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The Chooser-Picker games

Abstract

The main goal of this work is to understand Picker-ChooseC{moser-Picker) games
and Beck’s conjecture as deeply as possible. The text has thain parts.

At first we examine the complexity of Picker-Chooser(P-QJ @mooser-Picker(C-
P) games. Here we found that it is NP-hard to decide the wifordsoth P-C and C-P
games [24]. Then we discuss the Picker-Chooser versionlekwewn games, to explore
the differences and similarities among the various typée dxamined games are the C-
P 4 x 4 Tic-Tac-Toe the P-C version of generalized Shannon switching gameCtRe
version of thek-in-a-row and some of the C-P, M-B (Maker-Breaker) and P-@u3o
games. We improve a little on the “Ed8-Selfridge” theorem for C-P games, although a
gap remains this and the conjectured form [21].

Secondly, we solve with the Chooser-Picker 7-in-a-row gafrtes game is quite
interesting because the last really valuable result foBtirea-row game (by playing on
infinite board the 8-in-a-row game the second player careaeta draw), was made more
than 30 years ago. Since then all attempts to solve the #anvavas unsuccessful. The
thesis deals with the Chooser-Picker version of the samielggro In that section we
prove that the Chooser-Picker 8-in-a-row and the ChoorxeP 7-in-a-row game is a
Picker win. The proof is a bit lengthy and a non- trivial caselyg. After we sketch some
idea how can we deal with the original (M-M or M-B) version bid game [22].

Finally we will discuss the P-C diameter games. Here we faumdry interesting
result that how different result is given by the Maker-Bresakersion and the Picker-
Chooser version [2, 23]. As we show the Picker-Chooser eergstores the probabilistic
intuition, just like the acceleration of the game.



Chapter 1

Definitions, a conjecture and some new
tools

1.1 The weak version of the games

There can be defined the weak version of the positional ga6jesvhere the second
player wins if he/she can achieve a draw. It means that thepfager do not have to be
afraid of (and defend against) that the second player oeswpwinning set. Here the first
player is called Maker, and the second is called Breakes éiasy to see the following
statement, see [7].

Statement 1.1.If the Breaker wins in the weak version of the game, then tlongt
version is draw.

1.2 Chooser-Picker and the Picker-Chooser games

Studying the very hard cliqgue games, Beck [6] introducedwa type of heuristic, that
proved to be a great success. He definedRleker-Chooseror shortly P-C and the
Chooser-Picke(C-P) versions of a Maker-Breaker game that resemblesifagian, (see
[70]). In these versions Picker takes an unselected paileofients and Chooser keeps
one of these elements and gives back the other to PickerelRittker-Chooser version
Picker is Maker and Chooser is Breaker, while the roles arpped in the Chooser-
Picker version. Whefl/| is odd, the last element goes to Chooser. Beck obtained that
conditions for winning a Maker-Breaker game by Maker andning the Picker-Chooser
version of that game by Picker coincide in several casesh&umore, Breaker’s win in
the Maker-Breaker and Picker’s win in the Chooser-Pickesioa seem to occur together.

The study of these games gives invaluable insight to the MBkeaker version. For
some hypergraphs the outcome of the Maker-Breaker and @h&icker versions is the
same [6, 21]. In all cases it seems that Picker’s positiohlesast as good as Breaker’s. It
was formalized in the following conjecture.

Conjecture 1.2. If Maker (as the second player) wins the Maker-Breaker gatimen
Picker wins the corresponding Picker-Chooser game. If Beedas the second player)
wins the Maker-Breaker game, then also Picker wins the GireBcker game.[21]
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Itis necessary for the Chooser-Picker Games infinite veitsie following restriction:
At the beginning Chooser can select a bounded subset of #rd hwhere they will play.
Because if they play on the infinite board, then Picker coaldd points far from each
other, and it is a trivially winning strategy for Picker.

1.3 Toolbar

1.3.1 Pairing lemma

Lemma 1.3(Cs-P) If in the course of the (Chooser- Picker) game (or just algeatithe
beginning) there is a two element winning $ety} then Picker has an optimal strategy
starting with{x, y} .

