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The Chooser-Picker games

Abstract

The main goal of this work is to understand Picker-Chooser (or Chooser-Picker) games
and Beck’s conjecture as deeply as possible. The text has three main parts.

At first we examine the complexity of Picker-Chooser(P-C) and Chooser-Picker(C-
P) games. Here we found that it is NP-hard to decide the winnerfor both P-C and C-P
games [24]. Then we discuss the Picker-Chooser version of well-known games, to explore
the differences and similarities among the various types. The examined games are the C-
P 4 × 4 Tic-Tac-Toe, the P-C version of generalized Shannon switching game, theC-P
version of thek-in-a-row and some of the C-P, M-B (Maker-Breaker) and P-C Torus
games. We improve a little on the “Erdős-Selfridge” theorem for C-P games, although a
gap remains this and the conjectured form [21].

Secondly, we solve with the Chooser-Picker 7-in-a-row game. This game is quite
interesting because the last really valuable result for the8-in-a-row game (by playing on
infinite board the 8-in-a-row game the second player can achieve a draw), was made more
than 30 years ago. Since then all attempts to solve the 7-in-a-row was unsuccessful. The
thesis deals with the Chooser-Picker version of the same problem. In that section we
prove that the Chooser-Picker 8-in-a-row and the Chooser-Picker 7-in-a-row game is a
Picker win. The proof is a bit lengthy and a non- trivial case study. After we sketch some
idea how can we deal with the original (M-M or M-B) version of this game [22].

Finally we will discuss the P-C diameter games. Here we founda very interesting
result that how different result is given by the Maker-Breaker version and the Picker-
Chooser version [2, 23]. As we show the Picker-Chooser version restores the probabilistic
intuition, just like the acceleration of the game.
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Chapter 1

Definitions, a conjecture and some new
tools

1.1 The weak version of the games

There can be defined the weak version of the positional games [6], where the second
player wins if he/she can achieve a draw. It means that the first player do not have to be
afraid of (and defend against) that the second player occupies a winning set. Here the first
player is called Maker, and the second is called Breaker. It is easy to see the following
statement, see [7].

Statement 1.1. If the Breaker wins in the weak version of the game, then the strong
version is draw.

1.2 Chooser-Picker and the Picker-Chooser games

Studying the very hard clique games, Beck [6] introduced a new type of heuristic, that
proved to be a great success. He defined thePicker-Chooseror shortly P-C and the
Chooser-Picker(C-P) versions of a Maker-Breaker game that resembles fair division, (see
[70]). In these versions Picker takes an unselected pair of elements and Chooser keeps
one of these elements and gives back the other to Picker. In the Picker-Chooser version
Picker is Maker and Chooser is Breaker, while the roles are swapped in the Chooser-
Picker version. When|V | is odd, the last element goes to Chooser. Beck obtained that
conditions for winning a Maker-Breaker game by Maker and winning the Picker-Chooser
version of that game by Picker coincide in several cases. Furthermore, Breaker’s win in
the Maker-Breaker and Picker’s win in the Chooser-Picker version seem to occur together.

The study of these games gives invaluable insight to the Maker-Breaker version. For
some hypergraphs the outcome of the Maker-Breaker and Chooser-Picker versions is the
same [6, 21]. In all cases it seems that Picker’s position is at least as good as Breaker’s. It
was formalized in the following conjecture.

Conjecture 1.2. If Maker (as the second player) wins the Maker-Breaker game,then
Picker wins the corresponding Picker-Chooser game. If Breaker (as the second player)
wins the Maker-Breaker game, then also Picker wins the Chooser-Picker game.[21]
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The Chooser-Picker games

It is necessary for the Chooser-Picker Games infinite version the following restriction:
At the beginning Chooser can select a bounded subset of the board, where they will play.
Because if they play on the infinite board, then Picker could select points far from each
other, and it is a trivially winning strategy for Picker.

1.3 Toolbar

1.3.1 Pairing lemma

Lemma 1.3(Cs-P). If in the course of the (Chooser- Picker) game (or just already at the
beginning) there is a two element winning set{x, y} then Picker has an optimal strategy
starting with{x, y} .

1.3.2 The monotonicity lemma

We mentioned that the at infinite version Chooser can select abounded subset. In practice
it means that Chooser selects a finite setX ∈ V , and they play on theinduced sub-
hypergraphthat is keep only those edgesA ∈ F for whichA ⊂ X. More formally, given
the hypergraph(V,F) let (V \ X,F(X)) denote the hypergraph whereF(X) = {A ∈
F , A ∩X = ∅} .

