharmaceutics. 

New findings/practical relevance of the work: 

 A novel “spray drying from aqueous solution” technology was developed to design 

carrier-free meloxicam (MXP or MX) containing DPIs, which requires no organic 

solvent and offers the benefits of a green formulation procedure and also a scale up 

technology with a high spray drying yield (60–70%). 

 

 A formulation and analyses protocol was developed to prepare for the production of 

new types of carrier-free DPIs as non-porous particles with the salt form of MX 

(MXP), and porous formulation with the pH adjustment of MX. 

 

 Both the non-porous and the large porous meloxicam containing formulations had 

good aerodynamic properties and resulted in better in vitro-in silico aerodynamic 

behaviour than the present commercially available DPI products. Therefore, these 

novel well controlled meloxicam containing DPI particles could offer new 

possibilities in the use of NSAIDs in inhalation therapy both alone and in 

combination products for the local treatment of lung inflammation diseases, such as 

pulmonary fibrosis and COPD. 
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