1.3.2 The monotonicity lemma

We mentioned that the at infinite version Chooser can selestiaded subset. In practice
it means that Chooser selects a finite &etc V, and they play on thenduced sub-
hypergraphthat is keep only those edgésc F for which A C X. More formally, given
the hypergraphV, F) let (V' \ X, F(X)) denote the hypergraph whefg X) = {A €
F,ANX =0} .

Lemma 1.4. [21] If Picker wins the Chooser-Picker game oW, F), then Picker also
winsiton(V \ X, F(X)).

This lemma is useful tool at the next chapters, because ifumded setS cant be
partitioned into uniform sub-games, then it can be incréasé’, which can be split into
such sub-games. And if Picker wins 6n then also can win of.

1.4 Some results on Chooser-Picker games

1.4.1 Complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games arA@Sfomplete, see [63],

it would support both Conjecture 1.2, and the above hearistisee that the Chooser-
Picker or Picker-Chooser games are not easy, too. To proPA®S-completeness for
positional games is more or less standard, see [63, 62, B8¢ \Me can prove less because
of the asymmetric nature of these games.

Theorem 1.5.1t is NP-hard to decide the winner in a Picker-Chooser game.
Theorem 1.6. It is NP-hard to decide the winner in a Chooser-Picker game.

Both proofs are based on the usual reduction method. WeedduSAT to Chooser-
Picker or Picker-Chooser games.

Note that Chooser-Picker games are NP-hard, even for higprg(V, E), where
|A| < 6forAcE.
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4 x 4 tic-tac-toe

Proposition 1.7. Picker wins the Chooser-Picker version of the 4 tic-tac-toe.

1.4.2 Picker-Chooser version of the generalized Shannon gahing
game

We prove Conjecture 1.2 for the Picker-Chooser version @in8bn switching game in
the generalized version as Lehman did in [41]. [étF) be a matroid, wheré is the
set of bases, and Picker wins by taking4re F. Note, that this is equivalent with the
Chooser-Picker game @i, C), whereC is the collection otutsetf the matroid V, F),
thatis forallA € FandB € C, AN B # 0.

Theorem 1.8. Let F be collection of bases of a matroid dn Picker wins the Picker-
Chooser(V, ) game, if and only if there ard, B € F such thatA N B = ().

The proof closely follow the ones given by Oxley in [50] foetMaker-Breaker case.

1.4.3 Erdds-Selfridge type theorems for P-C and C-P games

The Erdds-Selfridge theorem [25] gives a very useful condition Boeaker's win in a
Maker-Breaker(V, ) game. Using a stronger condition, Beck [6] proves Pickeiis w

in a Chooser-PickefV, ) game. (For the P-C version he proved a sharp result that we
include here.) Let|F|| = maxscr |A| be the rank of the hypergragh, 7).

Theorem 1.9.[6] If
1
914l <3 (1.1)
A; S(E)

then Picker has an explicit winning strategy in the ChodBmiker game on hypergraph
(V,F). If T(F) < 1, then Chooser wins the Picker-Chooser gamednF).

We improved on his result by showing:

Theorem 1.10.If
1
Yo Me —— (12)

AcF 3w/||}—||+%

then Picker has an explicit winning strategy in the Chod3ker game on hyper-
graph(V, F).

It is worthwhile to spell out a special case of Conjecturef@irzhis case, that would
be the sharp extension of KrglSelfridge theorem to Chooser-Picker games.

Conjecture 1.11.1If
Sl 1
27
AeF
then Picker wins the Chooser-Picker game(dh.F).
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1.4.4 Torus games

To test Beck’s paradigm we check the status of concrete gdeiegd on the x 4 torus,
denoted byt?. That is we glue together the opposite sides of the grid, amdider all
lines of slope$ and+1 as winning sets. For the general definition of torus gamef/3ee
We use a chess-like notation to refer to the elements of thedbd'he hypergraph af

is not almost disjoint, see e. g. the two winning sgt8, b1, ¢4, d3} and{a4, b1, c2, d3}.
We can define four possible games&nthose are the Maker-Maker, the Maker-Breaker,
the Chooser-Picker and the Picker-Chooser versions. Aoapto [7], the Maker-Maker
version of4? is a draw, and Picker wins the Chooser-Picker version, sHe [i2 fact, the
statement of the Maker-Breaker version implies the resultffe Maker-Maker version,
while the proof of it contains the proof of the Chooser-Prokersion.