Lemma 1.4. [21] If Picker wins the Chooser-Picker game on(V,F), then Picker also
wins it on(V \X,F(X)).

This lemma is useful tool at the next chapters, because if a bounded setS cant be
partitioned into uniform sub-games, then it can be increased toS

′

, which can be split into
such sub-games. And if Picker wins onS

′

, then also can win onS.

1.4 Some results on Chooser-Picker games

1.4.1 Complexity of Chooser-Picker positional games

Since the Maker-Breaker (and the Maker-Maker) games are PSPACE-complete, see [63],
it would support both Conjecture 1.2, and the above heuristic to see that the Chooser-
Picker or Picker-Chooser games are not easy, too. To prove PSPACE-completeness for
positional games is more or less standard, see [63, 62, 16]. Here we can prove less because
of the asymmetric nature of these games.

Theorem 1.5. It is NP-hard to decide the winner in a Picker-Chooser game.

Theorem 1.6. It is NP-hard to decide the winner in a Chooser-Picker game.

Both proofs are based on the usual reduction method. We reduce3−SAT to Chooser-
Picker or Picker-Chooser games.

Note that Chooser-Picker games are NP-hard, even for hypergraphs(V,E), where
|A| ≤ 6 for A ∈ E.
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4× 4 tic-tac-toe

Proposition 1.7. Picker wins the Chooser-Picker version of the4× 4 tic-tac-toe.

1.4.2 Picker-Chooser version of the generalized Shannon switching
game

We prove Conjecture 1.2 for the Picker-Chooser version of Shannon switching game in
the generalized version as Lehman did in [41]. Let(V,F) be a matroid, whereF is the
set of bases, and Picker wins by taking anA ∈ F . Note, that this is equivalent with the
Chooser-Picker game on(V, C), whereC is the collection ofcutsetsof the matroid(V,F),
that is for allA ∈ F andB ∈ C, A ∩ B 6= ∅.

Theorem 1.8. Let F be collection of bases of a matroid onV . Picker wins the Picker-
Chooser(V,F) game, if and only if there areA,B ∈ F such thatA ∩B = ∅.

The proof closely follow the ones given by Oxley in [50] for the Maker-Breaker case.

1.4.3 Erdős-Selfridge type theorems for P-C and C-P games

The Erd̋os-Selfridge theorem [25] gives a very useful condition forBreaker’s win in a
Maker-Breaker(V,F) game. Using a stronger condition, Beck [6] proves Picker’s win
in a Chooser-Picker(V,F) game. (For the P-C version he proved a sharp result that we
include here.) Let||F|| = maxA∈F |A| be the rank of the hypergraph(V,F).

Theorem 1.9. [6] If

T (F) :=
∑

A∈F

2−|A| <
1

8(||F||+ 1)
, (1.1)

then Picker has an explicit winning strategy in the Chooser-Picker game on hypergraph
(V,F). If T (F) < 1, then Chooser wins the Picker-Chooser game on(V,F).

We improved on his result by showing:

Theorem 1.10.If
∑

A∈F

2−|A| <
1

3
√

||F||+ 1
2

, (1.2)

then Picker has an explicit winning strategy in the Chooser-Picker game on hyper-
graph(V,F).

It is worthwhile to spell out a special case of Conjecture 1.2for this case, that would
be the sharp extension of Erdős-Selfridge theorem to Chooser-Picker games.

Conjecture 1.11. If
∑

A∈F

2−|A| <
1

2
,

then Picker wins the Chooser-Picker game on(V,F).
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1.4.4 Torus games

To test Beck’s paradigm we check the status of concrete gamesdefined on the4×4 torus,
denoted by42. That is we glue together the opposite sides of the grid, and consider all
lines of slopes0 and±1 as winning sets. For the general definition of torus games see[7].
We use a chess-like notation to refer to the elements of the board. The hypergraph of42

is not almost disjoint, see e. g. the two winning sets{a2, b1, c4, d3} and{a4, b1, c2, d3}.
We can define four possible games on42, those are the Maker-Maker, the Maker-Breaker,
the Chooser-Picker and the Picker-Chooser versions. According to [7], the Maker-Maker
version of42 is a draw, and Picker wins the Chooser-Picker version, see [21]. In fact, the
statement of the Maker-Breaker version implies the result for the Maker-Maker version,
while the proof of it contains the proof of the Chooser-Picker version.

Proposition 1.12.Breaker wins the Maker-Breaker version of the42 torus game.

According to Conjecture 1.2, Breaker has an easier job in theMaker-Breaker version
than Chooser has in the Picker-Chooser game. For the4 × 4 torus the outcome of these
games are the same, although it is much harder to prove.

Proposition 1.13.Chooser wins the Picker-Chooser version of the4× 4 torus game.

Proof. (sketch)The full proof needs a lengthy exhaustive case analysis. However, some
branches of the game tree may be cut by proof method of Beck’s following result [6]:
Chooser wins a Picker-Chooser game onH if T (H) :=

∑

A∈E(H) 2
−|A| < 1.

It is important to remark that above we have seen an ordering due to its complexity:
it is easier to get the result of the C-P case, then the M-B case, though it gives the same
result. And it is far more hard to determine the P-C case then the Maker-Breaker case.
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Chapter 2

The Chooser-Picker 7-in-a-row game

2.1 The k-in-a-row game

The k-in-a-row game is that hypergraph game, where the vertices of the graphs are the
fields of an infinite graph paper (Z2), and the winning sets are the consecutive cells (hor-
izontal, vertical or diagonal) of lengthk. If one of the players gets a lengthk line, then
he wins otherwise the game is draw. Note the assuming perfectplay, the winner is always
the first player, or it is a draw by the strategy stealing argument of John Nash, [13]. More
details aboutk-in-a-row games in [57, 58].

Both the Maker-Maker and the Maker-Breaker versions of thek-in-a-row fork = 6, 7
are open. These are wisely believed to be draws (Breaker’s win) but, despite of the efforts
spent on those, not much progress has been achieved.

2.2 The C-P k-in-a-row game

Before proving the C-P7-in-a-row game, we proved the easier C-P8-in-a-row game (by
playing auxiliary games in a "Z" shaped board, what used Zetters in [32]).

Proposition 2.1. Picker wins the Chooser-Picker version of the game8-in-a-row on any
B ⊆ Z

2.

Theorem 2.2.Picker wins the Chooser-Picker 7-in-a-row game on every A subset ofZ2.

By applying the remedy mentioned before Lemma 1.4 at first Chooser determines the
finite boardS. We will consider a tiling of the entire plane, and play an auxiliary game
on each tile (sub-hypergraph). It is easy to see, if Picker wins all of the sub-games, then
Picker wins the game played on anyK board which is the union of disjoint tiles. LetK
be the union of those tiles which meetS. SinceS ⊂ K, Lemma 1.4 gives that Picker also
wins the game onS, too. Now we need to show a suitable tiling and to define and analyze
the auxiliary games. The tiling guarantees that if Picker wins on in each sub-games then
Chooser cannot occupy any seven consecutive squares onK.

Each tile is a4 × 8 sized rectangle and the winning sets, for the sake of better under-
standing, are drawn on the following four board:
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Figure 2.1: These are the winning-sets of the4 × 8 rectangle. Easy to see, that there is
exactly one symmetry (along the double line). Later we will make use of it.

Figure 2.2: We can see, how to draw from playing on simple tile, the game played on the
infinite chessboard: neither vertically, nor horizontally, nor diagonally (there is only one
diagonal direction detailed) there are no seven consecutive squares without containing
one winning set of a sub-game.

The key lemma for our proof is the following.

Lemma 2.3. Picker wins the auxiliary game defined on the4× 8 rectangle.

Remark 2.4. We checked with brute force computer search the M-B game on the same
auxiliary board, but it is a Maker win! So we cannot use the same table again, to prove
that the weak version (=the Maker-Breaker version) of this game is a Breaker win. One
is tempted to look for other auxiliary games, which is not going to be easy. As a rule of
thumb, it always good idea to check the C-P version of these games at first.
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Chapter 3

The Picker-Chooser Diameter Game

3.1 Graph Games

Large classes of Maker-Breaker games are defined on the complete graph onn vertices.
The players take the edges of the graph in turns; Maker wins iff his subgraph has a given,
usually monotone, propertyP, see [8, 5, 12, 17]. Balogh et al. [2] introduced the(a : b)
d-diameter game, shortlyDd(a : b), which means that Maker wins iff the diameter of
his subgraph is at mostd. These games turned out to be very difficult and surprising; a
detailed discussion will be given in Section 3.1.1. The mainresult of Balogh et al. was
that Maker loses the gameD2(1 : 1) but Maker wins the gameD2(2 : 1

9
n1/8/(logn)3/8).