Proposition 1.12. Breaker wins the Maker-Breaker version of tifetorus game.

According to Conjecture 1.2, Breaker has an easier job ilvihler-Breaker version
than Chooser has in the Picker-Chooser game. Fot the torus the outcome of these
games are the same, although it is much harder to prove.

Proposition 1.13. Chooser wins the Picker-Chooser version of the 4 torus game.

Proof. (sketch) The full proof needs a lengthy exhaustive case analysis.adewsome
branches of the game tree may be cut by proof method of Beok@®niing result [6]:
Chooser wins a Picker-Chooser gameoif T'(H) := > ;5 27 < 1.

U

It is important to remark that above we have seen an ordeuegal its complexity:
it is easier to get the result of the C-P case, then the M-B, ¢hsagh it gives the same
result. And it is far more hard to determine the P-C case theiMaker-Breaker case.



Chapter 2

The Chooser-Picker 7-in-a-row game

2.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where thecesriof the graphs are the
fields of an infinite graph pape?t), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of length. If one of the players gets a lengthline, then
he wins otherwise the game is draw. Note the assuming pgifegtthe winner is always
the first player, or it is a draw by the strategy stealing argoihof John Nash, [13]. More
details abouk-in-a-row games in [57, 58].

Both the Maker-Maker and the Maker-Breaker versions ofitea-row fork = 6,7
are open. These are wisely believed to be draws (Breakamnshwit, despite of the efforts
spent on those, not much progress has been achieved.

2.2 The C-P k-in-a-row game

Before proving the C-R-in-a-row game, we proved the easier G-ih-a-row game (by
playing auxiliary games in a "Z" shaped board, what useder®th [32]).

Proposition 2.1. Picker wins the Chooser-Picker version of the ga¥ie-a-row on any
B C 7.

Theorem 2.2. Picker wins the Chooser-Picker 7-in-a-row game on everyl#sstiofZ>.

By applying the remedy mentioned before Lemma 1.4 at firstocSaodetermines the
finite boardS. We will consider a tiling of the entire plane, and play anidary game
on each tile (sub-hypergraph). It is easy to see, if Pickeswll of the sub-games, then
Picker wins the game played on aAyboard which is the union of disjoint tiles. L&t
be the union of those tiles which megt SinceS C K, Lemma 1.4 gives that Picker also
wins the game o1%, too. Now we need to show a suitable tiling and to define antyaea
the auxiliary games. The tiling guarantees that if Pickersaon in each sub-games then
Chooser cannot occupy any seven consecutive squarks on

Each tile is a4 x 8 sized rectangle and the winning sets, for the sake of betigen
standing, are drawn on the following four board:
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Figure 2.1: These are the winning-sets of the 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we wiik@ use of it.
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Figure 2.2: We can see, how to draw from playing on simplettile game played on the
infinite chessboard: neither vertically, nor horizontaligr diagonally (there is only one
diagonal direction detailed) there are no seven consecstjuares without containing
one winning set of a sub-game.

The key lemma for our proof is the following.
Lemma 2.3. Picker wins the auxiliary game defined on the 8 rectangle.

Remark 2.4. We checked with brute force computer search the M-B gameeosaimne
auxiliary board, but it is a Maker win! So we cannot use the sdable again, to prove
that the weak version (=the Maker-Breaker version) of ttasng is a Breaker win. One
is tempted to look for other auxiliary games, which is nothgoio be easy. As a rule of
thumb, it always good idea to check the C-P version of theseegaat first.



Chapter 3

The Picker-Chooser Diameter Game

3.1 Graph Games

Large classes of Maker-Breaker games are defined on the etengyvbph om vertices.
The players take the edges of the graph in turns; Maker wissisubgraph has a given,
usually monotone, property, see [8, 5, 12, 17]. Balogh et al. [2] introduced the b)
d-diameter game, shortl,(a : b), which means that Maker wins iff the diameter of
his subgraph is at mogt These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 3.1.1. The masult of Balogh et al. was
that Maker loses the ganf@,(1 : 1) but Maker wins the gam®, (2 : in'/%/(logn)*/®).
This means that the acceleration of a game may change thenoeitdramatically,
[57]. The outcome also changes a lot when one considers therRthooser version of
the gameD,(1 : 1). Our main result is the following theorem.
Observation.
Picker wins the P-C gamB,(1 : 1) on the graph¥,,, if n > 22.

Theorem 3.1.In the Chooser-Picker ganiB,(1 : b), Picker wins ifb < \/n/log, n/4,
while Chooser wins i6 > 3./n, provided that is large enough.

The Picker-Chooser (Chooser-Picker) games are themdweuesstics for the Maker-
Breaker games. As Theorem 1.10 shows, the conditions foningna Maker-Breaker
game by Breaker and winning the Chooser-Picker versioradighme by Picker coincide
in several cases. Furthermore, Breaker’s win in the MakeaBer and Chooser’s win in
the Picker-Chooser version seem to occur together in soses¢é]. To further explore
this connection, a generalization of Theorem 1.10 for la@sames is needed. No attempt
is made here to get the best possible form, for our needs tlosving lemma will be
sufficient.

Lemma 3.2. Picker wins the Chooser-Pickél : b) biased game on the hypergraph
H = (V(H), E(H)) if
v —|Al/b
b+1 Z 2 <1

AEE(H)

wherev = |V (H)].
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3.1.1 Diameter and degree games

Balogh et al. [2] observed that the garfg(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edgedfamong Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter t%4il, Breaker has a simple
pairing winning strategy fon > 3, [2]. First taking an edgev, such that neithetz nor
vz has been taken by Maker for any vertexThen if Maker takes.x, takingvz follows,
and if Maker takesx, Breaker takesz, otherwise an arbitrary edge is taken.

However, when playing the gani®,(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gani®,(2 : 2), and even more, the gani® (2 : b), whereb
grows polynomially inn, provided that: is large enough.

Theorem 3.3.[2] Maker wins the gaméD, (2 : $n'/%/(Inn)**), and Breaker wins the
gameD, (2 : (2 + €)y/n/Inn) for anye > 0, providedn is large enough.

To prove Theorem 3.1 we need to study the so-callegree gamesSzékely, Beck
and Balogh et al. [71, 5, 2] showed that these games are stitggen their own right.

In such games one player tries to distribute his moves umifgrwhile the other
player’s goal is to obtain as many edges incident to somexe$ possible. Given a
graphG and a prescribed degrdeMaker and Breaker play & : b) game on the edges
of G. Maker wins by getting at leastedges incident to each vertex. We are interested
only in the case off = K,,. Balogh et al. [2] proved the following lemma:

Lemma 3.4.[2] Let a« < n/(4Inn) andn be large enough. Then Maker wins tfe: b)
degree game o, if d < 5n — %\/nln n.

As we do not wish to develop the complete theory of P-C (C-Rjreke games, we
state only a simple form that suffices our needs

Lemma 3.5. Letb < n/(81nn) andn be large enough. Then Chooser wins the b)
Chooser-Picker degree game éf, if d <n — 1 — 3n/b.

To prove Theorem 3.1, we proved Lemma 3.2 first.

The second part of the theorem, i. e. Chooser wihssif3,/n, comes from Lemma 3.5.
Let Chooser play accordingly to that lemma, then Picker getaost(3n/b) — 1 edges
at any vertext € K,, so the number of vertices that are linkedaztas no more than
((3n/b) —1)> <n—1.

To prove the first part of the theorem implies more work. Weét $spk vertices of the
graph into three approximately equal patts, X, and X;. (Let X; be X; 0q3if i > 3.)
The elements oK; may be listed a$, 2, ...,n/3.! F(X;, X;) denotes the edges between
the setsX; and.X.

We will play two different games among and inside the partsth& first game we
link the points ofX; using £(X;, X;,1), fori = 1,2,3. At the second game we link the
setsX; with X; ., playing on the edges of, ., ;.

LIt can also bgn/3] and[n/3]. In the proof we show that it works witfr./3], and the casén /3|
easily follows from that.
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