This means that the acceleration of a game may change the outcome dramatically,
[57]. The outcome also changes a lot when one considers the Picker-Chooser version of
the gameD2(1 : 1). Our main result is the following theorem.
Observation.

Picker wins the P-C gameD2(1 : 1) on the graphKn, if n > 22.

Theorem 3.1. In the Chooser-Picker gameD2(1 : b), Picker wins ifb <
√

n/ log2 n/4,
while Chooser wins ifb > 3

√
n, provided thatn is large enough.

The Picker-Chooser (Chooser-Picker) games are themselvesheuristics for the Maker-
Breaker games. As Theorem 1.10 shows, the conditions for winning a Maker-Breaker
game by Breaker and winning the Chooser-Picker version of that game by Picker coincide
in several cases. Furthermore, Breaker’s win in the Maker-Breaker and Chooser’s win in
the Picker-Chooser version seem to occur together in some cases [6]. To further explore
this connection, a generalization of Theorem 1.10 for biased games is needed. No attempt
is made here to get the best possible form, for our needs the following lemma will be
sufficient.

Lemma 3.2. Picker wins the Chooser-Picker(1 : b) biased game on the hypergraph
H = (V (H), E(H)) if

v

b+ 1

∑

A∈E(H)

2−|A|/b < 1,

wherev = |V (H)|.
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3.1.1 Diameter and degree games

Balogh et al. [2] observed that the gameD2(1 : 1) defies the probabilistic intuition
completely. Indeed, if one divides the edges ofKn among Maker and Breaker randomly,
then Maker’s subgraph will almost surely have diameter two.Still, Breaker has a simple
pairing winning strategy forn > 3, [2]. First taking an edgeuv, such that neitherux nor
vx has been taken by Maker for any vertexx. Then if Maker takesux, takingvx follows,
and if Maker takesvx, Breaker takesux, otherwise an arbitrary edge is taken.

However, when playing the gameD2(2 : 2), this pairing strategy is not available for
Breaker. Maker wins the gameD2(2 : 2), and even more, the gameD2(2 : b), whereb
grows polynomially inn, provided thatn is large enough.

Theorem 3.3. [2] Maker wins the gameD2(2 : 1
9
n1/8/(lnn)3/8), and Breaker wins the

gameD2(2 : (2 + ε)
√

n/ lnn) for anyε > 0, providedn is large enough.

To prove Theorem 3.1 we need to study the so-calleddegree games. Székely, Beck
and Balogh et al. [71, 5, 2] showed that these games are interesting in their own right.

In such games one player tries to distribute his moves uniformly, while the other
player’s goal is to obtain as many edges incident to some vertex as possible. Given a
graphG and a prescribed degreed, Maker and Breaker play an(a : b) game on the edges
of G. Maker wins by getting at leastd edges incident to each vertex. We are interested
only in the case ofG = Kn. Balogh et al. [2] proved the following lemma:

Lemma 3.4. [2] Let a ≤ n/(4 lnn) andn be large enough. Then Maker wins the(a : b)
degree game onKn if d < a

a+b
n− 6ab

(a+b)3/2

√
n lnn.

As we do not wish to develop the complete theory of P-C (C-P) degree games, we
state only a simple form that suffices our needs

Lemma 3.5. Let b < n/(8 lnn) andn be large enough. Then Chooser wins the(1 : b)
Chooser-Picker degree game onKn if d < n− 1− 3n/b.

To prove Theorem 3.1, we proved Lemma 3.2 first.
The second part of the theorem, i. e. Chooser wins ifb > 3

√
n, comes from Lemma 3.5.

Let Chooser play accordingly to that lemma, then Picker getsat most(3n/b) − 1 edges
at any vertexx ∈ Kn, so the number of vertices that are linked tox is no more than
((3n/b)− 1)2 < n− 1.

To prove the first part of the theorem implies more work. We split the vertices of the
graph into three approximately equal parts,X1,X2 andX3. (LetXi beXi mod 3 if i > 3.)
The elements ofXi may be listed as1, 2, . . . , n/3.1 E(Xi, Xj) denotes the edges between
the setsXi andXj.

We will play two different games among and inside the parts. At the first game we
link the points ofXi usingE(Xi, Xi+1), for i = 1, 2, 3. At the second game we link the
setsXi with Xi+1 playing on the edges ofXi+1.

1It can also bebn/3c anddn/3e. In the proof we show that it works withdn/3e, and the casebn/3c
easily follows from that.
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